BRIDGE STRATEGY REPORT

FOR THE
MONTEREY PENINSULA LIGHT RAIL PROJECT

PARSONS

Bridge Strategy Report for the Monterey Peninsula Light Rail Project

Prepared by
PAREONS

July 2005
May 2010 Update

MONTEREY PENINSULA LIGHT RAIL PROJECT
Bridge Strategy Report

CONTENTS

INTRODUCTION 1
PROPOSED PASSENGER SERVICE OPTIONS 2
STEEL BRIDGES 3
Alternatives Analysis 4
Rehabilitation 4
Retrofit (With Rehabilitation) 6
Rehabilitation And Span 1 Replacement 7
Replacement 7
Additional Cost Considerations 9
Recommendation 9
Basis Of Alternatives Analysis And Recommendation 10
TIMBER TRESTLES 13
General 13
Existing Conditions 13
Live Load Rating 14
Seismic Vulnerability and Retrofitting 15
Approach to Rehabilitation, Retrofit or Replacement 16
Alternatives Analysis and Recommendations 17
Additional Cost Considerations. 25
CONCRETE BRIDGES 26

MONTEREY PENINSULA LIGHT RAIL PROJECT
Bridge Strategy Report

INTRODUCTION

The following strategy report offers an independent assessment and provides recommendations for rehabilitation, retrofitting or replacement of the bridges on the former Union Pacific Monterey Branch line to meet the needs for restoration of passenger service. The findings in this report are based on available information, field assessment, conceptual engineering and cost estimates. This investigation is a part of the alternatives analysis being conducted for the Transportation Agency for Monterey County (TAMC) to examine re-establishment of passenger rail service on the Monterey Branch line between Castroville and Monterey. It is our understanding that no freight service will be re-established on this line.

Parsons personnel Bob Scales, Sheila Apte and Dave Wemmer, together with TAMC representative Karen Clysdale, visited the bridges on the Monterey Branch on September 14, 2004 and performed a general inspection. Parsons also reviewed applicable portions of the reports by STV titled "Monterey Intercity Passenger Rail Project" dated March 2003; a Salinas River Bridge Inspection and Evaluation report by Modjeski and Masters dated September 28, 2001; Preliminary Geotechnical Recommendations by Shannon \& Wilson dated December 2001; and Union Pacific's bridge inspection report of 1997. Our recommendations are based on the field visit, the above reports' findings and other available geotechnical information for the Monte Road Bridge. All of this resource material is attached and incorporated by reference to this Strategy Report.

To facilitate the 2010 update of this strategy report, Parsons personnel Dale Bartholomew, Nathan Stout and Ram Mothe visited the bridges on the Monterey Branch during the week of February 1 through February 5, 2010. A more detailed inspection of the Salinas River Bridge was performed to ascertain whether additional deterioration of the steel in the bridge had occurred since the Modjeski and Masters (M\&M) Inspection in 2001. Significant additional deterioration was found with the resulting requirement that additional repairs be performed for the rehabilitation options.

As a part of this 2010 strategy report update, Parsons performed a re-rating and re-evaluation of the existing Salinas River Bridge superstructure by extrapolation from the ratings listed in the M\&M Inspection and Evaluation Report since existing bridge Shop Plans were not made available. Parsons also developed revised rehabilitation recommendations to include repair of the additional deterioration and to accommodate a 30 -year plus lifespan for the rehabilitated bridge. In addition, Parsons has updated the cost estimates for the rehabilitation options to include the additional repairs and updated all rehabilitation and replacement options to reflect 2010 material and labor costs. Parsons' 2010 Inspection and Re-Evaluation Report and updated cost estimates are also attached and incorporated by reference into this updated Strategy Report.

PROPOSED PASSENGER SERVICE OPTIONS

Parsons has identified a series of "Preliminary Alternatives" for discussion purposes and to elicit agency and public comment for scoping alternatives analysis. The following rail equipment and service options were considered.

1. Intercity trains similar to Capitol Corridor trains (typical Amtrak West equipment), running two to four round trips per day between San Francisco and the Monterey Peninsula with one locomotive and two or three passenger coaches. Operation of intercity trains similar to Capitol Corridor trains between Castroville and Monterey is no longer under consideration, as a result of the detailed analysis of alternatives completed in 2009. Very low passenger forecasts prepared previously by AECOM indicate that compliant* DMU equipment (Colorado Railcar) may be appropriate as alternative equipment. Colorado Railcar equipment will require only E-23 (140' span) to E-36 (14' span) minimum normal bridge rating. Patronage forecasts are likely to be a few hundred individual passenger trips per day each direction.
2. Caltrain equipment, running up to three round trips per day assuming one locomotive unit and five bi-level coaches. Patronage forecasts are likely to be several hundred individual passenger trips per day each direction. Operation of Caltrain bi-level equipment between Castroville and Monterey is no longer under consideration, as a result of the detailed analysis of alternatives completed in 2009.
3. DMU or EMU shuttles (non-compliant*) between Monterey and Castroville. Siemens AG non-compliant equipment will require E-15 (140’ span) to E-29 (14’ span) minimum normal bridge rating. Stadler GTW equipment requires even lower minimum normal bridge ratings. EMU shuttles are no longer an option. Assume two scenarios:

- Twelve round trips per day with two-car consists.
- Thirty-six round trips per day with two-car consists.

Patronage forecasts are likely to be several hundred individual passenger trips per day each direction using the portion of the line between Castroville and Marina.
4. A combination of intercity compliant DMU trains (Colorado Railcar) for up to three round trips per day each direction and non-compliant DMU shuttle trains operating up to thirty-six round trips per day with 2-car consists. Patronage forecasts are likely to be several hundred individual passenger trips per day each direction using the portion of the line between Castroville and Marina.

[^0]MONTEREY PENINSULA LIGHT RAIL PROJECT
Bridge Strategy Report

STEEL BRIDGES

M.P. 113.46—Salinas River Bridge, 715-foot Steel Through Truss Bridge

The Salinas River Bridge is a 715 -foot long, 5 -span (143 feet each), truss bridge carrying a single track across the Salinas River. The structure consists of warren type, steel through trusses with concrete piers and abutments. The piers and the abutments are supported on 50 -foot timber piles. The bridge was constructed in 1904 with a new first span added to the north end of the bridge in 1914. (See Appendix A drawings for the original bridge and the addition.) Abutments 1 and 2 and piers 2 and 3 are accessible by land and piers 4 and 5 are located in the river. We understand that the water level fluctuates considerably depending on the season. The bridge has extensive corrosion causing loss of structural section through the bridge members. Generally the primary load carrying members have a moderate loss; however, some of the secondary members have extensive corrosion and need replacement.

During the 2010 re-inspection and re-evaluation, the bridge was found to have extensively advanced corrosion causing from 5 to 40 percent additional loss of structural section throughout the bridge members. While increased, the primary load carrying members still have a moderate loss except in Span 1 where up to a 40 percent increase was found. With the re-inspection, a majority of the secondary members in Spans 2 through 5 now have extensive corrosion and need replacement. The re-inspection also revealed that the open timber deck must also be replaced.

MONTEREY PENINSULA LIGHT RAIL PROJECT
Bridge Strategy Report

Alternatives Analysis

REHABILITATION

Rehabilitation repairs as described in the STV (Modjeski and Masters) report including realigning the two shifted trusses, replacing the bearings, replacing the identified bracing, lattice and the connection members, replacing some chord cover plates, repairing the crack at abutment 1 , and painting the bridge are required. Painting of the bridge would entail cleaning by water blasting and painting as described in the report. The cost of rehabilitation is $\$ 2.7$ million. It should be noted that the above-described repairs do not include seismic retrofitting and therefore to protect the public in the case of an earthquake, it is recommended that a site seismic monitoring system be installed and train operating rules enacted as described in the reports.

In addition to the replacements listed above, the 2010 re-inspection and reevaluation found that there was a significant increase in the amount of bracing requiring replacement, including virtually all of the top lateral and sway bracing in Spans 2 through 5. A much higher percentage of lacing bars or lattice bracing and lateral bracing connection members (gusset plates) throughout the bridge now require replacing. Nearly all the chord member cover plates now require replacement and, to extend the life-span of the repairs to a minimum of 30 years, the significant increase in top flange deterioration in the Span 1 bottom chords and diagonals requires that the channel top flanges be cut off and replaced with new flange angles bolted to the webs of the existing members before other new replacement material can be attached.

The 2010 re-inspection and re-evaluation also found that deterioration of the open deck timber ties had also increased since the 2001 M\&M inspection and that the ties were now in fair to poor condition such that the entire deck required replacement. With all of the additional steel repairs, the timber deck replacement, and cleaning and painting, the cost of the existing bridge rehabilitation in 2010 dollars is now $\$ 6.3$ million as detailed in Appendix \mathbf{F}.

In addition to the above, the service life of a high quality bridge paint system and an open timber deck is $\mathbf{1 5}$ to $\mathbf{2 0}$ years, maybe much less for a paint system in a salt-air environment that does not receive annual paint life extension maintenance. Annual paint life extension maintenance includes keeping trees trimmed and well clear of the bridge; and washing the bridge to remove bird dung, leaves, dirt, ballast, and other debris that promotes corrosion. It has been found that tree trimming and washing on at least an annual basis will even double the life of an unpainted older non-weathering steel bridge, even possibly in a salt-air environment.

It is therefore recommended that tree trimming and washing be budgeted and performed on an annual basis and that timber deck replacement and cleaning,

MONTEREY PENINSULA LIGHT RAIL PROJECT
minor steel repairs, and repainting be budgeted and performed on a regular 15 year maintenance cycle. Performing these tasks on a regular maintenance cycle will easily prolong the life of the bridge to over 30 years or even indefinitely.

Since the equipment proposed under service options 3 and 4 is lighter than the freight equipment that traditionally operated on this line, these passenger trains can be operated on the bridge without exceeding the capacity of the bridge’s current condition. However, operating rules should be enacted to protect against unforeseen train consists that would overload the bridge. One example would be to not allow an unexpected second locomotive behind the lead locomotive while crossing the bridge. Final design should evaluate this load case and restrict the location of the engine as necessary.

With the significant increase in deterioration found in the 2010 re-inspection and re-evaluation, even the equipment now proposed under service options 3 and 4 cannot be operated over the bridge without performing the recommended steel repairs and replacing the open timber deck, particularly if a minimum 30-year service life is to be provided.

We also anticipate the need for a restriction on work trains with ballast hoppers traveling across the bridge. Ballast for track restoration or maintenance may have to be trucked to the south of the bridge and then loaded on the work trains. Since work train operations will be infrequent, however, maximum rated capacity of members could be used. Even so, further evaluation of the bridge capacity will be required to establish the type of locomotive that can be used for work trains and the level of ballast, which can be transported if a loaded work train is to travel across the bridge.

Potential scour impact is a critical issue for the existing bridge, as the existing foundations have relatively shallow (50-foot) pile foundations. Scour is the erosion and deepening of the riverbed due to increased flows during a high water event. Significant scour could undermine the foundations leading to a catastrophic failure of the bridge. The Shannon \& Wilson report estimated 30 foot of scour based on the hydraulic studies at the adjacent downstream Monte Road and Highway 1 bridges. Because all four bridges constrict the floodway, and because the upstream floodplain is considerably wider than the channel at the bridges, it can be assumed that contraction scour could add another 10 feet of scour. Therefore, a total scour of 40 plus feet may be expected at the railroad bridge during high water events. Placement of rip rap around the piers would mitigate potential scour but the cost of rip rap could be prohibitively high considering the amount of rip rap required.

In lieu of rip rap protection, another monitoring system could be installed to monitor the water level during high water events. Based on the structure vulnerability, an acceptable scour depth can be established which would determine the critical water surface elevation beyond which it would not be advisable to run the trains across the bridge. The monitoring system could be connected to a signal

MONTEREY PENINSULA LIGHT RAIL PROJECT Bridge Strategy Report
warning system, which would stop the trains before they cross the bridge when the critical water level is reached. We understand FHWA has such a "Plan of action for scour critical bridges" which is similar to the above-described system.

The operation of the monitoring and signaling system for both seismic and scour would have to be inspected and maintained as necessary. Bay Area Rapid Transit (BART) has a similar system in place for seismic events.

It is also recommended that the riverbed profile be measured at least once a year to detect any erosion and scour problems that may impact the bridge's stability. Shannon and Wilson cited a 20 mph limit on the train speed to provide a sufficient warning to a moving train before it reaches the bridge. This limit should be revisited by TAMC since the speed limit is a risk management issue.

The cost of the monitoring and signaling system for both seismic and scour is included in Parsons' estimate. Parsons recommends further hydrological and scour investigation before deciding on the bridge rehabilitation option. Based on the results of such an investigation, the stability of the foundations can be more accurately determined. The ground profile assumed to support our current recommendations is based on the Union Pacific Railroad's 1997 inspection and report (see Appendix A).

During the preliminary engineering/design phase, topographic and bathymetric surveys need to be carried out and the bridge should be re- evaluated if conditions are different than currently assumed.

It is important to note that a new bridge would be able to resist the anticipated seismic demands as well as withstand the anticipated erosion due to potential scour without the need for riprap. A new bridge would also not need a seismic or high water monitoring and signal warning system.

RETROFIT (WITH REHABILITATION)

Rehabilitating the superstructure together with seismically retrofitting the substructure, as suggested by the Shannon \& Wilson geotechnical report was evaluated. The cost of this option is estimated to be approximately $\$ 8.4 \mathrm{M}$. However, the life span of superstructure would only be approximately 15 years compared to over 75 years for a replacement bridge. In 15 years, the trusses would have to be replaced and would be placed on the retrofitted substructure. Since the cost of rehabilitation and retrofitting is comparative to the replacement cost (and would be likely greater when you add in the cost of future superstructure replacement), and comparing the life cycle cost for both alternatives, this option does not appear to be economically prudent.

Rehabilitating the superstructure as described in the updated recommendations above, together with seismically retrofitting the substructure, as suggested by the Shannon \& Wilson geotechnical report is now estimated to cost

MONTEREY PENINSULA LIGHT RAIL PROJECT
approximately $\$ 14.4$ million in 2010 dollars. See Appendix F. In spite of the life span of the rehabilitated superstructure being more than 15 years with a regular deck and paint maintenance cycle eliminating the need for replacement of the truss spans, this option still does not appear to be economically prudent.

REHABILITATION AND SPAN 1 REPLACEMENT

With the significant increase in deterioration found in Span 1 necessitating a significant increase in repairs to primary bottom chord and diagonal members, replacing Span 1 with a new deck girder span and rehabilitating the remainder of the existing bridge appeared to be a viable alternative. A Span 1 replacement using a steel deck plate girder span of the same type as investigated for the on-line alternative described below was assumed. This alternative, however, was estimated to cost approximately $\mathbf{\$ 8 . 0}$ million in $\mathbf{2 0 1 0}$ dollars revealing that repair of the existing bridge without substructure retrofit still has a lower initial cost than replacement. See Appendix F.

REPLACEMENT

Parsons examined two alignment design options which included keeping the replacement bridge on the same existing alignment, or moving it down stream. An upstream alignment option was not considered prudent as it would have negatively impacted the track alignments approaching the bridge. A replacement structure on a new downstream alignment is proposed to be located approximately 40 feet from the existing structure to clear the concrete piers and most of the supporting timber piles. Note that the proposed location would be within existing TAMC right-ofway. The new alignment would maintain the same top of rail elevation. Bent locations would be kept at the same alignment relative to the channel as the existing bridges in order to minimize an increase in anticipated scour.

Both steel plate deck girder and the prestressed box girder design options were considered. The steel plate girder superstructure would consist of 11 -foot deep twin plate girders with a cast-in-place concrete deck supporting the track structure. The girders would be supported on cast-in-place concrete caps. The substructure consisting of two 6 -foot diameter cast-in-steel shell concrete piles is proposed at this location similar to the downstream Monte Road Bridge and the Highway 1 bridges. The pile spacing would be kept at approximately18 feet to achieve needed lateral capacity to resist seismic loads. The 6-foot diameter steel shells would be 1inch thick, which includes $1 / 4$ inch corrosion allowance. The pile shells would be filled with concrete and reinforcing steel to resist vertical and lateral loads.

Per Shannon and Wilson's geotechnical report, the soils at the site are liquefiable and the substructure would be unsupported for approximately 30 feet below the existing ground during a seismic event. Hence, the large diameter steel shells filled with concrete would offer adequate lateral and vertical support. The proposed piles

MONTEREY PENINSULA LIGHT RAIL PROJECT
Bridge Strategy Report
would be approximately 130 feet long as recommended in the Shannon \& Wilson’s geotechnical report. The construction cost of this option would be approximately $\$ 10.1$ million. The updated construction cost in 2010 dollars is now estimated to be approximately $\$ 9.6$ million which includes the recent significant drop in steel costs. Even though an increase in steel costs in the near future has been rumored, this increase should be covered by the contingency amount included in the cost estimate of Appendix F.

A prestressed concrete box girder design was also considered. This option would consist of 12 -foot deep box girders supported on cast-in-place concrete caps and two 7 -foot diameter cast in steel shell concrete piles. The 7 -foot diameter piles are assumed to be 130 feet long and $1-1 / 8$ inches thick, which includes $1 / 4$ inch corrosion allowance. This option would cost approximately $\$ 7.7$ million for construction, which is less expensive than the steel plate girder alternate. The updated construction cost in 2010 dollars is now estimated to be approximately $\$ 10.9$ million which is now more than the steel option. See Appendix F.

Of these alternatives, in addition to lower 2010 overall costs, the steel plate girder option on a new alignment would offer ease of construction, lighter weight, and reduced substructure cost. A plate girder alternative would also avoid extensive false work construction. Partial length girders could be brought to the site and spliced during erection. The superstructure would require periodic inspection and maintenance, including annual tree trimming and bridge washing and cleaning and painting on approximately a 15 year cycle. The concrete option, however, would require only routine inspection and minimal maintenance.

A superstructure replacement option consisting of steel plate girders on the existing alignment was also considered. The existing structure would have to be removed to the bottom of the concrete piers. Partial abutment removal would also be necessary. The existing timber piles supporting the concrete piers would be very difficult to pull out and if pulled, soil would be disturbed which in turn would reduce the lateral capacity of the new piles. Therefore, Parsons would propose to leave the timber piles in place and construct new piles and pile caps to clear the existing piles. This would make the pier cap considerably longer and deeper than rebuilding the bridge on a new alignment. Seven-foot diameter, cast-in-steel shell concrete piles are proposed for this alternative due to heavier superstructure loads. The construction cost of this alternate is estimated to be approximately $\$ 11.6$ million.

For the existing alignment option, the updated construction cost in 2010 dollars is now estimated to be approximately $\mathbf{\$ 1 1 . 7}$ million which also includes the recent significant drop in steel costs. See Appendix F. The superstructure of this option would also require periodic inspection and maintenance, including annual tree trimming and bridge washing and cleaning and painting on approximately a 15 year cycle.

MONTEREY PENINSULA LIGHT RAIL PROJECT
Bridge Strategy Report

ADDITIONAL COST CONSIDERATIONS

Note the above construction cost estimates for all the options include a 25 percent contingency allowance. Approximately 25 to 30 percent should be added to the above cost for the design/ construction management/agency soft costs and another 10 to 15 percent should be considered as an unallocated contingency for the steep increase in steel and concrete prices during 2003-2004, which may decline or rise in the future. These adjustments, except for the design, construction management, and agency soft costs, have been included in the updated cost estimates of Appendix F, as well as the recent significant drop in steel costs. The rumored increase in steel costs in the future should, however, be considered.

Recommendation

Parsons recommends replacement of the bridge on a new downstream alignment within the existing railroad right of way. Although there is a higher initial cost for a new bridge the overall life cycle cost spread over the 75 plus year life would be lower. A new bridge will also provide less risk as it will be designed to current codes in regards to seismic and high water events. This also provides for assurance that substantial interruption (1 to 2 years) caused by a seismic or high water event to passenger services would be minimized or eliminated. The cost of a new bridge ranges between approximately $\$ 8$ and $\$ 10$ million for concrete and steel superstructure alternatives respectively. At this time it appears the concrete superstructure would provide the preferred alternative but this would be confirmed during the next phase of engineering development.

Updated costs of a new bridge in 2010 dollars ranges between approximately $\$ 9.6$ and $\$ 10.9$ million for steel and concrete superstructure alternatives respectively. At this time it appears the steel superstructure may now provide the preferred alternative but this also must be confirmed during the next phase of engineering development and the added maintenance of a steel structure must be considered.

If the funds are not available to replace the bridge, Parsons recommends rehabilitating the bridge, including installing the monitoring and signaling system for both seismic and scour, to carry very limited service as now described in service options 3 and 4. The possibility of an extended interruption in service to a large number of patrons in the case of significant damage caused by an earthquake or high water event must, however, be considered. Note also that a concrete bridge replacement would have a lower life cycle cost since the existing bridge will need replacement in 15 to 20 years or need to have annual tree trimming and bridge washing maintenance and have the timber deck replaced and cleaning, minor steel repairs, and painting performed on a 15 year cycle.

MONTEREY PENINSULA LIGHT RAIL PROJECT
Bridge Strategy Report

BASIS OF ALTERNATIVES ANALYSIS AND RECOMMENDATION

The following assumptions form the basis for the above analysis, recommendations and cost estimates.

1. The steel plate girders can be transported to the job site in pieces via either truck or barge. They would then be spliced together during construction. Parsons understands that the water depth changes considerably depending on the season. We anticipate that temporary construction trestles and/or embankments will be required across portions of the river, the extent of which will depend on the type of superstructure used. Since there is no existing rail service on the line now, it will not be necessary to maintain rail service during construction, which would allow for maximum flexibility.
2. Bridge Inspection: Parsons assumes the inspection procedure followed by Modjeski and Masters was in accordance with AREMA, Volume 2, Chapter 15, Section 7.4. The AREMA procedures were followed during the Parsons 2010 re-inspection and re-evaluation.
3. Cost estimate for rehabilitation of the existing bridge:

- Cost of replacement and repair of the structural steel members is based on the cost estimate by Modjeski and Masters increased by an escalation factor. A 30 percent escalation factor was used based on Caltrans Highway Construction Cost Index for steel and concrete. A 15 percent escalation factor is included in the cost estimate while another 15 percent should be added as an unallocated contingency since the steep increase in steel and concrete cost during 2003-2004 is unusual and may decline or rise in the future. The updated cost estimates of Appendix F are based on the 2010 Caltrans Highway Construction Cost Index for steel and concrete and other industry references, including the recent significant drop in steel costs. Contingency factors have been included and others should be included as described above. The rumored increase in steel costs in the future should also be considered.
- Maximum operating speed: As recommended in Shannon \& Wilson’s report, 20 mph is assumed for the strategy report. Additional research should be undertaken to check whether an increase in speed is feasible.
- All construction to be completed prior to start of train operations.
- Cost of ballast and track work is not included except for the cost of the open timber deck replacement using special structural grade bridge ties that are larger than standard track ties.
- Cost of permitting, relocation, property acquisition, if needed, permit for temporary access, cost to the agency is not included.
- Environmental assessment or evaluation regarding wet lands, endangered species and hazardous materials in the soil, water or air was not performed and therefore environmental investigation and mitigation costs are not included.
- A proposed 30-inch diameter water line from the proposed desalinization plant at Moss Landing may not be attached to the existing bridge since the water supply may be disrupted after a seismic event.

4. Cost estimate for the replacement bridge:

- Most of the unit costs are based on the cost estimate for Monte Road Bridge increased by an escalation factor. The Monte Road Bridge, which is downstream from this bridge, was retrofitted in 2001. The retrofit scheme included extending the concrete caps at each bent and supporting it with two 6 -foot diameter cast-in-steel-shell concrete piles similar to the proposed method for the new bridge. A 30 percent escalation factor was used based on Caltrans Highway Construction Cost Index for steel and concrete. A 15 percent escalation factor is included in the cost estimate while another 15 percent should be added as an unallocated contingency since the steep increase in steel and concrete cost during 2003-2004 is unusual and may decline or rise in the future. The updated cost estimates of Appendix F are based on the 2010 Caltrans Highway Construction Cost Index for steel and concrete and other industry references, including the recent significant drop in steel costs. Contingency factors have been included and others should be included as described above. The rumored increase in steel costs in the future should also be considered.
- Includes removal of the existing superstructure and substructure down to the top of the timber piles and partial removal of the abutments.
- Replacement of bridge structures and new embankment only.
- Utility identification and relocation is not included.
- All construction to be completed prior to start of train operations.
- Cost of ballast and track work is not included.
- Cost of permitting, relocation, property acquisition, if needed, permit for temporary access, cost to the agency is not included.
- Environmental assessment or evaluation regarding wet lands, endangered species and hazardous materials in the soil, water or air was not performed. Therefore, the cost of environmental investigation and mitigation is not included.

5. The existing bridge is not considered historic according to the STV final report. However, after constructing the replacement structure, the question of whether to remove or retain the existing structure is not covered under the present scope of this investigation and would be determined in

MONTEREY PENINSULA LIGHT RAIL PROJECT
Bridge Strategy Report
consultation with state historic and environmental protection agencies. Per the STV report, a records search from the Northwest Information Center in Rohnert Park, California indicates that the project area is potentially sensitive for historic cultural resources. The cost associated with identification process and mitigation measures, if any, is not included in this initial estimate.
6. Parsons recommends undertaking additional detailed analysis in the preliminary engineering/design phase before adopting any of the above design options including hydrological studies and geotechnical investigation.
7. Parsons has not carried out a rigorous cost/benefit analysis of all the alternatives presented above and suggests that this analysis be undertaken in the preliminary engineering/design phase to follow this conceptual level study and updated conceptual level study.

TIMBER TRESTLES

General

EXISTING CONDITIONS

As noted above, a general inspection of the timber trestles was performed September 14, 2004. Inspection included visual observation and hammer sounding of selected timber bridge members. Visual observation was performed to find obvious defects (splits, checks, exterior damage), while timber sounding was performed to find general indications of interior decay (voids). The interiors of timbers typically decay, because this is where moisture is held and bacteria can grow. In most cases failure of timber bridge members results from interior decay and the resulting loss of structural section.

For this updated Bridge Strategy Report, a cursory visual inspection was made by Parsons personnel on February 5, 2010. No significantly deteriorated conditions were found that would change the following evaluations and recommendations, particularly since most final recommendations are for replacement of the timber trestle with a new concrete trestle or replacing by filling on a culvert. Because of this, no updated cost estimates have been made for the timber trestle bridges.

Parsons obtained a copy of the last bridge inspection report performed by Union Pacific in 1997. See Appendix A. Also attached is a copy of UPRR inspection codes and corresponding defect types. In addition to visual observation and sounding of timbers, the UPRR inspection included selected drilling (3/16-inch inspection hole), probing, and measuring of internal voids where soundings indicated potential significant internal defects. It is Parsons' opinion that the UPRR inspection provides a reasonably accurate assessment of the general condition of the bridge at the time of the inspection.

Our approach to inspection of the bridges was to perform a general inspection to a level of detail so as to generally confirm the findings and accuracy of the UPRR inspection. Parsons’ inspection generally concurs with the UPRR inspection findings as being accurate for the purposes of this study.

Parsons found the bridges to be in fair to good condition. With minor to moderate maintenance/rehabilitation work, the bridges could provide the required level of service for all proposed passenger equipment.

It is important to note that in the event of an emergency condition (e.g., damage from an earthquake or fire) the timber bridges could be replaced under emergency operations in a reasonable amount of time (less than a month) assuming availability of materials and contractors. After a major seismic event, immediate availability of these resources could be an issue. Assuming the interruption to service would be limited, this issue is not considered a factor in the determination of whether to

MONTEREY PENINSULA LIGHT RAIL PROJECT Bridge Strategy Report
rehabilitate/retrofit or replace the timber trestles. This is different than the decision methodology taken at the Salinas River Bridge, which would be out of service for an extended period of time if significant damage were sustained to a rehabilitated, existing bridge.

It is recommended that a detailed inspection of the trestles be performed during final design of this project to specifically identify bridge member conditions. Due to the nature of timber, it is important to note that even detailed inspections cannot identify member conditions with absolute certainty, and therefore, some risk will remain as to additional limited repairs after initial rehabilitation is complete. Also, a higher than normal inspection frequency-quarterly versus annually-is recommended during the first year of operation over existing bridges that are kept in service so as to identify any unforeseen conditions.

LIVE LOAD RATING

The timber trestles were constructed by the Southern Pacific Transportation Company (SPTCo.) to standard plan Common Standard CS 0039. (See Appendix A for Plan.) This is a common bridge type found on the former SPTCo. main lines and branch lines. The bridge's live load capacity is controlled by the strength of the bridge decks (superstructure made up of the timber stringers) and is typically controlled by bending stresses. The E rated capacity of the decks is shown in the following table for three assumed conditions. A range is provided that reflects the slightly different size of stringers and depths of ballast in the different trestles.

Very Good Condition	(no section loss)	E57-66
Good Condition	(10\% section loss)	E50-58
Fair Condition	(20\% section loss)	E43-50

The approximate equivalent E rating for the various proposed passenger equipment is shown in the following table. In the case of conventional commuter equipment, such as Caltrain's Baby Bullet or the Amtrak West equipment (such as the Capitols), the engine is the controlling load (dropped from further consideration). Note DMUs and EMUs have no locomotive as part of the train set, as each car is self-propelled.

Also shown is the rating of typical work train equipment that might be operated by track maintenance operations. This train rates the highest on these timber trestles. Lighter weight work train equipment could be used or, if needed, load limits could be established on work train equipment to bring it into conformance with the bridge's rating. Also, given the infrequency of the operation of work trains, they could be treated as special temporary loads and take advantage of maximum ratings or temporary increased allowable stresses in bridge members that effectively increases the bridge's ratings.

MONTEREY PENINSULA LIGHT RAIL PROJECT Bridge Strategy Report

Conventional commuter equipment (Caltrain Baby Bullet or Amtrak West, including the Capitols). Dropped from further consideration.	E-45
DMU (e.g., compliant* Colorado Railcar)	E-36
DMU (e.g., non-compliant* Siemens AG "DESIRO")	E-29
EMU (e.g., non-compliant* Breda Type 8, MBTA). Dropped from further consideration.	E-15
Work train locomotive (e.g., SD 45)	E-50
Work train 100 ton (263k gross) ballast hopper cars	E-51
*Per FRA rules "non-compliant" cars are only allowed on tracks where no freight operations are allowed.	

SEISMIC VULNERABILITY AND RETROFITTING

Based on the geotechnical recommendations by Parikh Consultants, Inc. for the adjacent Monte Road retrofit project (see Appendix A), the governing fault for this project is the King City-Reliz Fault. This fault has the potential for a maximum credible earthquake of magnitude 7.0 and estimated peak bedrock acceleration of 0.50 g . As a comparison, the Loma Prieta earthquake had a peak rock acceleration of 0.64 g recorded 1 kilometer from the epicenter. The Santa Cruz Railroad branch line, which is in close proximity to the Loma Prieta epicenter, has similar timber ballast deck bridges. Per Parson’s discussion with UPRR, none of the Santa Cruz branch timber trestles or other similar timber trestles in the larger regional area suffered damage. Because other important factors besides peak rock acceleration ultimately determine the actual design acceleration at the bridge sites, it is hard to make an exact comparison with Loma Prieta, but in gross terms, it is likely the bridges in this project would experience similar, strong ground motions and accelerations. Therefore, at this conceptual stage of the project, Parsons suggests it is likely that the trestles could survive the projected maximum credible event with limited damage.

If, upon more detailed investigation in the following design phase of this project, it is determined that the trestles were subject to significant damage, then retrofitting might be recommended. Retrofitting, most likely involving installation of additional piles at each bent (likely two) together with some connectivity improvements, would be fairly expensive. Costs could be approximately 25 to 35 percent of the cost of a new replacement bridge and would be significantly more expensive than replacement of the bridge with embankment fill and a culvert(s). Additionally, the life of a retrofitted bridge would be the remaining life of the existing timber, while a new bridge would last 75 plus years. For this reason, Parsons does not recommend retrofitting the existing bridges at this time.

MONTEREY PENINSULA LIGHT RAIL PROJECT
Bridge Strategy Report

APPROACH TO REHABILITATION, RETROFIT OR REPLACEMENT

This section does not make final recommendations for rehabilitation, retrofit or replacement of the bridges. Specific recommendations are given in the following individual bridge sections. The following provides general recommendations for the approach to rehabilitation, retrofit and replacement.

Rehabilitation

Based on the above ratings, Parsons makes the following general recommendations if rehabilitation of the timber trestles is chosen.

1. Conventional Commuter Compliant DMU Equipment or Mixed Service, Service Options 1, 2 (intercity only trains - both dropped from further consideration) and 4—Recommend the trestles be repaired to restore a good condition and its associated E rating. Both compliant commuter and work train equipment could then operate over the bridges within their design rating.
2. DMU and EMU Equipment (Non-Compliant), Service Option 3 (EMU equipment dropped from further consideration)-Given the equipment ratings are significantly lower than the bridge’s current fair condition ratings, recommend making only repairs regarding the bridge handrail. Due to their infrequency, work trains would operate over the trestles as a temporary overload. AREMA criteria allows for a 30 percent increase in allowable stresses for temporary overloads. This would increase the weakest bridge's rating to accommodate the work train.

Retrofit

As noted above, Parsons does not recommend retrofitting the bridges at this time. Further study and engineering during the next phase of design should more closely examine this issue.

Replacement

Where a bridge is recommended for replacement by a new bridge (to maintain an opening of a waterway (Tembladero Creek)) Parsons recommends a standard railroad industry prestressed concrete trestle bridge. This bridge would be made of precast, prestressed concrete girders, cast in place concrete caps supported on piles.

Where a bridge structure is not required to maintain an opening of a waterway, Parsons recommends removing the existing timber trestle down to the ground line, placing a culvert(s) to transmit local water and backfilling to create a new track earthen embankment.

MONTEREY PENINSULA LIGHT RAIL PROJECT

Alternatives Analysis and Recommendations

M.P. 111.05-Tembladero Slough, 150-foot Ballast Deck Trestle on Timber Piles

(Looking Southwest)

Rehabilitation

1. Service Options 1, 2 (intercity only trains-both dropped from further consideration) and 4-The trestle is in fair condition and the following repairs are assumed to accommodate conventional commuter equipment.

- Replace ballast guard timbers and construct handrails.
- Replace selected bent bracing, stringers, caps and pile extensions.
- Make miscellaneous, minor repairs to abutments.

The cost of these repairs is approximately $\$ 150,000$ to $\$ 250,000$. The remaining life of this bridge could be up to 20 years. Annualized cost based on a 20 -year life is approximately $\$ 10,000$ per year.
2. Service Option 3-The following repairs are assumed for the lighter noncompliant DMU/EMU equipment (EMU equipment dropped from further consideration).

- Replace ballast guard timbers and construct handrails.
- Replace selected bent bracing.
- Make miscellaneous, minor repairs to abutments.

The cost of these repairs is approximately $\$ 60,000$. The remaining life for this bridge for these light loads could be 20 to 30 years. Annualized cost based on a 25 -year life is approximately $\$ 2,400$ per year.

MONTEREY PENINSULA LIGHT RAIL PROJECT
Bridge Strategy Report

Replacement

This bridge spans a named waterway, Tembladero Creek, which is maintained and operated by Monterey County Water Resources within a 50 foot easement. A dirt road crosses under the bridge and is assumed to be the County's for purposes of maintaining the creek. The creek is also a Federal Emergency Management Agency (FEMA) designated floodway. FEMA prohibits any modifications that could cause a rise in the 100-year backwater level to waterway openings in a floodway.

A replacement structure consisting of prestressed, precast concrete girders supported on driven pile bents is recommended. Lengthening the bridge by 30 feet (15 feet each end) would eliminate the current vertical abutments which have experienced lateral movement in the past. The existing bridge would be removed down to the ground line. The expected life for a new bridge is approximately 75 years. The cost of a new bridge is approximately $\$ 850,000$. Based on a 75 -year lifespan, the annualized cost is approximately $\$ 8,000$ to $\$ 11,300$ per year.

Recommendation

For service options 1, 2 (intercity only trains-both dropped from further consideration) and 4, with compliant DMUs, Parsons recommends replacing the bridge with a new bridge. The annualized cost of a new bridge compares favorably to rehabilitation. A new bridge also provides a structure of known quality, whereas the exact condition of the existing structure, even after a detailed inspection, cannot be known. A new bridge will be maintenance-free for many years, whereas the existing bridge will require maintenance that may not be identifiable until train operations resume. Note that a timber trestle also represents a continual fire risk.

For service option 3, non-compliant DMU/EMUs (EMU equipment dropped from further consideration), TAMC may want to retain the existing bridge. With these lightweight cars, the existing bridge in its current condition most likely has a remaining life of 20 to 30 years.

M.P. 111.93—Alisal Slough, 45-foot Ballast Deck Trestle on Timber Piles

(Looking East)

Rehabilitation

1. Service Options 1,2 (intercity only trains - both dropped from further consideration) and 4-The trestle is in fair to good condition and the following repairs are assumed to accommodate conventional commuter and compliant DMU equipment.

- Replace ballast guard timbers and construct handrails.
- Replace selected bent bracing, stringers, caps and pile extensions.

The cost of these repairs is $\$ 45,000$ to $\$ 74,250$. The remaining life for this bridge could be as much as 20 years. Annualized cost is approximately $\$ 2,250$ to $\$ 3,600$ per year.
2. Service Option 3-Only the following repairs are assumed for handling lighter, non-compliant DMU/EMU equipment (EMU equipment dropped from further consideration).

- Replace ballast guard timbers and construct handrails.

The cost of these repairs is approximately $\$ 18,000$. The remaining life of this bridge for these light loads could be as much as 20 to 30 years. Annualized cost based on 25-year life is approximately $\$ 600$ per year.

Replacement

The USGS quad map shows that this bridge spans a named waterway, Alisal Slough. The waterway is a blue line on quad maps in both directions. Alisal Slough is several miles long, suggesting it has a large drainage area. Recently, the
passageway under the bridge has been filled with soil by Monterey County as a part of a mosquito abatement program. A small diameter pipe has been installed to carry well pump water from the north side of the track embankment to the Alisal Slough which remains on the south side. The bridge still remains in place and should be replaced with an engineered fill. The Alisal Slough no longer exists to the north of the tracks having been filled by adjacent agricultural operations. The USGS quad maps are out of date.

The waterway passes through relatively small culverts under farm roads on the south side of the track. Assuming the adjacent roadway culverts were designed properly and if no flooding problems have been noted at this location, then this bridge can be downsized to a culvert possibly matching the size of the adjacent roadway culverts. The watershed of the Alisal Slough is very flat and the FEMA map shows widespread, shallow flooding. Parsons concluded that replacing the bridge with a culvert would probably be permitted because of the small roadway culverts, the bridge filling already performed by Monterey County, and the flood storage characteristic of the watershed. Monterey County Water Resources does not have, nor does any irrigation district have, jurisdiction over this waterway.

It is also noteworthy that the FEMA map shows flooding on both sides of this bridge but the embankment is above the 100-year flood level, so downsizing the bridge will not cause the 100-year flood to overtop the tracks.

Replacing the bridge with an embankment and a culvert to match the adjacent culvert sizes is recommended as a replacement for the existing bridge. The existing bridge will be removed from the deck down to the ground, which will facilitate efficient placement of the new engineered embankment. Cost of removing the old bridge, placing a new culvert and embankment is $\$ 30,000$. The culvert has an expected lifespan of approximately 75 years and is relatively easy and inexpensive to replace.

Recommendation

Given the low cost, Parsons recommends replacing the existing bridge with an embankment and culvert undercrossing. The cost is approximately $\$ 30,000$.

MONTEREY PENINSULA LIGHT RAIL PROJECT
M.P. 112.54—120-foot Ballast Deck Trestle on Timber Pile Bents

(Looking East)

Rehabilitation

1. Service Options 1 , 2 (intercity only trains - both dropped from further consideration) and 4-The trestle is in fair to good condition and in need of repairs to extend its life before service is restored. Repairs generally include:

- Replace ballast guard timbers and construct handrails
- Replace selected bent bracing, stringers, caps and pile extensions.

The cost of these repairs is approximately $\$ 120,000$ to $\$ 200,000$. The expected life of this bridge could be 20 years. Annualized cost is approximately $\$ 6,000$ to $\$ 10,000$ per year.
2. Service Option 3-Only the following repairs are assumed for handling lighter, non-compliant DMU/EMU equipment (EMU equipment dropped from further consideration).

- Replace ballast guard timbers.
- Construct handrail.

The cost of these repairs is approximately $\$ 48,000$. The expected life of this bridge for these light loads could be as much as 20 to 30 years. Annualized cost based on 25 -year life is approximately $\$ 2,000$ per year.

Replacement

This bridge spans an irrigation supply canal or drainage ditch and therefore cannot be completely filled. Monterey County Water Resources does not have, nor does any irrigation district have, jurisdiction over this waterway. It apparently is used by local farmers on either side of the railroad right-of-way. Assuming that the culvert under Monte Road (probably downstream) is correctly sized to convey irrigation or drainage flow, then this bridge could probably be downsized to a culvert matching the size of the culvert under Monte Road. The drainage area to this bridge, obtained from the USGS digital elevation model (DEM), is rather small (about 36 acres). If

MONTEREY PENINSULA LIGHT RAIL PROJECT
Bridge Strategy Report
this bridge is not used for irrigation, then a design using the Rational method, even for a 100-year flood, would probably allow it to be replaced with a 36 -inch pipe.

Replacing the bridge with embankment and a culvert to match the adjacent culvert size is recommended as a replacement for the existing bridge. The existing bridge will be removed from the deck down to the ground which will facilitate efficient placement of the new embankment. Cost of removing and disposing of the old bridge and placing a new culvert and embankment is $\$ 57,000$. The culvert has an expected life of approximately 75 years and is relatively simple and inexpensive to replace.

Recommendation

Given the low cost, Parsons recommends replacing the existing bridge with an embankment and culvert undercrossing. The estimated cost is $\$ 57,000$.
M.P. 112.80—225-foot Ballast Deck Trestle on Concrete Piers

(Looking East)

Rehabilitation

1. Service Options 1, 2 (intercity only trains - both dropped from further consideration) and 4-The trestle is in fair to good condition and the following repairs are assumed to accommodate conventional commuter and compliant DMU equipment. Although the concrete piers are fractured, they appear to be structurally intact. Per UPRR's inspection report, piers 4, 7 and 10 appear to be sinking. Two timber jacking bents have been installed to help support the superstructure. Settlement appears to be minor and does not appear to jeopardize the long-term serviceability of the bridge. Minor shimming of the superstructure might be needed on an infrequent basis in the future.

- Replace ballast guard timbers and construct handrails.
- Replace selected stringers and cap sills.
- Make miscellaneous minor repairs to abutments.

MONTEREY PENINSULA LIGHT RAIL PROJECT Bridge Strategy Report

The cost of these repairs is approximately $\$ 180,000$ to $\$ 293,000$. The remaining life of this bridge could be 20 years. Annualized cost is approximately $\$ 9,000$ to $\$ 14,650$ per year.
2. Service Option 3-Only the following repairs are assumed for handling lighter, non-compliant DMU/EMU equipment (EMU equipment dropped from further consideration).

- Replace ballast guard timbers and construct handrail.

The cost of these repairs is approximately $\$ 90,000$. The expected life of this bridge for these light loads could be 20 to 30 years. Annualized cost based on a 25 -year life is approximately $\$ 3,600$ per year.

Replacement

This bridge does not appear to convey irrigation water or a significant amount of storm water and is most likely an equalizing structure. The drainage area from the DEM is only about 10 acres, suggesting that a much smaller structure would safely convey design flood discharges from this small drainage area. It is very likely that this bridge could be replaced with a couple of culverts that would match the conveyance of the box culvert under Monte Road.

Although this and some of the other bridges are equalizing rather than conveyance structures, it is generally recommended to keep the waterway open to allow the equalizing function. Environmental agencies generally reject complete closure of bridges that block aquatic life movements. Failing to maintain the equalizing character could provoke liabilities on either side. Although Bridge 112.80 has a small drainage area and is likely an equalizing structure, it is recommended that the bridge be replaced with two culverts to allow aquatic movements, avoid potential ponding upstream, and minimize the risk of flooding adjacent lands.

Cost of removing the old bridge, placing a new culvert and embankment is \$76,000. The culvert has an expected life of approximately 75 years and is relatively simple and inexpensive to replace.

Recommendation

Replace the existing bridge with an embankment and culvert undercrossing for an approximate cost of \$76,000.

MONTEREY PENINSULA LIGHT RAIL PROJECT
Bridge Strategy Report

M.P. 113.04-90-foot Ballast Deck Trestle on Concrete Piers

(Looking East)

Rehabilitation

1. Service Options 1, 2 (intercity only trains - both dropped from further consideration) and 4-The trestle is in fair to good condition and the following repairs are assumed to accommodate conventional commuter and compliant DMU equipment.

- Replace ballast guard timbers and construct handrails.
- Replace selected stringers and cap sills.

The cost of these repairs is approximately $\$ 72,000$ to $\$ 117,000$. The expected life for this bridge could be 20 plus years. Annualized cost is approximately $\$ 3,600$ to \$5,850 per year.
2. Service Option 3-Only the following repairs are assumed for handling lighter, non-compliant DMU/EMU equipment (EMU equipment dropped from further consideration).

- Replace ballast guard timbers and construct handrails.

The cost of these repairs is approximately $\$ 36,000$. The expected life of this bridge for these light loads could be 20 to 30 years. Annualized cost based on a 25 -year lifespan is approximately $\$ 1,440$ per year.

MONTEREY PENINSULA LIGHT RAIL PROJECT
Bridge Strategy Report

Replacement

The USGS DEM shows this bridge is located in a high point with no local drainage area and no apparent companion structure under Monte Road for conveyance. This bridge can probably be eliminated. If a culvert does cross under Monte Road, its conveyance would be matched at a minimum.

Recommendation

Given the low cost, Parsons recommends replacing the existing bridge with an embankment and culvert undercrossing. The approximate cost is $\$ 43,000$.

Additional Cost Considerations

Note the above construction cost estimates for all of the options include a 25 percent contingency allowance. Approximately 25 to 30 percent should be added to the above cost for the design/construction management/agency soft costs. Where a new replacement bridge is recommended, another 10 to 15 percent should be considered as an unallocated contingency for the steep increase in steel and concrete prices during 2003-2004, which may decline or rise in the future.

CONCRETE BRIDGES

MP 123.80—Lake George, 45-Foot Prestressed Concrete Trestle

This bridge appears to have been constructed in the 1970s or 1980s by Southern Pacific Railroad in accordance with their standard plans. It is a 2 -span bridge with each span being 22 -feet 6 -inches, most likely designed for a minimum E72 live load. It requires no repairs prior to re-establishing train service. It is anticipated that no or very limited seismic retrofitting would be required. The existing bike path would be removed and the track reconstructed.

APPENDIX A

Attachments

Bridge Strategy Report
 For
 Monterey Branch Line

Attachment Index

November 2004

1. UPRR 97 inspection report
2. Salinas River Replacement Bridge
2.1. General Plan
2.2. Typical section
3. Salinas River Bridge-cost estimate
3.1. Existing Bridge Rehabilitation
3.2. Existing Bridge Rehabilitation with substructure retrofit
3.3. Replacement Bridge on new alignment-Concrete
3.4. Replacement Bridge on new alignment-Steel
3.5. Replacement Bridge on existing alignment-Steel
4. Existing Salinas River Bridge
4.1. Details of new Abutment I
4.2. Details of new Abutment II
4.3. Plan and elevation
4.4. Abutment No. 1- Elevation
4.5. Abutment No. 1- Plan
4.6. Pier No. 1- Elevation
4.7. Pier No. 1- Plan
4.8. Pier No. 2- Elevation
4.9. Pier No. 2- Plan
4.10. Pier No. 3- Elevation
4.11. \quad Pier No. 3- Plan
4.12. Abutment No. 2- Elevation
4.13. Abutment No. 2- Plan
5. Southern Pacific Lines - Common Standard Ballasted deck Trestle
6. Geotechnical Report for Monte Road Bridge by Parikh Consultants
```
EE - 0.01 GENERAL ERIDGE INSPECTION
GENERAL NOTES: INSPECTED 4-30.97 C.A.VAN SICKLE R.M.THOMPSON
EE - 110.40 CASTROVILLE
EE - 110.76
NO PHOTO
CULVERT LENGTH 20 BUILT }191
    12" DIA. CIP HB/R 3 NOT COATED
INSPECTED: 04/30/97
GENERAL NOTES: DROP INLET BOTH SIDES
EE - 11I.01 % LENGTH 19 BUILT 1912 NO PHOTO
EE - 111.05 TEMBLADERO SLOUGH PHOTO
B D TRESTLE LENGTH 150 BUILT 1909 CS 00039
INSPECTED: 04/30/97
    1 T T 5B O 5B O O O O O O O
```



```
    2 T T 2V S 2V O O O 12 X
    T 0}0
    3 T T O O O O 4B 0 0 12 X
    T0}0000
    1410
    4 T T O O 1A S S O O 12 X
    T 2V O O 2V O 0 : : 0 0 0 0 0
    5 T T O O O O O V V ll
```



```
        96
    6 T T O 3A 3B O O O
    TMV 4B O O O O : : : O O O O O O O O
    7 T T O O S O O O O l4 X W
    T0}0000:
    8 T T O O O 4B O V V l4 X $
    T 0 0 0 0 0 0 : : 0 0 0
    9 T T O O O S S
    V 12 X
```



```
    10 TT 0}0
        V 11 X
    T O O O 4B O O : : = AA O AA O O O
    126
```



```
PILING: 14.00 " DIA.
LATERAL BRACING: STANDARD
LONGITUDINAL BRACING: STANDARD
CAPS: 14.50" < 11.75" x 16.00' SAWN
STRINGERS: 8.00" x 17.00" SANN YEAR: 1909
DECK TYPE: TIMBER, THICKNESS: 3.00"
DECK WIDTH: 25' 0"
DECKING: GOOD
B D TIES: GOOD
BALLAST DEPTH: 14"
BALLAST GUARD: 13" HIGK
WALKWAY - NONE
HANDRAIL - BOTH SIDES; TIMRER
RAIL: 112 LB JJ
ALIGN: CURVE RIGHT 1.00 DEG. 20 MPH
APPROACHES LOW - ENDING
PRORILE: POOR
UNDERWATER INSPECTION NOT REQUIRED
gENERAL NOTES: * BENT 1 NEEDS STRUT REPLACED
                                    * HANDRAILS DAMAGED BOTH SIDES
                                    CONCRETE BULKHEADS ON EAST END HAS VERTICAL FRACTURE
                                    BETWEEN STRINGERS 6 & 7, RIGHT HALF OF BULKHEAD IS
                                    SINKING & FALLING OUT INTO BENT 11 PILES
                                    9" below Wallplate
                                    WEST END IS UPTIGHT AGAINST BENT 1 PILES LEFT SIDE
                                    BOTH BULKHEADS VERTICALLY FRACTURED
                                    PANELS 1,2,10& 11, HAVE 6"X8" STRUTS
                                    BALLAST GUARDS COVERED WITH METAL
                                    CONCRETE BULKHEADS
```


4 CT CONC ABUT 0
PILING: 14.00 " DIA.
EATERAL BRACING: STANDARD
LONGITUDINAL BRACING: STANDARD
CAPS: $13.50^{\prime \prime} \times 13.50^{\prime \prime} \times 16.00^{\circ} \mathrm{SAWN}$
CAPS: BNT 1\&4=WP
STRINGERS: 7.75" x 16.75" SANN YEAR: 1909
DECK TYPE: TIMEER, THICKNESS: 3.00"
DECK KIDTH: 15' $0^{\prime \prime}$
DECKING: GOOD
B D TIES: EAIR
BAL工AST DEPTH: 16"
BAL工AST GUARD: 12" HIGH
WALKWAY • NONE

```
HANDRAIL - BOTH SIDES; TIMBER
RAIL: 112 LB JJ
ALIGN: TANGENT 20 MPH
APPROACHES LOW - BEGINNING
PROFILE: GOOD
NO STANDING WATER
UNDERWATER INSPECTION NOT REQUIRED
GENERAL NOTES: * HANDRAILS MISSING BOTH SIDES
                                    * Flammable vegetation both sides
                                    VERTICAL FRACTURE IN WEST ABUTMENT
EE - 112.46 NASHUA RD
```



```
B D TRESTLE LENGTH 120 BUILT 1909 CS 00039
INSPECTED: 04/30/97
```



```
    2 T T IV IV O O 5 O V %
    T O dV O 4B O 0 : : 4V 4B O O 4V 4V 15 0
    3 T T 0 0 0 0 0 V V 8 X
```



```
    4 T T O 2V O 5V O V O O X
    T O dA O O O dV : : O O O O 5V O 0 0
    5 T T O O O O O O O 10 X
    T O O O O O 4B : : O O O AB &V &V 4V O
    6 T T O O O 4B O V V O
    T $V O 0 0 4V 4V : : O O 5V 0 0 4V % 15 0
    7 T T S S O O O V O O X
    T 4V 4V 4V 4V O 4V : : O 0 0 0 0 0 0 0
    B T T O O O O O O V V
```



```
    9 C T CONC ABUT O 5
PILING: 14.00 " DIA.
LATERAL BRACING: STANDARD
LONGITUDINAL BRACING: STANDARD
CAPS: 13.50" x 13.50" x 16.00' SAWN
CAPS: ABUTS=12"X4"X16"
STRINGERS: 7.75" x 16.50" SANN YEAR: }190
DECK TYPE: TIMBER, THICKNESS: 3.00 "
DECK WIDTH: 15' 0"
DECKING: GOOD
B D TIES: GOOD
gALLAST DEPTH: 12"
BALLAST GUARD: 14" HIGH
WALKWAY - NONE
```


Lateral bracing: STANDARDLONGITUDINAL BRACING:STANDARD

```
CAPS: 16.50" }\times7.50'7\times15.00' SAKN 
STRINGERS: 8.00" < 16.00" SANN YEAR: }190
DECK TYPE: TIMBER, THICKNESS: 3.00 "
DECK WIDTH: 15' 0"
DECKING: GOOD
B D TIES: FAIR
BALLAST DEFTH: 18"
BALLAST GUARD: 6" HIGH
WALFWAY - NONE
HANDRAIL - NONE
RAIL: 110 LB JJ
ALIGN: TANGENT 20 MPH
APPROACHES LOW - NO
PROFILE: GOOD
DRAINAGE SURVEY 195A
NO STANDING NATER
UNDERWATER INSPECTION NOT REQUIRED
GENERAL NOTES: * GROUT BROKEN UNDER WALL PLATES
                            * pIERS 4,7&10. are sinking
                                    BENT 2 & 7 STILL HAVE JACKING BENTS IN PLACE
                                    MLL PIERS FRACTURED
EE - 113.04 PHOTO
B D TRESTLE LENGTH 90 BUILT 1909 CS 00039
INSPECTED: 04/30/97
    1 C T CONCRETE ABUTMENT 0 0 0
        T LV O O O O O : O : O O O O O O O O 0
    2 \mp@code { C ~ T ~ C O N C R E T E ~ P I E R ~ 0 }
    3 M C TlllONCRETE PIER
```



```
    C T CONCRETE ABUTMENS O
LATERAL BRACING: STANDNRD
LONGITUDINAL BRACING: STANDARD
CAPS: 17.00" x 8.00" x 16.00' SALNN
CAPS: ABUTS= 12"X4"
STRINGERS: B.00" x 16.50" SALFN YEAR: 1909
DECK TYPE: TIMEER, THICKNESS: 3.00"
DECK WIDTH: 16. 0"
DECKING: GOOD
B D TIES: POOR
BALLAST DEPTH: 13"
BALLAST GUARD: 13" HIGH
WALKWAY - NONE
HANDRAIL - BOTH SIDES: TIMBER
RAIL: 110 LB JJ
ALIGN: TANGENT 20 MPH
APPROACHES LOW - BOTH ENDS
PROFILE: GOOD
NO STANDING WATER
```

```
UNDERWATER INSPECTION NOT REQUIRED
GENERAL NOTES: * HANDRAIL DAMAGED BOTH SIDES
                                    * ABUTMENT WING TORE Off EAST END LEFT SIDE
    PIERS 3 & 4 HAVE SETTLED
    BALLAST GUARDS COVERED WITH METAL
EE - 113.46 SALINAS RIVER, NEPONSET PHOTO
O D STEEL LENGTH }715\mathrm{ EUILT 1904
INSPECTED: 04/30/97
    1 OC CONCRETE ABUTMENT 
    S TRT CONCRETE PIER 2% 
    S TRT 180
    OC CONCRETE PIER 30
    S TRT 140
    O C CONCRETE PIER 30
    S TRT 140
    5 O C CONCRETE PIER 30
```



```
    6 O C CONCRETE ABUTMENT 20
DMG
RTG
TIES: 10" x 10" x 10' at 14" 33 BAD TIES / 543 TIES TOTAL
NO SPACER BLOCKS
DECK HAS GUARD TIMBERS
NO PANDROL PLATES
RAIL ANCHORS NOT PER STANDARD
ANCHOR END PATTERN NOT PER STANDARD
WALKWAY - NONE
HANORAIL - NONE
RAIL: 110 LB JI
ALIGN: TANGENT 20 MPH
APPROACHES LON - NO
PROFILE: POOR
STANDING WATER. BENTS: span 2 thru 5
UNDERWNTER INSPECTION NOT REQUIRED
GENERAL NOTES: * PIERS 3E4 SENT STONES HAVE SHIFTED l 3/4"
    * top lateral hitch plates rusted oUT
    * MANY RUSTED OUT RIVETS
    * EAST AbutMENT, stringer 1 LOW
    * LINE bolTS loose
    * ANCHOR EOLTS DAMAGED
    * IMPAIRED HORIZONAL CLEARENCE
    * EXPANSION ROLLERS FROZEN EAST END
    * SpAN 2 OUT OF LiNe 12"
    TRUSSES ARE NO LONGER IN LINE
    HEAVY GROWTH OF TREES WEST END
    STRUCTURE VERY RUSTY
HISTORY: CONC ABUTS & PRS 1904. W ABUT 1914.
    ORIGINAL W ABUT REMODELED TO PIER 191d.
    pIERS 2&3 HAVE MOVED 15" DUE TO THE EARTH QUAKE,
    OCT 17 1989.
    180' TRT PECO ORDER C8883
    FABRICATED 1914 DESIGN E55 SPEC 1006
    281,165 LP5 (NOT INCLUDING DECK)
    4 - 140' TRT PACO ORDER 341E
    FABRICATED 1904 DESIGN E55 SPEC 1006
    1,038,579 LBS (NOT INCLUDING DECK)
```



```
DMG
RTG
LATERAL BRACING: STANDARD
LONGITUDINML BRACING: STANDARD
DECK TYPE: CONCRETE
DECK WIDTH: 15' 0"
DECKING: GOOD
B D TYES: GOOD
BALLAST DEPTH: 12"
BALLAST GUARD: 0" HIGH
WALKWAY - NONE
handrail - RIGHT SIDE: METAL
RAIL: 119 LB CWR
ALIGN: TANGENT 20 MPH
APPROACHES LON - NO
PROFILE: GOOD
NO STANDING WATER
UNDERWATER INSPECTION NOT REQUIRED
GENERAL NOTES: * ABUTMENT WING WALL CROMDED OUT 2" WEST END
                                    RIGHT SIDE
                                    CONTINUOUS UNDER FREEWAY LEFT SIDE
                                    SKEWED
HISTORY: GMO #67889.
EE - 119.67 FORT ORD ROADNAY UNDERPASS PHOTO
CULVERT LENGTH 241 BUILT 1943
    14. x 10' CBC HB/R 16 NOT COATED
INSPECTED: 04/30/97
GENERAL NOTES: STRUCTURE BUILT FOR 2 TKS. MT RS
                                    CONTINUOUS UNDER FREEWAY LEET SIDE
                                    PAVED
                                    vc 9.11".
EE - 120.98 WORKFIELD NO PHOTO
CULVERT LENGTTA 32 BUILT 1957
    18" DIA. CMP HB/R 5 COATED
INSPECTED: 04/30/97
GENERAL NOTES: SILTED EOTH SIDES
EE - 122.18 PRATTICO PHOTO
OVERHEAD BUILT 1967
INSPECTED: 04/30/97
GENERAL NOTES: 2 PARALLEL REINFORCED CONCRETE STRUCTURES
                                    CONCRETE ABUTMENTS AND PIERS
                                    REINFORCED CONCRETE DECK
                                    TRACK THRU PANEL 3
                                    METAL HANDRAILS BOTH SIDES
                                    SKEWED
                                    VC 23' 3" HC OVER MINIMUM
                                    CURVE LEFT
HISTORY: GMO 60048
SPUR 1, SNITCHING OFF AT 122.g6
EE - 122.96 GRANITE ROCK TO RIGHT
                                    NO PHOTO
UNLOADING HOP
INSPECTED: 04/30/97
GENERAL NOTES: 20'8"X18' CONC PIT
            METAL LINED
                                    14"X2d" UNDER EACH RAIL
                                    METAL GRATE
```

EE 123.30 SEASIDE
GENERAL NOTES: PROPOSE ABANDON-ICC DOCKET AB-12-DEC 28 1978-SURV
EE - 123.60 TIE BUMPER \& RAIL REMOVED
EE - 123.63 CYN DEL REY STREET
EE 125.70 MONTEREY

SEVERITY OF PILE DAMAGE

FATCUMTERENCE(IN)	35	38	41	44	42	50	53	57
DuMMETER (IN)	11	12	13	14	15	181	17	18

FTGITR

SEVERTY OF STRHMGER DAMAGE

Mortuontaispieisi HimMadth		
V One Split, Length of Split: under 3 扎	B. Oresplit Length of Spift 3 It to 6 ft	A Multale Splits or Largity of Split ong 6 亲

		RCVD			IN EST:	
					OUT EST:	
BRIDG	SALINAS RIVER BRIDGE (retrofit)	BR. No.	MP 113.46		DISTRICT:	
TYPE:	STEEL THROUGH TRUSS				RTE:	
CU:					CO:	
EA:					PM:	
	LENGTH:	715.00	WIDTH:	20.00	REA (SF) $=$	14,300
	DESIGN SECTION:					
	\# OF STRUCTURES IN PROJECT:			EST. No.	1	
	PRICES BY:	S.Apte		COST INDEX:		
	QUANTITIES BY:			DATE:	10/20/2004	
	QUANTITIES CHECKED BY:			DATE:		
	CONTRACTITEMS	TYPE	UNIT	QUANTITY	PRICE	AMOUNT
1	REALIGN TRUSS SPANS		LS			\$64,000.00
2	REPLACE ALL TRUSS EXPANSION BEARINGS		LS			\$187,000.00
3	REPLACE FIXED BEARING PEDESTALS - SPANS 3 \& 4		LS			\$60,000.00
4	REPLACE DETERIORATED SECTIONS OF TOP		LS			\$375,000.00
	CHORD, COVER PLATES, ALL SPANS					
5	REPAIR AREAS OF SIGNIFICANT SECTION LOSSES		LS			\$115,000.00
	IN PRIMARY TRUSS MEMBERS					
6	REPAR OR REPLACE TRUSS BRACING		LS			\$115,000.00
	COMPONENTS					
7	REPLACE DETERIORATED LACING BARS OF THE		LS			585,000.00
	TRUSS MEMBERS					
8	REPAIR OR REPLACE FLOOR SYSTEM		LS			\$115.000.00
	COMPONENTS					
9	REPAIR STRINGER EXPANSION BEARINGS		LS			\$45,000.00
	SPANS 2,3, AND 4					
10	CLEAN AND PAINT ALL BRIDGE MEMBERS		LS			\$525,000.00
11	REPAIR ABUTMENT I CONCRETE CRACK		LS			\$11,000.00
12	PIPE HANDRAILING		LF	1,430	\$28.00	\$40,040.00
13	SIESMIC AND SCOUR MONITORING					\$230,000.00
14						
15						
		SUBTOT				51,967,040
		MOBILIZ	TION (交	10\%)		5196,704
		SUBTOT	L bridge I7	TEMS		\$2,163,744
		CONTING	ENCIES	((2.25%)		\$540,936
		BRIDGE	OTAL COST			\$2,70 4,680
		COST PE	SQ.FT.			5189.14
		BRIDGE	EMOVAL (CO	CONTINGENCIES	INCL.)	
		GRAND	OTAL			\$2,704,680
		FOR BUD	GET PURPOS	SES - SAY		52,700,000
		Comsmen				

RCVD BY:

BRIDGE: SALINAS RIVER BRIDGE (tetrofit includine substructure) BR. No. MP 113.46 TYPE: STEEL THROUGH TRUSS

CU:

 EA:

 EA:}IN EST: OUT EST:

DISTRICT:	
RTE:	
CO:	
PM:	
REA $(S F)=$	14,300

DESIGN SECTION:

| \# OF STRUCTURES IN PROJECT: | | EST. NO. 1 |
| :--- | :--- | :--- | :--- |
| PRICES BY: | S.Apte | COST INDEX: |
| QUANTITIES BY: | | DATE: $\quad 10 / \underline{20 / 2004}$ |
| QUANITIES CHECKED | | |

	CONTRACT ITEMS	TYPE	UNIT	QUANTITY	PRICE	AMOUNT
1	REALIGN TRUSS SPANS		LS			\$64,000.00
2	REPLACE ALL TRUSS EXPANSION BEARINGS		LS			\$187,000.00
3	REPLACE FIXED BEARING PEDESTALS - SPANS 3 \& 4		LS			\$60,000.00
4	REPLACE DETERIORATED SECTIONS OF TOP		LS			\$375,000.00
	CHORD, COVER PLATES, ALL SPANS					
5	REPAIR AREAS OF SIGNIFICANT SECTION LOSSES		LS			S115,000.00
	IN PRIMARY TRUSS MEMBERS					
6	REPAIR OR REPLACE TRUSS BRACLNG		LS			\$115,000,00
	COMPONENTS					
7	REPLACE DETERIORATED LACING BARS OF THE		LS			\$85,000.00
	TRUSS MEMBERS					
8	REPAIR OR REPLACE FLOOR SYSTEM		LS			\$115,000.00
	COMPONENTS					
9	REPAIR STRINGER EXPANSION BEARINGS		LS			\$45,000.00
	SPANS 2,3, AND 4					
10	CLEAN AND PAINT ALL BRIDGE MEMBERS		LS			\$525,000.00
12	PIPE HANDRAILING		LF	1.430	\$28.00	540,040.00
13	FURNISH 84" CISSC CONCRETE PILES		LF	1,560	\$858	S1,338,480.00
14	DRIVE 84" CISSC CONCRETE PILES		EA	12	\$95,000.00	S1,140,000.00
15	STRUCTURAL CONCRETE, BRIDGE		CY	1.908	\$650.00	\$1,240,200,00
16	BAR REINFORCING STEEL (BRIDGE)		LB	318.979	\$0.75	\$239.234.38
17	STRUCTURE EXCAVATION (BRIDGE)		CY	533	S75.00	540,000.00
18	STRUCTURE BACKFILL (BRIDGE)		CY	213	576.00	S16,213.33
		SUBTOTAL				\$5,740,168
		MOBILIZATION (010%)				5674,017
		SUBTOTAL BRIDGE ITEMS				S6,314,184
		CONTINGENCIES ((1) 25\%) 2				51,578,546
		BRIDGE TOTAL COST				57,892,731
		COST PER SQ. FT.				\$551.94
		BRIDGE REMOVAL (35% CONTINGENCY INCL.)				5542,338
		GRAND TOTAL				58,435,069
		FOR BUDGET PURPOSES - SAY				\$8,400,000
		Comments:				

COMMENTS:

COMMENTS:

RCVD BY:

BRIDGE: SALINAS RIVER BRIDGE (new track alignment) BR. No.: MP 113.46 TYPE: STEEL DECK PLATE GIRDER

CU:

IN EST: OUT EST:

DISTRICT:

RTE:
CO:
PM:
AREA (SF) =
14.300

DESIGN SECTION:
\# OF STRUCTURES IN PROJECT:

PRICES BY:

QUANTITIES BY:
QUANTITIES CHECKED BY:

	CONTRACT ITEMS	TYPE	UNIT	QUANTITY	PRICE	AMOUNT
1	TEMPORARY RAILING		LF			
2	REMOVE CONCRETE		CY			
3	STRUCTURE EXCAVATION (BRIDGE)		CY	103	575.00	57,700.00
4	STRUCTURE EXCAVATION		CY			
5	STRUCTURE BACKFILL (BRIDGE)		CY	48	\$76.00	53,636.74
6	PERVIOUS BACKFILL MATERIAL		CY			
7	CIDH CONCRETE PILING		LF			
8	FURNISH 72" CISSC CONCRETE PILES		LF	1,560	\$630.00	\$982,800.00
9	DRIVE 72" CISSC CONCRETE PILES		EA	12	575,000,00	\$900,000.00
10	FURNISH PC/PS CONCRETE GIRDERS		EA			
11	ERECT PC/PS CONCRETE GIRDERS		EA			
12	STRUCTURAL CONCRETE, BRIDGE		CY	812	\$650.00	\$527,595.37
13	STRUCTURAL CONCRETE, BRIDGE FOOTING		CY			
14	STRUCTURAL CONCRETE, APPROACH SLAB		CY			
15	PRESTRESSING STEEL		LB			
16	BAR REINFORCING STEEL (BRIDGE)		LB	159.813	50.75	\$119.859.38
17	FURNISH STRUCTURAL STEEL		LB	1,222,605	52.80	\$3,423.294.05
18	ERECT STRUCTURAL STEEL (INCL PAINT)		LB	1,222,605	\$0.45	\$550,172.26
19	JOINT SEAL ASSEMBLY (MR $=$) > $2^{\prime \prime}$		LF			
20	JOINT SEAL (MR = "") 2" max		LF			
21	SLOPE PAVING		CY			
22	CONCRETE BARRIER		LF			
23	MISCELLANEOUS METAL (BRIDGE)		LB			
24	MISC METAL (RESTRAINER - TIE ROD)		LB			
25	PIPE HANDRAILING		LF	1,430	\$28.00	\$40,040.00
26	NEW EMBANKMENT		LS			\$415.000.00
27						
28						
29						
30						
		SUBTOTAL				S6,970,098
		MOBILIZATION ($($ a 10%)				\$697,010
		SUBTOTAL BRIDGEITEMS				\$7,667,108
		CONTINGENCIES (@ 25\%)				\$1,916,777
		BRIDGE TOTALCOST				\$9.583,884
		COST PER SQ. FT.				$\$ 670.20$
		BRIDGE REMOVAL (35% CONTINGENCY INCL.)				\$542,338
		GRAND TOTAL				S10,126,222
		FOR BUDGET PURPOSES - SAY				\$10,126,000

COMDENTS:

EST. NO. I
CosT INDEX:
DATE: $10 / 20 / 2004$

DATE:

RCVD BY:

BRIDGE: SALINAS RIVER BRIDGE (same track alignment) BR. No.: MP 113.46 TYPE: STEEL DECK PLATE GIRDER
CU:
EA:

INEST: OUT EST:

DESIGN SECTION:
\# OF STRUCTURES IN PROJECT: EST. NO. 1

PRICES BY:

COST INDEX:

QUANTITIES BY:	E.Mobo	DATE:	$10 / 20 / 2004$
QUANTITIES CHECKED BY:	DATE:		

	CONTRACTITEMS	TYPE	UNIT	QUANTITY	PRICE	AMOUNT
I	TEMPORARY RAILING		LF			
2	REMOVE CONCRETE		CY			
3	STRUCTURE EXCAVATION (BRIDGE)		CY	533	\$75.00	\$40,000.00
4	STRUCTURE EXCAVATION		CY			
5	STRUCTURE BACKFILL (BRIDGE)		CY	213	\$76.00	\$16,213.33
6	PERVIOUS BACKFILL MATERIAL		CY			
7	CJDH CONCRETE PILING		LF			
S	FURNISH 84" CISSC CONCRETE PILES		LF	1.560	5858	\$1,337,700.00
9	DRIVE 84" CISSC CONCRETE PILES		EA	12	595,000	\$1,140,000.00
10	FURNISH PC/PS CONCRETE GIRDERS		EA			
11	ERECT PC/PS CONCRETE GIRDERS		EA			
12	STRUCTURAL CONCRETE, BRIDGE		CY	1.908	5650.00	\$1,240,428.70
13	STRUCTURAL CONCRETE, BRIDGE FOOTING		CY			
14	STRUCTURAL CONCRETE, APPROACH SLAB		CY			
15	PRESTRESSING STEEL		LB			
16	BAR REINFORCING STEEL (BRIDGE)		LB	318,979	50.75	\$239,234.38
17	FURNISH STRUCTURAL STEEL		LB	1,222,605	S2.80	53,423,294.05
18	ERECT STRUCTURAL STEEL (INCL PAINT)		LB	1,222,605	50.45	\$550,172.26
19	JOINT SEAL ASSEMBLY (MR =) > 2"		LF			
20	JOINT SEAL (MR=1") 2" max		LF			
21	SLOPE PAVING		CY			
22	CONCRETE BARRIER		LF			
23	MISCELLANEOUS METAL (BRIDGE)		LB			
24	MISC METAL (RESTRAINER - TIE ROD)		LB			
25	PIPE HANDRAILING		LF	1.430	\$28.00	\$40,040.00
26						
27						
28						
29						
30						
		SUBTOTAL				58,027,083
		MOBILIZATION ((a) I0 \%)				\$802,708
		SUBTOTAL BRIDGE ITEMS				58.829,791
		CONTINGENCIES ((25\%)				\$2,207,448
		BRIDGE TOTAL COST				\$11,037,239
		COST PER SQ. FT,				\$771.83
		BRIDGE REMOVAL (35% CONTINGENCY INCL.)				\$542,338
		GRAND TOTAL				\$11,579,577
		FOR BUDGET PURPOSES - SAY				\$11,580,000
		COMMENTS:				

Salinas River Bhioge near Neponset.

MEANOL

vore: Piles marked thus $L \longrightarrow 1$ are wottered
2 ins pet ft.in direction indicoled by orrow.
56 pilcs 2781 Lin Ft avisqg Lenigh - 79.66 tt
24 pilcsurovinith 260016 thenmor.

Scate Onc eighthof an inch fo one foote

PARIKH CONSULTANTS, INC.

Officos: Nilpitas - Fremont - Sacramento - Walnut Creek
481 Valley Way, Bldg. 1, Milpitas, CA 95035-4016
Georecnnical

- Environmental
(408) 945-1011 - Fax: (408) 945-1012
- Matorials Tosing
- Construction inspecion

Dokken Engineering
October 27, 1998
3054 Gold Canal Drive
Rancho Cordova, CA 95670

Job No. 97112.13

Atm: Mr. Yohn Maniscalco
Subject: Geotechnical Engineering Investigation, Seismic Retrofit of Monre Road Bridge at Salinas River, (County No. 135/Caltrans No. 44C-93), Monterey County, CA

Gendemen:
This report summarizes the geotechnical engineering investigation provided for design of seismic retrofit of the subject bridge structure.

Introduction

The existing bridge is a 785 feet long, seven span steel siructure. The supersrnucture consists of three steel built-up "I" girders with reinforced concrete deck. Ac the beginning and end of the bridge, the superstructure cantilevers out from the end picrs for about 15 feet and sits on the finished grade. Therefore, the bridge has no "abutments". The bridge is supported on six concrete piers. Each pier is 4 feet wide and 30 feet long with two hollow chambers inside. The piers are supported on driven piles with a service capacity of 35 Tons. The existing ground along the bridge is relatively level with ground elevations typically ranging from 7 feet to 10 feet. At Pier 2 where the existing river flow is, the mudline is at approximately Elev. -3 feet.

The actual pile type of the existing foundation piles is not indicated on the as-built plans. For design purpose, we have assumed that Alternative C pile (Tapered steel shell filled with concrete) was used for the bridge. The as-built plans indicate a pile length (for estimating purposes) of 65 feet, and the average penetration is 57 fect.

As-built Log of Test Borings (LOTB) is not available for the bridge. Field exploration consisting of six borings was performed for retrofit design. Based on geology and subsoil information, there is a high liquefaction potential at the site, and the proposed retrofit strategy will require large diameter Cast-In-Steel-Shell (CISS) piles to provide lateral and verical support.

Field Exploration

The subsurface conditions at the site were studied by drilling six exploratory borings. The approximate boring locations are shown on the plan portion of the attached LOTB sheets.

Dokken Enginearing

Job No. 97112.13 (Monte Road)
October 27. 1998
Page 2
Borings M-5 and M-6 were located within the water (Piers 2 and 3), and the drilling was performed from a barge utilizing a skid rig. The other four "land" borings were drilled with a truck mounted rig. The borings were advanced using 5 -inch diameter rotary wash boring method down to maximum Elev. -123 feet. Representative samples were obtained from the borings at various depths using 1.4 -inch I.D. Standard Penetration Test (SPT) sampler. The sampler was driven 18 inches into the subsurface soils under the impact of a 140 -pound hammer having a free fall of 30 inches. The blow counts required to drive the sampler for the last 12 inches are presented on the LOTB. Laboratory rest results are shown on the LOTB and attached with the repor.

Subsurface Conditions

Based on the borings drilled, the subsoils generally consist of an upper loose sand, silty sand and sandy silt layer down to about Elev. -30 feet overlying thick, soft clayey materials with organics. Very dense sand was encountered below about Elev. - 105 feet near Piers 5 and 6. Boring M-4 drilled at Pier 1 encountered primarily clayey material in the upper 70 feet depth and about 12 feet of very dense sand from Elev. - 62 feet to Elev. -74 feet.

The consistency of the upper sand and silt is generally loose with SPT-N values ranging from 0 (push) to 10 . The clayey materials below the upper sand/silt are generally soft to firm and extend to below Elev. -90 . This thick clay layer contains organics and stringers of sands and sits.

Groundwater was encountered at Elev. 0 during drilling (June 1998). It should be noted that groundwater levels measured at the site will vary with water level in the Salinas River and will change with passage of time due to groundwater fluctuations from season to season, surface runoff, weather condition, subsurface flow, and otber factors which may not be present at the time of the investigation.

Liquefaction Potential

Based on the borings drilled and general geology, the upper loose sand and silt down to about Elev. -30 feet has high liquefaction potential, except at Pier 1 where boring M-4 encountered primarily clayey material. This liquefaction potential is similar to that of the adjacent Caltrans Route 1 bridge (${ }^{\prime \prime} 44-216 \mathrm{R} / \mathrm{L}$, Route 1 at Salinas River).

Scismic Design Criteria

Based on the seismic hazard map prepared by Mualchin (Caltrans, 1996), the governing fault is the King City-Reliz Fault ($\mathrm{Mw}=7.0$), and a peak bedrock acceleration of 0.5 g is anticipated at the site.

Dokken Engineering

Job No. 97112.13 Monte Road)
October 27، 1998
Page 3
The subsoil conditions (liquefaction-prone sand and soft clay) do not fit the assumptions for ATC-32 ARS curves. Previous retrofit studies for the adjacent Caltrans bridge ($/ 444-216$ R/L) by Bechtel (December 1995) have recommended that the preliminary response specrum developed at the University of California for soft cohesive soils, relatively thick and very strong ground shaking (Seed and Dickenson, 1994) be used for retrofit design. This spectrum was modified to extend the flat peak acceleration region to zero-period by the strategy committee. A copy of this spectrum is attached with this report. It is understood that potential soil liquefaction may result in a different and more complex ground response. This response specturn has been used for retrofit design of Caltrans bridge $\# 44-216 \mathrm{R} / \mathrm{L}$ and is valid for seismic rerrofit design of the subject structure. The effect of liquefaction has been considered in LPILE analyses for design of the large diameter CISS piles during seismic loading.

Capacities of As-Bullt Foundations

Location	Foundation Type	Design Load	Specified Pile Tip Elevation	Uit. Comp. for Retrofit Design	Uil. Tension for Recrofin Design
Pier 1	Tapered stecl shell filled with conerete (butt $=15.5^{4} \phi$, tip $=$ $8^{n} \phi$; Alurnative C)	35 Tons	-65	70 Tons	8 Tons
Pier 2	-	35 Tons	. 81	50 Tons	0
Pier 3	"	35 Tons	-81'	50 Tons	0
Pier 4	-	35 Tons	-81'	50 Tons	0
Pier 5	,	35 Tons	-81	50 Tons	0
Pier 6	"	35 Tons	-76	50 Tons	0

a The exact pile type is not indicated on the as-built plans. Based on the Pile Details sheet, we have assumed that Alternative C (Tapered steel shell filled with concrete) was used for foundation support. For this pile type, uplift capacity is limited by 12 ' of rebar in the pile. Since the pile caps of Piers 2 through 6 are within the liquefaction zone, no uplift capacity is recommended. The specified tip elevation is deduced from the pile length (65' for estimating purposes) shown on the as-built plans. We have neglected pile capacity within the potential liquefaction zone.

Large Diameter CISS Piles for Retrofit

Due to water, liquefiable sands and soft clays at the site, lateral design and vertical demands will require relatively large diameter and deep piles. Based on our analyses and discussion with the designer, 72 " ϕ CISS piles are recommended to provide lateral capacity for seismic retrofit. For retrofic design, the geotechnical parameters for analyses of larerally loaded piles using LPILE Program are presented in the attached tables.

Dokken Engineering

Job No. 97112.13 (Monte Road)
Ocrober 27, 1998
Page 4
Based on site conditions, boring data and discussion with the designer, the 72" ϕ diameter CISS piles should be designed for the most critical condition which has a cancilever length of about 13 feet above mudline and a liquefaction zone through Elev. -30 feet. The pile top is ancicipated at Elev. 10土 feet. The piles are assumed to have a pinned condition at the top. The generalized soil profile with geotechnical parameters for LPILE analyses for Piers 2 chrough 6 is presented below.
-
Generalized Soil Profile (Piers 2 through 6)

Approx. Elevarion (ft.)	Generalizod Soil Profile	$\begin{aligned} & \hline \text { LPILE } \\ & \text { Soil } \\ & \text { Type } \end{aligned}$	Probable Soil Strength	$\underset{(\rho \mathrm{p} i)}{\mathrm{K}}$	$\left\|\begin{array}{c} E 50 \\ (\mathrm{in} / \mathrm{in}) \end{array}\right\|$	Effect. Unit Wi. (pci)
-3 to -30	Sand and silt, loose (Potentially liquenable zone: To account for liquataction, use 10% of the initial p-y curve per ATC-32.)	4, SAND (with liquefaction)	$\begin{aligned} & \phi=30^{\circ} \& \\ & p \text {-muliplier } \\ & =0.1 \end{aligned}$	20	-	0.026
-30 $10-55$	Clay with organics, soff	1, CLAY	$\mathrm{c}=4.51 \mathrm{psi}$	250	0.02	0.022
-55 10-75	Sand and sill, medium dense	4, SAND	$\phi=32^{\circ}$	60	--	0.022
-75 to-120	Clay, stiff	3. CLAY	$\mathrm{c}=10.83 \mathrm{psi}$	500	0.005	0.029

At Pier 1, Boring M-4 encountered primarily clayey material. Liquefaction potential at Pier 1 is low. Existing grade at Pier 1 is at Elev. 14 feet \pm, and the as-buil footing bottom is at Elev. -8 feet. Therefore, the as-built piles are embedded at 22 feet below grade. The generalized soil profile with georechnical parameters for LPILE analyses is presented below. Based on the analyses, the as-built piles can provide a lateral capacity of 40 kips (BDS standards) under seismic loading with an anticipated deflection of about 3.5 inches.

- Generalized Soil Profile (Pier 1)

Approx. Elevation (fi.)	Generalized Soil Profile	$\begin{aligned} & \text { LPILE } \\ & \text { Soil } \\ & \text { Typpe } \end{aligned}$	$\begin{aligned} & \text { Probable } \\ & \text { Soil } \\ & \text { Strenglh } \end{aligned}$	$\left.\begin{gathered} \mathrm{K} \\ (\mathrm{pci}) \end{gathered} \right\rvert\,$	$\left\|\begin{array}{c} \text { ESO } \\ (\mathrm{in} / \mathrm{n}) \end{array}\right\|$	Effect. Unit Wh (pc C)
14 co 0	Clay. stiff	3, CLAY	$\mathrm{c}=13.89 \mathrm{psi}$	500	0.005	0.069
0t0-20	Clay, soft to fimm	1, CLAY	$\mathrm{c}=4.51 \mathrm{psi}$	300	0.02	0.029
-20 10-25	Silt to sandy silt, sofi	4, SAND	$\phi=30^{\circ}$	60	--	0.029
-25 10-40	Clay with sand lenses, stiff	1. Clay	$\mathrm{c}=6.94 \mathrm{psi}$	500	0.01	0.029
-4010.5.5	Clay with organics. soft	1. CLAY	$\mathrm{c}=2.08 \mathrm{psi}$	300	0.02	0.029
. 55 10-60	Sandy sill, loose	4. SAND	$\phi=28^{\circ}$	20	---	0.029
-6010-65	Sand, very dense	4, SAND	$\phi=40^{\circ}$	125	--	0.029

It has been noted that the conventional approach of soil-pile interaction analyses using $\mathrm{p}-\mathrm{y}$ relations tend to underestimate the subgrade resistance for large diameter shafts because most lateral soil support ($p-y$) criteria are based on data from pile load tests using 24 -inch diameter piles. ATC-32 report (Section 4.5.5.1) states a procedure to adjust the subgrade modulus

Dobken Engineering

Job No. 97112.13 (Monte Road)
October 27. 1998
Page 5
and E50 for large diameter shafts. The k and E50 values in the atcached tables are for typical piles (24-inch diameter, say). For analyses of the 72 " ϕ CISS piles, we have adopred the procedures stated in ATC-32 report, and the LPILE analyses results presented in this report reflect the effect of large diameter shafts.

LPILE analyses results including deflection, moment, shear and soil reaction along the pile length are attached with this report. Based on the analyses, we recommend a pile length of 115' for the 72 " ϕ CISS piles ar Piers 2 through 6. Pile top is assumed at Elev. 10 fect. Based on discussion with the designer, it is our understanding that the ultimate compression on the CISS piles will range from 735 kips to 990 kips . The specified tip elevations are provided as follows:

72" \varnothing CAST-IN-STEEL-SHELL PILES

Locasion	Design Loading (Service)	Nominal Resistance		Design Tip Elev. (ft)	Specified Tip Elev. (fi)
		Compression	Tension		
Pier 1	N/A	735 kips	0	-66.0(1): -55.0 (3)	-66.0
Pier 2	N/A	990 kips	0	-112.0(1)\&(4); -105.0 (3)\&(4)	-112.0
Pier 3	N/A	970 kips	0	-110.0(1) \& (4); -105.0 (3)\&(4)	-110.0
Pier 4	N/A	947 kips	0	-108.0(1) $\&(4) ;-105.0(3) \&(4)$	-108.0
Pier 5	N/A	955 kips	0	-109.0 (1) \& (4); -105.0 (3)\&(4)	-109.0
Pier 6	N/A	735 kips	0	-100.0 (1) $\&(4) ;-105.0$ (3) \& (4)	-105.0

Design Tip Elevation is controlled by the following demands: (1) Compression, (2) Tension, (3) Latcral Load during Seismic Condition, (4) Liquefaction to Elev. -30 feet (Piers 2 chrough 6)

* The proposed pile top is at Elev. 10 feet; this reference elevation can be used for determining speciñed tip clevation.

Construction Cousiderations

Piers 2 and 3 are normally in water and the rest of the piers are in dry river bed. The water level in the river during our recent investigation was only 3 feet deep at Pier 2. However, The water depth was about 25 feet and 11 feet (September 1996) when we drilled at Bents 2 and 3 of the adjacent Caltrans Route 1 bridge ($\$ 44-216 \mathrm{R} / \mathrm{L}$). Therefore, the river water level will fluccuate with seasons. Depending on the water level in the Salinas river, construction at Piers 2 and 3 may require a barge or a trestle structure for equipment access.

The interior of the sreel shell should be cleaned out and replaced with concrete. The depth of interior cleaning and rebar/concrete placement should be determined based on struccural demands. Typically, about 8 feet of the soil is left in the botom portion of the shell to minimize the need for dewatering. A 3-foot thick layer of seal course can be used inside the steel shell to facilitate pile constraction. The recommended minimum wall thickness for the steel shell is one inch.

Dokken Engineering

Job No. 97112.13 (Monte Road)
October 27. 1998
Page 6

Corrosion Potential

Chemical tests were performed to determine the corrosion potential of the subsoil. The test results indicated a minimum resistivity of 320 ohm- cm, a pH value of 8.0 , water soluble chloride and sulfate concentration of 315 and 418 ppm , respectively. Based on the dana, the subsoil is highly corrosive. The site should be considered in a marine environment. All concrete in piles should meet Caltrans specifications for Type "C" pile. For CISS piles, it is recommended that a reduction of $1 / 4$ inch of the wall thickness be considered if the steel is utilized in design basis. The test results are attached in the appendix.

Limitation: Please be advised that we are performing a professional service and that our conclusions are professional opinion only. All work done and all recommendations made are in accordance with generally accepted gcotechnical engineering principles and practices. No other warranty, expressed or implied, of merchantability or fitness, is made or intended in connection with our work.

If you have any questions concerning items covered in this report, please contact this office at your convenience.

Very truly yours,
PARIKH CONSULTANTS, INC.

Attachments:

Appendix A - Log of Test Boring (9/1998)
Appendix B - Laboratory Data
Appendix C -Recommended ARS Curve
LPILE Analyses Results (72" ϕ CISS pile - Piers 2 thru 6)
Critical Pile Length (Piers 2 thru 6)
LPILE Analyses Results (As-built pile at Pier 1)

APPENDIX B

Inspection and Evaluation Report Salinas River Bridge No. 113.46

Modjeski and Masters
September 28, 2001

TRANSIT AUTHORITY OF
 MONTEREY COUNTY, CALIFORNIA MONTEREY BRANCH LINE CASTROVILLE TO SEASIDE, CA

INSPECTION AND EVALUATION REPORT

SALINAS RIVER BRIDGE NO. 113.46

Submitted to:
Mr. Richard D. Walker
STV, Incorporated
Los Angeles, CA

Submitted by:

September 28, 2001

MODJJESKImwMASTERS,INC.

TABLE OF CONTENTS

Executive Summary 1
Scope of Services 3
Bridge No. 113.46 - Description and History 3
Inspection and Findings 5
Evaluation - Load Carrying Capacity 20
Preliminary Seismic Evaluation 22
Extent of Repairs and Cost 28
Recommendations 30
Appendix 1 - Location Map
Appendix 2A -1902 Bridge Plan
Appendix 2B-1914 Bridge Plan
Appendix 2C - 1914 Bridge Foundation Plan
Appendix 3 - Inspection Charts
Appendix 4 - Member Losses
Appendix 5 - Load Ratings
Appendix 6 - Loma Prieta Seismic Report
Appendix 7 - Recommended Repairs

SALINAS RIVER BRIDGE
 INSPECTION AND EVALUATION REPORT

EXECUTIVE SUMMARY

This Report covers the inspection and evaluation of Bridge No. 113.46 crossing the Salinas River near Neponset, CA. This key bridge is a major factor in the overall feasibility evaluation for the establishment of intercity passenger rail service from Monterey County to San Francisco.

As a subcontractor to STV, Inc. of Los Angeles, Modjeski and Masters, Inc. has inspected the Salinas River Bridge, recorded metalwork losses required for the rating of the bridge, determined the live load carrying capacity of the bridge, preformed a preliminary seismic evaluation and presents repair recommendations and their costs.

Bridge No. 113.46 is a single-track railroad bridge crossing the Salinas River, adjacent to the California Highway 1 bridges. The bridge consists of five Warren-type steel through truss spans supported by concrete piers and abutments. This open deck bridge is on a tangent alignment with 0% grade. The bridge has a 15.0 -ft. horizontal clearance which is substandard. The Line has been out of service for a number of years. Spans 2-5 are identical 6-panel, 140-ft. long spans build in 1903, Span 1 although similar in appearance was built in 1914 and has different structural details. It is known that the abutments and one pier have supporting piling, but no plans are available to confirm if the other piers are pile supported.

The Salinas River Bridge No. 113.64 was inspected and found to be in marginal physical condition with extensive active corrosion causing loss of member sectional properties. Besides the truss primary members which have areas of moderate metalwork losses, a number of light secondary bracing members have significant losses and the bearings are inoperative being frozen with corrosion. Additionally, the misalignment of several truss spans and piers caused by the Loma Prieta earthquake in 1989 have not been repaired.

The bridge was rated per AREMA Manual for Railway Engineering, Chapter 15, Part 7 - Ratings for both the As-Built and As-Is physical conditions for both Normal and Maximum live load carrying capacities. The minimum rated, Normal Rated capacity for the bridge is Cooper E- 37.7 controlled by a truss bottom chord with loss of metalwork section. The controlling Normal Rated capacity for the floor system is Cooper $\mathrm{E}-69.5$. An equivalent Cooper E rating required for a common commuter type train is E-26.6 for truss bottom chords and E-37.0 for the floor system. Thus, despite significant metalwork losses due to corrosion, the bridge has sufficient strength to carry commuter traffic.

There apparently is no specific seismic retrofit criteria that directly applies for the Salinas River Bridge. However, a project specific approach consistent with AREMA recommended seismic guidelines can be developed based on published manuals, standard specifications, and methodologies of Caltrans, AASHTO, FHWA. It is not always practical or economically feasible to retrofit a bridge to the same level of performance as a new bridge. There are methods available such as bridge sensors and traffic controller alerts from seismology centers that can control the likelihood of a commuter train being on the bridge at the time of a seismic event. It is also known that the Salinas River Bridge sustained damage in the 1989 Loma Prieta earthquake, but that the bridge could have been placed back in service in a very short period of time by realigning several trusses. TAMC will need to determine the level of seismic risk they are willing to accept. The range in cost could be from no cost

MODJJESK jumMASTRRS, INC.

SALINAS RIVER BRIDGE INSPECTION AND EVALUATION REPORT

with the acceptance of the bridge as-is to retrofits such as that done on the adjacent highway bridges that had significant costs.

It is recommended that the existing Salinas River Bridge be rehabilitated. Although the bridge has sufficient capacity for the intended intercity commuter rail equipment, many repairs are needed to restore proper bridge functioning. Some of the types of repairs include: realigning the trusses, replacement of truss bearings, replacement of bracing members and their connections, replacement of top chord cover plates where plates are very thin or have significant holes, patch plating where there are significant losses in primary members, and the cleaning and preservation of the metalwork. Structural repairs are estimated to cost $\$ 1,000,000$. Preservation of the steel spans can range from $\$ 500,000$ for simply waterblasting and overcoating the metalwork to $\$ 2,000,000$ for a full abrasive blast cleaning and application of a three-coat paint system. Seismic retrofitting the bridge can range from do-nothing to $\$ 3,000,000$ or more.

It is our recommendation that the bridge be structurally repaired sufficient for a 20 -year life, that the TAMC accept seismic risk without retrofitting the bridge, and that the bridge metalwork be cleaned and overcoated, all at a cost of approximately $\$ 1,500,000$.

SALINAS RIVER BRIDGE INSPECTION AND EVALUATION REPORT

SCOPE OF SERVICES

Within the existing Monterey Branch Line from Castroville to Seaside, CA is a significant bridge over the Salinas River at Mile Post 113.46. The need to restore or replace this key bridge is a major factor in the overall feasibility evaluation for establishment of intercity passenger rail service from Monterey County to San Francisco.

Modjeski and Masters, Inc., as a subconsultant to STV, Inc. of Los Angeles, CA, has been engaged to perform engineering services to determine the condition, capacity and extent of repairs needed to establish passenger rail service over the existing bridge. In broader terms, those services are: inspect the existing bridge for significant metalwork losses, rate the bridge based on those losses for load carrying capacity, determine the extent of required rehabilitation, evaluate seismic retrofit needs, determine rehabilitation costs, and present these findings in a report.

BRIDGE NO. 113.46-DESCRIPTION AND HISTORY

Bridge No. 11.3.46 is a single track railroad bridge that crosses the Salinas River, near Neponset, CA., adjacent to the California Highway 1 bridges, see Appendix 1 -Location Map. The bridge consists of five steel through truss spans supported by concrete piers and abutments (see Photograph No. 1). This open deck bridge is on a tangent alignment with 0% grade. The Line and bridge have been out of service for a number of years.

MODJIESK ImMASSTERS,INC.

SALINAS RIVER BRIDGE INSPECTION AND EVALUATION REPORT

The existing bridge was constructed in 1903 for the Southern Pacific Company. The superstructure consisted of four identical 140 - ft . long Warren type through truss spans of 6 panels, fabricated by the Phoenix Bridge Company, see appended Exhibit 2A - 1902 Bridge Plans. The spans have a $17.0-\mathrm{ft}$. distance between truss lines and 30.0 ft . vertically between truss chord centers which provides a $15.25-\mathrm{ft}$. horizontal clearance (currently substandard) and a $23.0-\mathrm{ft}$. vertical clearance above base of rail. In 1914 an additional span was fabricated by the American Bridge Company, see appended Exhibit 2B - 1914 Bridge Plans. This span was located to the north or San Francisco end of the bridge and although it appears to be identical and the truss centers are the same, the distance between top and bottom chords is 31.0 ft . The span provides a $15.0-\mathrm{ft}$. horizontal clearance (currently substandard) and a $24-\mathrm{ft}$. vertical clearance above base of rail. The structural details of this fifth span are different than that of the other four spans.

At the time of the 1914 bridge modification, a new northern abutment was constructed and the existing northern abutment modified to the shape of the other piers. The bridge plans indicate that there are timber piling of unknown length supporting the original and new abutments, but there are no references to piling beneath the piers, see Appendix 2C-1914 Bridge Foundation Plan.

The bridge has experienced a number of seismic events with the 1906 and the 1989 events being the strongest know events. The 1989 Loma Prieta earthquake resulted in several piers being displaced and several spans atop the piers being shifted, see Report - Seismic Section and Appendix 6 Loma Prieta Seismic Report. No known repairs were made following that incident as the bridge was out of service.

In the late 1990 's the bridge became the property of the Union Pacific Railroad Company as a result of a merger.

SALINAS RIVER BRIDGE
 INSPECTION AND EVALUATION REPORT

INSPECTION OF BRIDGE 113.46

The Salinas River Bridge was visually inspected during the period of July 16-20, 2001 by Messrs. Jason C. Mezzic and Randy P. Songy of Modjeski and Masters, Inc., in conformance with applicable sections of the AREMA Manual for Railway Engineering. The purpose of this inspection was to evaluate the physical condition of each structural component, with emphasis on estimating the extent of section loss of primary truss members and floor system components, as needed to determine the current load rating and the extent of repair work needed prior to re-opening the bridge. The inspection did not include an underwater inspection, hydrology or hydraulic evaluation, nor inspection of the track components.

Numbering systems of the substructure and superstructure have varied over the years, but for the purpose of this inspection and report the spans are numbered 1 through 5, piers are numbered 1 through 4, and abutments are numbered 1 and 2 (all from north to south, or San Francisco to Monterey), as shown on the inspection charts of Appendix 3 - Inspection Chart. In addition, to distinguish specific bridge components and further define locations of items noted during the inspection, the designations of Left and Right are used and spans are divided into panels, as shown on the inspection charts.

To develop the current load rating of the bridge as mentioned above, the amount of section loss of each portion (top flange, bottom flange, web, etc.) of each major bridge component was visually estimated and where significant, locations of isolated areas of section loss were measured and referenced from the end or center of the member, as needed for analysis.

GENERAL PHYSICAL CONDITIONS

The Salinas River Bridge is in overall marginal condition due to deterioration of the superstructure metalwork caused by corrosion, which can be attributed to the salt-laden coastal environment and failure of the protective paint system, and due to misalignment of the substructure and superstructure as caused by the Loma Prieta earthquake of 1989.

The condition of the paint system varies from good to very poor as shown in Photograph Nos. 2.6, and in general the condition of the paint system is usually worse in locations that are typically exposed to direct sunlight and wind, such as the top surfaces of top chords, end posts, floorbeam flanges, etc.

SALINAS RIVER BRIDGE

 INSPECTION AND EVALUATION REPORTPhotograph No. 2 (right) - View shows the paint condition of Diagonal U1-L2 (foreground) and Post U1-L1 (background) of the right truss of Span 2.

Photograph No. 3 (left) - View shows truss members and floor system components in Panel 5 of Span 4, right side Note various paint conditions of the bottom chord, diagonal, floorbeam, and stringer.

SALINAS RIVER BRIDGE

INSPECTION AND EVALUATION REPORT

Photograph No. 4 (left) - View shows Diagonal U3L4 of the right truss of Span 5. Note that there is very little paint remaining on the diagonal

Photograph No. 5 - View shows the bottom chord of the left truss of Span 2. Note that most of the paint still remains on visible portions of the bottom chord and adjacent floor system components.

SALINAS RIVER BRIDGE

 INSPECTION AND EVALUATION REPORT

Photograph No. 6 - View shows the top chord and upper truss bracing of Span 5. Note that there is very little paint remaining on the visible surfaces.

MODJESKImwMASTERS, INC.

SALINAS RIVER BRIDGE INSPECTION AND EVALUATION REPORT

In correlation with failure of the paint system, corrosion is widespread and remains active throughout the metalwork of all spans of the bridge with varying degrees of severity and associated section loss. Conditions are generally worse on the top of horizontal surfaces such as top chord cover plates, lateral connection plates, bottom chord webs, and floorbeam flanges. This is probably due to moisture and other corrosive elements of the coastal environment that naturally collect and remain in contact with horizontal surfaces for longer periods of time than that which occurs on vertical and diagonal surfaces.

All specific defects noted during the inspection, including estimated amounts of section loss for each truss member and floor system component, are listed in the data tables of Appendix 4 of this report, and the numbering system and directional designations used to locate the defects are shown on the inspection charts of Appendix 3.

A. SUPERSTRUCTURE

The superstructure of the Salinas River Bridge is in marginal condition due to corrosion and section loss of structural metalwork, frozen expansion bearings, and misalignment of spans. No fatigue cracks were noted during the inspection.

Section loss of the metalwork has occurred primarily due to "deposit corrosion" associated with deposits of dirt, moisture, etc. that have accumulated on the various surfaces. In addition, "crevice corrosion" which develops between plies of steel along the edges of connections has also caused minor section loss and "spreading" at a few locations. The following is a brief summary of conditions noted at each section of the superstructure (for a complete list of defects noted see Appendix 4 - Member Losses).

Truss Members

The condition of truss members throughout the bridge varies from good to poor due to the amounts of section loss caused by deposit corrosion and crevice corrosion, with the most extensive section loss noted at the top surface of the top chords due to deposit corrosion (see Photograph No. 7). Although not as severe, section loss is also widespread at the bottom chord, especially at locations where the bottom chord has a solid horizontal web plate instead of lacing bars (in Panels $3 \& 4$ of Spans 2-5), as shown in Photograph No. 8. At such locations, dirt and debris has accumulated in the bottom chord contributing to the retention of moisture and increasing the rate of corrosion and section loss. In addition, within the same panels the bottom chord also has plates attached to the inboard and outboard flanges, and crevice corrosion has developed at the interface of the plates and flange angles causing minor spreading and section loss (also shown in Photograph No. 8).

In addition to conditions noted at the top and bottom chords, small isolated areas of corrosion with significant section loss were noted at several vertical and diagonal truss members, and such areas are usually located along the upper edge of lower truss gusset plates, as shown in Photograph No. 9.

SALINAS RIVER BRIDGE

INSPECTION AND EVALUATION REPORT

Photograph No. 7 - View of the top chord of Span 1 from Panel Point UlR. Note extensive corrosion and section loss of the cover plate, including holes at U2R (arrow)

Photograph No. 8 - View shows corrosion and minor section loss at the web plate and Outboard flange of the bottom chord in Panel 4 of Span 4, right side. Also note minor section loss and spreading at the flanges due to crevice corrosion.

SALINAS RIVER BRIDGE

INSPECTION AND EVALUATION REPORT

Photograph No. 9 - View shows an isolated area of section loss in the outboard flange of the post at Panel Point L4L of Span 2 (arrow)

Truss Bracing

The condition of truss bracing of the Salinas River Bridge varies from good to very poor due to varying amounts of corrosion and section loss of the bracing members and connection plates. The most extensive and severe section loss within the truss bracing has occurred at upper connection plates of top lateral members, some of which no longer provide a connection between the lateral and top chord, as shown in Photograph No. 10. In addition, severe section loss has also occurred at some top and bottom lateral members, and at portions of top struts and sway frames, as shown in Photograph No. 11.

Truss Bearings

At most locations, segmental rollers of the truss expansion bearings appear to be frozen, and at Span 1 the segmental rollers are no longer centered under the upper bearing plate and appear to be "working out" (see Photograph No. 12).

Extensive corrosion has occurred at back-to-back channels of expansion bearing pedestals, and at I-beams of fixed bearing pedestals, causing significant section loss in the webs and flanges of pedestal channels and I-beams (see Photograph Nos. 13 \& 14). Several broken and missing anchor bolts were noted at the expansion bearings.

SALINAS RIVER BRIDGE

INSPECTION AND EVALUATION REPORT

Photograph No. 10 - View shows 100% section loss of the upper connection plate of the top lateral, at Panel Point U5L of Span 3.

Photograph No. 11 - View shows 100% section loss of the bottom angles of the sway bracing between Panel Points U2L \& U.2R of Span 5.

SALINAS RIVER BRIDGE

INSPECTION AND EVALUATION REPORT

Photograph No. 12 - View of the truss expansion bearing of Span 1, right side. Note that the segmental roller at the right side of the photo is no longer under the upper bearing plate

Photograph No. 13 - View of the truss expansion bearing of Span 3, right side. Note extensive corrosion at back-to-back channels of the bearing pedestal.

SALINAS RIVER BRIDGE

INSPECTION AND EVALUATION REPORT

Photograph No. 14 - View of the truss fixed bearing of Span 3, left side. Note corrosion and section loss along the bottom of the webs of the bearing pedestal I-beams.

Floor System

The floor system of the Salinas River Bridge is in generally fair condition with extensive deposit corrosion and minor section loss noted mainly at the flanges of floorbeams and stringers.
Floorbeam bottom flanges are typically corroded with minor section loss along the top surface, but at one location (Span 1, Floorbeam 6) severe section loss was noted at the floorbeam bottom flange (see Photograph No. 15). At floorbeam top flanges, section loss is typically worse in areas located directly beneath the rails and guard timbers of the track, which is probably due to the lack of sunlight reaching these areas to help evaporate deposits of moisture, and the resulting extended contact time of the corrosive elements on the steel (see Photograph No. 16),

Minor section loss is typical at stringer top flanges due to corrosion and due to wear from the cross ties. Section loss at stringer bottom flanges due to corrosion is also generally minor and usually only noted at the outboard side of stringers, and it is typically worse at stringers to the right side of the bridge. Significant section loss was noted at a few stringer bottom flanges located near stringer bearings, as shown in Photograph No. 17.

The most severe areas of section loss within the floor system were noted at stringer bracket top flanges, at end post-to-floorbeam connection plates, and at floorbeam bracket connection angles, all in Span 1 (see Photograph Nos. 18-20). These conditions do not exist at Spans 2-5 as these four original spans are of different design and detail and do not contain stringer brackets, end post-to-floorbeam connection plates or floorbeam brackets.

SALINAS RIVER BRIDGE

INSPECTION AND EVALUATION REPORT

Photograph No. 15 - View shows the bottom flange of Floorbeam 6 of Span I, right side, where 70% section loss was noted 15 " from the end of floorbeam (arrow 1) and 40% section loss was noted 31 " from the end of floorbeam (arrow 2).

Photograph No. 16 - View shows section loss in the top flange of Floorbeam 5 of Span 4, under the left rail of the track.

SALINAS RIVER BRIDGE

INSPECTION AND EVALUATION REPORT

Photograph No. 17 - View of the bottom flange of the right stringer in Panel I of Span 5, at the fixed bearing at Pier 4. Note location where 30% section loss has occurred (arrow).

Photograph No. 18 - View shows 100% section loss of the inboard top flange of the right stringerbracket, at Floorbeam 6 of Span 1

Photograph No. 19 - View of the end post-to-floorbeam connection plate of Span 1 at L0, right side Note the holes in the plate, which has 70% section loss overall.

Photograph No. 20 - View shows the left floorbeam bracket of Floorbeam 3 of Span 1, where 50% section loss was noted at horizontal legs of the angles connecting it to the floorbeam

MODJ, ESK ImuMASTIRSS,INC.

SALINAS RIVER BRIDGE INSPECTION AND EVALUATION REPORT

Stringer Bearings

Exposed portions of stringer sole plates and bearing plates are typically corroded and minor section loss has occurred at bearing stiffeners at a few locations (see Photograph No. 21). Corrosion at the fixed bearings does not cause concern at this time, but corrosion at the expansion bearings could inhibit intended movement during thermal expansion and contraction of the bridge, thereby transferring unintended stresses into the floor system.

The right stringer expansion bearing of Span 2, at Pier 2, was in the "fully expanded" position at the time of inspection and the end of the stringer was in contact with the adjacent stringer of Span 3, indicating possible "fixity" of the expansion bearing(s) of Span 2 and/or movement of the substructure. The adjacent right truss expansion bearing was also in the expanded position and all expansion bearings appeared to be frozen, but the expansion bearings at the left side of the pier were not excessively expanded. Therefore, although all expansion bearings of Span 2 appear to be frozen, contact of the stringers at Pier 2 is probably due to movement of the substructure as noted during an inspection performed by Modjeski and Masters, Inc. in October of 1989, after the Loma Prieta earthquake.

Photograph No. 21 - View of the right stringer expansion bearing of Span 4, at Pier 4, Note corrosion at the stringer bottom flange, sole plate and bed plate, and minor section loss at the bottom of the bearing stiffeners.

SALINAS RIVER BRIDGE INSPECTION AND EVALUATION REPORT

B. SUBSTRUCTURE

The piers and abutments of the Salinas River Bridge are in good condition, except for movement that occurred during the Loma Prieta earthquake of 1989, and a crack in Abutment No. 1 that also resulted from the earthquake (see Photograph No. 22). Since the earthquake, however, it appears that the substructure has remained stable and no additional significant cracks or other defects were noted above the waterline or mud-line. This inspection did not include a position survey or underwater inspection of the substructure.

Photograph No. 22-View shows a crack in Abutment No. 1, at the right truss bearing.

SALINAS RIVER BRIDGE

 INSPECTION AND EVALUATION REPORT
EVALUATION - LOAD CARRYING CAPACITY

The original four bridge spans were designed per Southern Pacific Specification 16, a loading configuration similar to that of the Cooper E-50 loading. The 1914 span was designed for the same loading configuration and the American Bridge Company, Common Standard 140'-0" Span. The 1902 spans were fabricated of medium steel and the 1914 span of medium open-hearth steel.

The live load carrying capacity of Bridge 113.46 was calculated based on the provisions of the AREMA Manual for Railway Engineering, Chapter 15 - Steel Structures, Section 7 - Ratings, bridge plans and findings of the bridge inspection which included measurement of metalwork losses as they relate to critical sections of the bridge.

As previously related, the spans of Bridge 113.46 are all Warren type spans of 6 panels at $23^{\prime \prime}-4$ " for a end pin-to-end pin distance of 140 ft . The truss members are all built-up sections of riveted plates, angles and channels with fixed connections. The floor system consists of two stringers per panel at a 7.0 ft . spacing. All floorbeams and stringers are riveted built-up members of plates and angles with fixed connections between stringers and floorbeams and between floorbeams and trusses. All truss primary members and the floor system are internally redundant members. No member modifications were noted.

Normal and maximum ratings were calculated for Bridge 113.46. The Normal Rating is the load level which can be carried by the existing structure for its expected service life at allowable stresses (0.55 Fy). The Maximum Rating is the load level which the structure can support at infrequent intervals at a stress level of 0.80 Fy . Two Load Cases were used in the calculations: Load Case A which is Capacity minus Dead Load divided by the sum of Live Load plus Impact; and Load Case B 1.25 time Capacity less Dead Load and Wind Load divided by the sum of Live Load plus Impact plus Longitudinal and Lateral Loads.

Bridge 113.46 was rated for the As-Build (full section) condition and for the As-Is (measured losses) condition. The ratings are based on a steel yield strength of $30,000 \mathrm{psi}$ which is recommended by the AREMA rating provisions when the grade of steel used is not specifically known. The results of the ratings are summarized below with the controlling members and controlling Load Case indicated. More detailed rating results are shown in appended Exhibit 5 - Load Ratings

MODJESKImuMASTTRRS,INC.

SALINAS RIVER BRIDGE
 INSPECTION AND EVALUATION REPORT
 AS BUILD CONDITION (Minimum Rating Value)

Trusses	Normal Rating	E-46.5	Bottom Chords	Spans 2-5	Load Case B
	Maximum Rating	E-75.6			
Floor System	Normal Rating	E-59.0	Floorbeams	Span 1	Load Case A

AS-IS CONDITION (Minimum Rating Value)

Trusses	Normal Rating Maximum Rating	E-37.7 E-62.6	Bottom Chord, Left Truss, L0L2, Span 3 Load Case B
Floor System	Normal Rating	E-69.5	Stringer shear, Span 1, Load Case A
	Maximum Rating	E-103.3	Left Stringer 6, Span 2

NOTE: Although the shown Cooper E ratings shown represent the minimum ratings, there are a number of other bridge members which similar low ratings.

Since there are a number of low Cooper E ratings, the actual required equivalent Cooper E for an anticipated commuter train consisting of a single 4 -axle locomotive ($268,000 \mathrm{lbs}$.) followed by 4 -axle commuter cars ($152,000 \mathrm{lbs}$.) was evaluated with the results shown below.

REQUIRED EQUIVALENT COOPER E RATING FOR TYPICAL COMMUTER TRAIN

Trusses	Bottom Chords	E-26.6
	Top Chords	E-28.7
	Hangers	E-37.0
Floor System	Stringers	E-39.7
	Floorbeams	E-37.0

Despite the loss of metalwork from extensive active corrosion present, Bridge 113.46 has sufficient capacity to handle anticipated commuter type equipment. However, there are many light sections, secondary bracking members that are in poor physical condition that are not a part of the rating procedure that will need replacement in kind or patch plated. The bridge in its present condition does not have the capacity for freight traffic.

SALINAS RIVER BRIDGE

 INSPECTION AND EVALUATION REPORT
PRELIMINARY SEISMIC RECOMMENDATIONS

The evaluation of the need and type of seismic retrofit of the Salinas River Bridge, MP 113.46 involves several aspects, which include:

1. Development of Retrofit Criteria
2. Evaluation of Seismic Risk Reduction Measures
3. Evaluation of Structural Measures for Seismic Retrofit
4. Evaluation of Ground Improvement Measures for Site Remediation

1. Development of Retrofit Criteria

The Salinas River Bridge is intended to carry light rail traffic consisting of Amtrak-type locomotives and coaches (two or three per train). The anticipated schedule is about two round trips per day. The existing seismic performance criteria developed for bridges, applies mainly to the design and evaluation of highway bridges (e.g., Caltrans 1999 Seismic Design Methodology, AASHTO 1996 Standard Specifications for Highway Bridges and 1998 LRFD Design Specifications) that have a relatively high occupancy rate, and to the design of railroad bridges (AREMA) that carry mainly freight traffic. There apparently are no seismic retrofit criteria that would be directly applicable to the Salinas River Bridge.

Caltrans Seismic Performance Criteria

The Caltrans (Caltrans 1999) seismic performance criteria include two ground motion levels, Functional and Safety. The Functional ground motion represents a lower level earthquake, which may be assessed either deterministically or probabilistically. The Safety ground motion represents a larger earthquake, which may also be assessed deterministically or probabilistically. The deterministic assessment corresponds to the maximum credible earthquake and the probabilistic ground motion typically has a long return period of approximately 1,000 to 2,000 years. Bridges are classified as either Ordinary or Important (all bridges are considered Ordinary unless they have been designated as Important). The performance requirements for Ordinary bridges are immediate service and repairable damage after the Functional ground motion and limited service and significant damage after the Safety ground motion. This criteria is primarily for new bridge designs but it is also used for existing bridges.

AASHTO Seismic Performance Criteria

The AASHTO Standard Specifications for Highway Bridges (AASHTO 1996) use a probabilistic ground motion with a return period of 475 years as the design ground motion and the AASHTO LRFD Bridge Design Specifications (AASHTO 1998) use a probabilistic ground motion with a return period of 475 years for all bridge designs except critical bridges, for which a larger return period, e.g., 2,500 years is used. Bridges are expected to resist small to moderate earthquakes (which are not explicitly defined in the specifications) within the elastic range, and survive the design level earthquake without collapse of all or part of the bridge. The evaluation of exiting bridges is covered in the FHWA Seismic Retrofitting Manual for Highway Bridges (FHWA 1994), which is based on the

MODj, ESK ImuMASIERS, INC.

SALINAS RIVER BRIDGE INSPECTION AND EVALUATION REPORT

premise that it is not always practical or economically feasible to retrofit a bridge to the same level of performance as a new bridge.

AREMA Seismic Performance Criteria

The seismic design guidelines included in Chapter 9 of the AREMA Manual for Railway Engineering (AREMA, 2001) are based on a three-level ground motion and performance criteria approach that is consistent with the railroad post-seismic event response procedures.

The performance criteria requirements include serviceability, ultimate and survivability limit states. The serviceability limit state is primarily concerned with train safety after a moderate earthquake. The structure is required to survive with only minor damage that does not affect train traffic. The ultimate limit state ensures overall structural integrity during a larger magnitude earthquake, and its objective is to minimize damage and loss of structure use. The survivability limit state is concerned with the survival of the bridge after a very rare and intense earthquake. Its objective is to minimize the likelihood of severe damage or bridge collapse.

Each response limit state is related to a given ground motion level. The recommended ground motion return period range for the design of new bridges is 50 to 100 years for the serviceability level ground motion (Ground Motion Level 1), 200 to 500 years for the ultimate limit state (Ground Motion Level 2) and 1000 to 2400 years for the survivability limit state (Ground Motion Level 3). The actual return period to be used for each ground motion level within the specified range is determined based on the structure importance classification.

The AREMA guidelines assign an importance classification factor to each limit state. The importance classification factors are determined based on three measures: Immediate Safety, Immediate Value and Replacement Value. Each of these measures are represented by a factor that ranges from 1 to 4 . The Immediate Safety value is based on an occupancy factor, a hazardous material factor and a community lifeline factor. The occupancy factor is related to the number of passenger trains per day, the hazardous material factor depends on the type of materials being handled and the community life-line factor reflects the danger to community if the structure fails. The Immediate Value is based on a railroad utilization factor; which is related to the volume of traffic and a detour availability factor. The Replacement Value reflects the difficulty of replacing the structure. It is based on span length, bridge length and bridge height factors. The importance classification factor for each limit state is calculated by summing up the Immediate Safety, Immediate Value and Replacement Value, after they are multiplied by weighting factors that depend on the limit state. The Immediate Safety, Immediate Value, Replacement Value and Importance Classification factors estimated for the Salinas River Bridge based on seismic design guidelines are shown in Table 1.

SALINAS RIVER BRIDGE
 INSPECTION AND EVALUATION REPORT

Table 1. Importance Classification Factors

Limit State	Immediate Safety	Immediate Value	Replacement Value	Importance Classification Factor
Serviceability	2	1	4.5	1.8
Ultimate	2	1	4.5	1.5
Survivability	2	1	4.5	3.8

Based on these importance classification factors the design ground motion return periods are 75 years for the serviceability limit state, 300 years for the ultimate limit state and 2,300 years for the survivability limit state. Peak ground acceleration values were estimated based on the acceleration maps included in AREMA Chapter 9, and on the USGS nearest grid point peak ground acceleration data available from the USGS web site (see Table 2). The two estimates are quite different and it is clear that more reliable site-specific information is needed.

Table 2. Ground Motion Levels and Peak Ground Accelerations Estimates

Ground Motion Level	Frequency	Average Return Period (Years)	Peak Ground Acceleration AREMA Maps	Peak Ground Acceleration USGS Nearest Grid Point
1	Occasional	75	0.2 g	0.4 g
2	Rare	300	0.3 g	0.5 g
3	Very Rare	2,300	0.6 g	0.7 g

The AREMA seismic performance criteria are primarily for new bridge designs. Specific criteria and ground motion selection guidelines for the evaluation of exiting bridges have not been developed yet.

Recommended Approach

It is recommended that a project specific approach consistent with the AREMA design criteria be developed. Such an approach will be able to incorporate factors such as:

- Intended service life of the bridge in its present condition
- Relatively low occupancy rate
- Post seismic event response policy
- Use of seismic risk reduction measures such as earthquake triggering devices
- Intended performance after a given level earthquake
- Time constrains for bridge repairs
- The planned level of seismic upgrade for the track, embankments and other structures along the line

SALINAS RIVER BRIDGE INSPECTION AND EVALUATION REPORT

In general, the seismic criteria for new bridges, which are designed for long service lives of 75 years and over, is not directly applicable to existing bridges that are intended to remain in service for a limited period of time. The exposure time to risk is different. For example, for a 10% probability of exceedance in 50 years the design ground motion level return period is 475 years, while for a 10% probability of exeedance in 25 years the design ground motion level return period is only 240 years, which is associated with a lower ground motion level. Taking into account the effect of the different exposure rates for existing bridges in an explicit manner has recently been proposed in MCEER Highway Project Task 106-G-2.2, as part of the development of a new seismic retrofitting manual for highway structures.

Highway bridges and heavily used transit lines have high occupancy rates. For two train round trips a day, the Salinas River Bridge has a train occupancy rate of only about 0.1% This occupancy rate can be related to the occupancy rate of other bridges and the criteria used for their design. An example where the low occupancy rate had a significant impact on bridge retrofit, is the Big Dann and Cedar Creek Arch bridges, on Highway 271 near Leggett, California. It was felt that due to the very low average daily traffic count the probability that a car will be on the bridges for a random 15 seconds of strong shaking is very low (less than 1% if it is estimated that it takes 8 seconds to cross the bridge for one hundred cars in a 24 hour period). Because of the high costs involved no retrofit was done. Instead, the local community and Caltrans put forth a proposal to place seismic gates that would close in the event of strong ground motions. The gates will be activated by triggering sensors and will prevent cars from crossing after a major event until inspection can take place.

In order to address several performance levels and incorporate risk factors such as limited service life and occupancy rate, site-specific information on the ground motion level and likelihood of liquefaction as a function of the ground motion return period is needed. If such information was not developed during previous studies that involved the seismic retrofit of the Monte Road Bridge and the Highway 1 Bridges, further site-specific investigation is recommended.

2. Evaluation of Seismic Risk Reduction Measures

Seismic retrofit is not the only option for reducing seismic risk, especially for railroad bridges. Train traffic can be controlled from a centralized place and effective post seismic event operation policies can be implemented. In addition various earthquake or bridge damage detection triggering devices can be used with direct signals to the dispatcher and the locomotive engineer for fast response.

SALINAS RIVER BRIDGE INSPECTION AND EVALUATION REPORT

3. Evaluation of Structural Measures for Seismic Retrofit

The main seismic hazard for the Salinas River Bridge is liquefaction induced pier movement. During past earthquakes railroad bridges have survived ground shaking with little or no damage, but were damaged by ground movements. During the Loma Prieta Earthquake Pier 2 shifted towards the channel about 5 inches and Pier 3 shifted transversely about 6 to 9 inches, but without settlement, see appended Exhibit 6 - Loma Prieta Seismic Report. The Loma Prieta Earthquake had a magnitude of 7.1 and its epicenter was located 23 miles away from the bridge. From 1974 to present there were 12 earthquakes with a magnitude between 5 and 5.7 within a 30 -mile radius from the bridge, with no apparent effects on the bridge (there were no earthquakes between 5.7 and 7.1 during this time period).

The need and the type of retrofit will depend on the ground motion levels and performance requirements selected for each limit state. Past performance indicates that a 7.1 magnitude earthquake can exceed the serviceability limit state but it may not exceed the ultimate and the survivability limit states.

Retrofit of bridges on liquefiable soils is difficult. There are two approaches to structural retrofit; one is to accommodate movements and the other is to resist loads. The most appropriate approach depends on the type, strength and configuration of the existing bridge and the ground motion levels considered. For example, movements of the superstructure that can affect train safety should not be allowed as part of a retrofit required to satisfy the serviceability criteria with respect to Ground Motion Level 1.

If retrofit of the Salinas River Bridge is required for satisfying the serviceability limit state, allowing movement that does not affect the superstructure, or using ground improvement measures appear to be the main options. Trying to resist loads through the existing piers is difficult because of their high rigidity and relatively low capacity. Ground movement will tend to move the piers along, and any resisting loads could be high enough to damage the pier or the connection to the pier. Adding a deep pile supported structure to somewhat bypass the piers is an option, but it could infringe on the channel opening, and it could be costly.

Retrofitting the Salinas River Bridge for movements for Ground Motion Level 3 can be a cost effective approach since the loads associated with ground movements during large earthquakes can be significant and difficult to resist. The bridge bearings will need to be replaced and the pier top area may need to be extended to be able to accommodate the expected movements.

MODJESKImmASTIERS, INC.

SALINAS RIVER BRIDGE
 INSPECTION AND EVALUATION REPORT

4. Evaluation of Ground Improvement Measures for Site Remediation

Site remediation techniques may be used alone or in combination with structural retrofit to prevent liquefaction and/or minimize ground displacement demands. They generally include:

- Insitu ground densification around the bridge piers to reduce ground deformations
- The use of deep soil mixing using cement to form stabilizing zones around the piers
- Other types of ground improvement such as dewatering, gravel drains, or permanent grouting

The most common densification method is the vibro-replacement technique which creates stone columns approximately 3 feet in diameter. The stone columns form a densified zone and facilitate drainage of excess pore pressure. This method has been found to be effective in past earthquakes. Compaction grouting involves pumping a stiff mix of soil, cement and water into the ground under high pressure to compress or densify the soil.

MODJJISKLImWASTERS,INC.

SALINAS RIVER BRIDGE INSPECTION AND EVALUATION REPORT

EXTENT OF REPAIRS AND COST

Prior to opening the Salinas River Bridge for intercity passenger rail service, various structural repairs should be completed as outlined in Appendix 7 and as summarized herein. Prior to final design of those repairs, all bridge members should be cleaned of accumulated dirt, debris, and loose corrosion product sufficient for a follow-up inspection for detailing repairs.

Due to the extent of damage from the active corrosion, a variety of type structural repairs will be needed. For primary members with significant metalwork losses in local areas, the repairs will be performed by installing bolted splices or patch plates over zones of section loss sufficient to restore the capacity of the member. For bracing members where there may be a number of missing pieces of light angle, it may be cost effective to replace the whole member in kind. The same applies for minor member connection plates that have extensive losses. The top chord, top cover plates have deep pitting, thin sections, holes and deteriorated rivet heads. The replacement of sections of the cover plate, in kind, is the most economical repair method. Rivets that have head losses, but the steel plies remain in full clamping contact, can remain in service. Conversely, at locations where there is separation of plies or prying action, deteriorated rivets should be replaced with bolts on a one-for-one basis.

Repair costs have been developed for the various type structural repairs based on previous similar bridge rehabilitation project costs, quantities required for these repairs times current material and labor costs, and from general construction experience.

SUMMARY OF STRUCTURAL REPAIRS

1.	Realign truss spans moved during the Loma Prieta earthquake	\$ 50,000
2.	Replace all truss expansion bearings	150,000
3.	Replace fixed bearing pedestals, Spans 3 \& 4	50,000
4.	Replace in kind, deteriorated sections of top chord, cov. pls, all spans	325,000
5.	Repair areas of significant section losses in primary truss members	100,000
6.	Repair or replace truss bracing components	100,000
7.	Replace deteriorated lacing bars of truss members	75,000
8.	Repair or replace floor system components	100,000
9.	Repair stringer expansion bearings Spans 2, 3 \& 4	40,000
10.	Clean and overcoat all bridge members	500,000
11.	Repair Abutment 1 concrete crack	10,000
	TOTAL	1,500,000

The cost for repositioning the spans misaligned in the 1989 Loma Prieta earthquake has been included above, however no repairs or associated costs have been allocated for the two piers that also moved in that earthquake. Piers built circa 1902, if built atop piling, commonly had a timber mat between the piling and concrete stem. The mat normally was not drift pinned to the piling. Based on similar bridges of similar age in California that were constructed in the coastal area and for the

MODJJESKImwASTIERS, INC.

SALINAS RIVER BRIDGE INSPECTION AND EVALUATION REPORT

Southern Pacific, if there was any pier base movement it would occur between the piles and timber mat without causing loss of pile capacity. Thus, it is judged that the piers that moved during the earthquake are adequate for the support of the anticipated commuter train live loads.

The preservation of the bridge metalwork can be accomplished by two means; abrasive blast cleaning to remove all corrosion and lead paint followed by a three-coat high performance paint system, or by high pressure washing to remove all loose corrosion product and loose paint followed by an application of a protective overcoat specifically formulated for adhering to minimally prepared surfaces.

The abrasive blast cleaning of the bridge would require full containment and special lead abatement procedures. This costly cleaning method should be performed prior to the restoration of traffic so that the traffic will not have to travel through the containment. The long term life of a high performance paint system may be in question due to the extent of surface pitting, pack rust in crevises, thin ragged edges on members and the like. Based on the cost to blast clean a bridge of somewhat similar deterioration in a similar coastal environment, the cost to clean and paint the Salinas River Bridge is estimated to be $\$ 2,000,000$.

For an overcoating application in preserving the bridge metalwork, the water and residue from the blast and removed product will have to be caught and properly disposed. The overcoat paint formulated for such an application generally is a thick coating up to 16 mills that can fill in crevices and pitted areas plus has a high degree of film flexibility. The cost for waterblast cleaning and overcoating the 5 spans is estimated to cost $\$ 500,000$.

As stated previously, it appears that a seismic criteria will need to be established to evaluate and possible retrofit of the bridge or accept a level of damage. The adjacent highway bridges which are of different type construction were earthquake retrofitted using retrofit bents, pin and hanger retrofits, catch blocks and shear keys, and added cross bracing. The Monte Road seismic upgrade reportedly cost approximately $\$ 2,693,000$. Thus, the Salinas River Bridge seismic retrofit cost order of magnitude could easily be in excess of $\$ 3,000,000$. The Shannon \& Wilson, lnc. Preliminary Geotechnical Recommendations Report for this project discusses the soils conditions at Bridge No. 113.46, the need for hydrologic and scour analyses during the final design phase and a number of scenarios for possible seismic retrofit or replacement of the piers, if TAMC pursues seismic upgrading.

Based on the past usage or lack of usage, the bridge has not experienced high annual tonnage levels which would produce fatigue damage. The proposed intercity passenger traffic will likewise not result in fatigue damage. Therefore, with the repair of the bridge significant metalwork losses and the cleaning and protective coating of the bridge, the bridge should structurally be sufficient for another 20 years of service. This does not address the possible obsolescence due to restricted horizontal clearance or any imposed seismic retrofit requirements that would exceed economical justification for keeping this bridge in service.

MODJJSSKImuMASTERS, INC.

SALINAS RIVER BRIDGE INSPECTION AND EVALUATION REPORT

RECOMMENDATIONS

Prior to opening the Salinas River Bridge for commuter traffic, structural repairs and the preservation of the bridge metalwork should be performed. The specific defects are shown in Appendix 4 and the recommended repairs are shown in Appendix 7 with a summary of repairs and costs shown in Report Section - Extent of Repairs and Cost.

Based on the inspection findings and load capacity analyses, the bridge can be structurally repaired and preserved sufficient to carry intercity passenger service for the next 20 years at a cost of $\$ 1,500,000$. This cost does not include track on the bridge, seismic retrofits or engineering the repairs. It is recommended that TAMC implement site seismic monitors and train control procedures in lieu of performing bridge seismic retrofits at this time.

APPENDIX 1

LOCATION MAP

LOCATION MAP SALINAS RIVER BRIDGE @ MP 113.46

FREE Webenabled Cell Phone

Caphalone	0\% on purchases until Nov. 2001	Visit us af wrww.capitalone com
VISA	: 9.9\% fixed APR thereatitor	When ready to apply,
VISA' Platinum	$=60$-socond response	click hero.

Apply Now - 0% INTRO VISA

Welcome, Guest User
Create My Locations - Sign In

Yahoo! Maps

Salinas, CA 93901
Save This Address

Powered by Mapquest.com (tm) Terms of Use Copyright © 2001 NavTech
Copyright © 2001 Yahool Inc. All rights reserved
Privacy Policy - Terms of Service - Help

APPENDIX 2

2A-1902 $\operatorname{BRIIDGE}$ PLAN
 $2 \mathrm{~B}-1914$ BRIIDGE PLAN
 $2 \mathbb{C}-1914 \mathbb{F O U N D}$ ATION $\mathbb{P L A N}$

This u-Aautment Vaio
For New Desien see
M. W. O. 2457. JHEET. 2

DETAIL OF NEW ABUTMENT
SALINAS FOR BIVEA BPIDGE
 Noolatixiroo G.M.O.20.3/4

APPENDIX 3

INSPECTION CHARTS

Salinas River Bridge
SALINAS RIVER BRIDGE

ELEVATION VIEW

SALINAS RIVER BRIDGE

Left Slde

Rlght Side
PLAN - BOTTOM CHORD \& FLOOR SYSTEM

TRUSS NUMBERING DIAGRAM

APPENDIX 4

MEMBRER LOSSES

LEGEND

BC	- Bottom Chord
BF	- Bottom Flange
Brg	- Bearing
btm	- bottom
btw	- between
Exp	- Expansion
FI	- Flange
Flbm	- Floorbeam
horiz	- horizontal
Inbd	- Inboard
L	- angle
Lt	- Left
Mty	- Monterey
Outbd	- Outboard
Rt	- Right
SF	- San Francisco
SL	- Section Loss
Str	- Stringer
TC	- Top Chord
TF	- Top Flange

TABLE 1
TRUSS MEMBERS

SPAN	PANEL OR PANELPT.	COMPONENT	$\begin{aligned} & \text { SECT. } \\ & \text { LOSS } \end{aligned}$	COMMENT
1	1	End Post (Lt)		
		Cover Plate	10\%	
		Outbd TF		
		Outbd BF		
		Outbd Web		
		Inbd TF		
		Inbd BF		
		Inbd Web		
1	1	End Post (Rt)		
		Cover Plate	15\%	
		Outbd TF		
		Outbd BF		
		Outbd Web		
		Inbd TF		
		Inbd BF		
		Inbd Web		
1	1	Bottom Chord (Lt)		
		Outbd TF	20\%	
		Outbd BF	10\%	
		Outbd Web		
		Inbd TF	20\%	
		Inbd BF	5\%	
		Inbd Web		
1	1	Bottom Chord (Rt)		
		Outbd TF	50\%	located 16" from center of bearing pin at LOR
			40\%	typical between L0 and L1
		Outbd BF	90\%	located 16" from center of brg pin at LOR
		Outbd Web		
		Inbd TF	40\%	located 16" from center of bearing pin at LOR
			40\%	typical between L0 and L1
		Inbd BF		
		Inbd Web		
1	L1L-U1L	Hanger (Lt)		
		Outbd FI (SF side)	20\%	along top of bottom chord
		Outbd FI (Mity side)	20\%	along top of bottom chord
		Inbd FI (SF side)		
		Inbd FI (Mty side)		
		Web		
1	L1R-U1R	Hanger (Rt)		
		Outbd FI (SF side)	10\%	along top of bottom chord
		Outbd Fl (Mty side)	10\%	along top of bottom chord
		Inbd FI (SF side)		

Page 1 of 37

For abbreviations, see Legend on first page of Appendix 4.
For guide to numbering system and directional designations, see Appendix 3.

Salinas River Bridge Inspection Report

TABLE 1
TRUSS MEMBERS

SPAN	PANEL OR PANEL PT.	COMPONENT	$\begin{aligned} & \text { SECT. } \\ & \text { LOSS } \end{aligned}$	COMMENT
		Inbd FI (Mity side)		
		Web		
1	2	Bottom Chord (Lt)		100\% SL at 90% of top lacing bars
		Outbd TF	50\%	
		Outbd BF	10\%	
		Outbd Web	5\%	
		Inbd TF	50\%	
		Inbd BF	10\%	
		Inbd Web	5\%	
1	2	Bottom Chord (Rt)		
		Outbd TF	50\%	
		Outbd BF		
		Outbd Web		
		Inbd TF	50\%	
		Inbd BF		
		Inbd Web		
1	2	Top Chord (Lt)		
		Cover Plate	50\%	
		Outbd TF	5\%	
		Outbd BF	10\%	
		Outbd Web		
		Inbd TF	5\%	
		Inbd BF	30\%	
		Inbd Web		
1	2	Top Chord (Rt)		
		Cover Plate	80\%	near U1R
			90\%	near U2R
			60\%	typical along length of member, except as noted above
		Outbd TF	10\%	
		Outbd BF	50\%	
		Outbd Web	5\%	
		Inbd TF		
		Inbd BF	20\%	
		Inbd Web	5\%	
1	2	Diagonal (Lt)		
		Outbd TF	20\%	
		Outbd BF	5\%	
		Outbd Web	5\%	
		Inbd TF	20\%	
		Inbd BF	20\%	
		Inbd Web	5\%	
1	2	Diagonal (Rt)		

Page 2 of 37
For abbreviations, see Legend on first page of Appendix 4.
For guide to numbering system and directional designations, see Appendix 3.
Table 1

Salinas River Bridge Inspection Report

TABLE 1
TRUSS MEMBERS

SPAN	PANEL OR PANEL PT.	COMPONENT	$\begin{aligned} & \text { SECT. } \\ & \text { LOSS } \end{aligned}$	COMMENT
		Outbd TF	50\%	
		Outbd BF	25\%	
		Outbd Web	5\%	
		Inbd TF	50\%	
		Inbd BF	10\%	
		Inbd Web	5\%	
1	L2L-U2L	Post (Lt)		
		Outbd FI (SF side)		
		Outbd FI (Mty side)		
		Inbd FI (SF side)		
		Inbd FI (Mity side)		
		Web		
1	L2R-U2R	Post (Rt)		
		Outbd Fl (SF side)		
		Outbd FI (Mty side)	50\%	just below top chord
			15\%	along 10 ft section at mid-height of post
		Inbd FI (SF side)		
		Inbd FI (Mty side)	25\%	above fill plate at flbm connection
		Web		
1	3	Bottom Chord (Lt)		100% SL at 30% of top lacing bars; Bottom chord covered with tree limbs.
		Outbd TF	20\%	
		Outbd BF	10\%	
		Outbd Web	5\%	
		Inbd TF	20\%	
		Inbd BF	10\%	
		Inbd Web	5\%	
1	3	Bottom Chord (Rt)		Bottom chord covered with tree limbs.
		Outbd TF	15\%	
		Outbd BF		
		Outbd Web		
		Inbd TF	15\%	
		Inbd BF		
		Inbd Web		
1	3	Top Chord (L.t)		
		Cover Plate	50\%	
		Outbd TF	5\%	
		Outbd BF	10\%	
		Outbd Web		
		Inbd TF	20\%	
		Inbd BF	30\%	
		Inbd Web	5\%	

Page 3 of 37
For abbreviations, see Legend on first page of Appendix 4.
For guide to numbering system and directional designations, see Appendix 3.
Table 1

Salinas River Bridge Inspection Report

TABLE 1
TRUSS MEMBERS

SPAN	PANEL OR PANEL PT.	COMPONENT	$\begin{aligned} & \text { SECT. } \\ & \text { LOSS } \end{aligned}$	COMMENT
1	3	Top Chord (Rt)		
		Cover Plate	50\%	
		Outbd TF	15\%	
		Outbd BF	50\%	
		Outbd Web	5\%	
		Inbd TF	5\%	
		Inbd BF	40\%	
		Inbd Web	5\%	
1	3	Diagonal (L.t)		
		Outbd TF	10\%	
		Outbd BF	10\%	
		Outbd Web	5\%	
		Inbd TF	10\%	
		Inbd BF	10\%	
		Inbd Web	5\%	
1	3	Diagonal (Rt)		100% SL at upper 12 top lacing bars, and 50\% SL at remaining top lacing bars.
		Outbd TF	50\%	
		Outbd BF	30\%	
		Outbd Web	5\%	
		Inbd TF	50\%	
		Inbd BF	10\%	
		Inbd Web	10\%	
1	L3L-U3L	Hanger (Lt)		
		Outbd FI (SF side)		
		Outbd FI (Mty side)		
		Inbd FI (SF side)	40\%	along top of fill plate at fibm connection
		Inbd FI (Mty side)	25\%	along top of fill plate at flbm connection
		Web		
1	L3R-U3R	Hanger (Rt)		
		Outbd FI (SF side)		
		Outbd Fl (Mity side)		
		Inbd FI (SF side)	50\%	along top of fill plate at flbm connection
		Inbd Fl (Mty side)	20\%	along top of fill plate at fibm connection
		Web		
1	4	Bottom Chord (Lt)		100% SL at 50% of top lacing bars; Bottom chord covered with tree limbs.
		Outbd TF	50\%	
		Outbd BF	25\%	
		Outbd Web	5\%	
		Inbd TF	50\%	
		Inbd BF	25\%	

Page 4 of 37

For abbreviations, see Legend on first page of Appendix 4 .
For guide to numbering system and directional designations, see Appendix 3 .

Salinas River Bridge Inspection Report

TABLE 1
TRUSS MEMBERS

SPAN	PANEL OR PANEL PT.	COMPONENT	$\begin{aligned} & \text { SECT. } \\ & \text { LOSS } \end{aligned}$	COMMENT
		Inbd Web	5\%	
1	4	Bottom Chord (Rt)		Bottom chord covered with tree limbs.
		Outbd TF	20\%	
		Outbd BF	15\%	
		Outbd Web	5\%	
		Inbd TF	20\%	
		Inbd BF	15\%	
		Inbd Web	5\%	
1	4	Top Chord (Lt)		
		Cover Plate	40\%	
		Outbd TF		
		Outbd BF	15\%	
		Outbd Web	5\%	
		Inbd TF	5\%	
		Inbd BF	30\%	
		Inbd Web	10\%	
1	4	Top Chord (Rt)		
		Cover Plate	80\%	at 6 ft . section near U3R and at $8 \mathrm{ft}$. section near U4R
			60\%	between sections noted above
		Outbd TF	5\%	
		Outbd BF	50\%	
		Outbd Web	5\%	
		Inbd TF		
		Inbd BF	10\%	
		Inbd Web		
1	4	Diagonal (Lt)		100% SL at two top lacing bars; 50% SL at remaining top lacing bars
		Outbd TF	50\%	
		Outbd BF	20\%	
		Outbd Web	5\%	
		Inbd TF	50\%	
		Inbd BF	40\%	
		Inbd Web	5\%	
1	4	Diagonal (Rt)		100% SL at 75% of bottom lacing bars and at 10% of top lacing bars; 50% SL at remaining lacing bars.
		Outbd TF	50\%	
		Outbd BF	25\%	
		Outbd Web	5\%	
		Inbd TF	25\%	
		Inbd BF	5\%	
		Inbd Web		
1	L.4L-U4L	Post (Lt)		

Page 5 of 37
For abbreviations, see Legend on first page of Appendix 4.
For guide to numbering system and directional designations, see Appendix 3.
Table 1 Inspection Report

TABLE 1
TRUSS MEMBERS

SPAN	PANEL OR PANEL PT.	COMPONENT	$\begin{aligned} & \text { SECT. } \\ & \text { LOSS } \end{aligned}$	COMMENT
		Outbd FI (SF side)	5\%	
		Outbd FI (Mity side)	5\%	
		Inbd FI (SF side)	20\%	
		Inbd FI (Mty side)	20\%	
		Web		80\% SL at all lacing bars
1	L4R-U4R	Post (Rt)		
		Outbd FI (SF side)	10\%	
		Outbd FI (Mty side)	10\%	
		Inbd Fl (SF side)	5\%	
		Inbd FI (Mty side)	5\%	
		Web		80\% SL at all lacing bars
1	5	Bottom Chord (Lt)		95\% SL at 50% of top lacing bars
		Outbd TF	70\%	
		Outbd BF	10\%	
		Outbd Web		
		Inbd TF	70\%	
		Inbd BF	10\%	
		Inbd Web		
1	5	Bottom Chord (Rt)		
		Outbd TF	50\%	50\% SL at L5R; 20\% SL typical
		Outbd BF	20\%	
		Outbd Web	5\%	
		Inbd TF	50\%	50\% SL at L5R; 20\% SL typical
		Inbd BF	20\%	
		Inbd Web	5\%	
1	5	Top Chord (Lt)		
		Cover Plate	50\%	
		Outbd TF		
		Outbd BF	15\%	
		Outbd Web		
		Inbd TF	15\%	
		Inbd BF	30\%	
		Inbd Web	5\%	
1	5	Top Chord (Rt)		
		Cover Plate	90\%	near U4R and at 7 ft . section near U5R
			70\%	between sections noted above
		Outbd TF	10\%	
		Outbd BF	70\%	
		Outbd Web	5\%	
		Inbd TF	5\%	
		Inbd BF	10\%	
		Inbd Web		

Page 6 of 37

For abbreviations, see Legend on first page of Appendix 4.
For guide to numbering system and directional designations, see Appendix 3.

Salinas River Bridge Inspection Report

TABLE 1

TRUSS MEMBERS

SPAN	PANEL OR PANEL PT.	COMPONENT	$\begin{array}{l\|} \hline \text { SECT, } \\ \text { LOSS } \\ \hline \end{array}$	COMMENT
1	5	Diagonal (Lt)		
		Outbd TF	50\%	
		Outbd BF	15\%	
		Outbd Web	5\%	
		Inbd TF	40\%	
		Inbd BF	20\%	
		Inbd Web	5\%	
1	5	Diagonal (Rt)		100\% SL at seven top lacing bars
		Outbd TF	40\%	
		Outbd BF	60\%	
		Outbd Web	5\%	
		Inbd TF	40\%	
		Inbd BF	15\%	
		Inbd Web	10\%	
1	L5L-U5L	Hanger (Lt)		
		Outbd FI (SF side)	5\%	along top of bottom chord
		Outbd FI (Mty side)	20\%	along top of bottom chord
		Inbd Fl (SF side)	5\%	near U5L
		Inbd FI (Mty side)	5\%	near U5L
		Web		
1	L5R-U5R	Hanger (Rt)		
		Outbd FI (SF side)	10\%	along top of bottom chord
		Outbd FI (Mty side)	10\%	along top of bottom chord
		Inbd FI (SF side)		
		Inbd FI (Mty side)	5\%	along top of fill plate at flbm connection
		Web		
1	6	Bottom Chord (Lt)		95\% SL at 50% of top lacing bars
		Outbd TF	50\%	
		Outbd BF	20\%	
		Outbd Web		
		Inbd TF	50\%	
		Inbd BF	15\%	
		Inbd Web		
1	6	Bottom Chord (Rt)		
		Outbd TF	50\%	50\% SL at L5R; 20% SL typical
		Outbd BF	25\%	
		Outbd Web	5\%	
		Inbd TF	50\%	50\% SL at L5R; 20% SL typical
		Inbd BF	15\%	
		Inbd Web	5\%	
1	6	End Post (Lt)		

Page 7 of 37

For abbreviations, see Legend on first page of Appendix 4.
For guide to numbering system and directional designations, see Appendix 3.

Salinas River Bridge

 Inspection ReportTABLE 1
TRUSS MEMBERS

SPAN	PANEL OR PANEL PT.	COMPONENT	$\begin{array}{l\|} \hline \text { SECT. } \\ \text { LOSS } \\ \hline \end{array}$	COMMENT
		Cover Plate	70\%	$70 \% \mathrm{SL}$ at isolated area located approximately 3 ft above flbm; 5% SL typical
		Outbd TF		
		Outbd BF	20\%	
		Outbd Web		
		Inbd TF		
		Inbd BF	20\%	
		Inbd Web		
1	6	End Post (Rt)		
		Cover Plate	10\%	
		Outbd TF		
		Outbd BF	30\%	
		Outbd Web		
		Inbd TF		
		Inbd BF	5\%	
		Inbd Web		
2	1	End Post (Lt)		
		Cover Plate		
		Outbd TF		
		Outbd BF		
		Outbd Web		
		Inbd TF	5\%	
		Inbd BF	5\%	
		Inbd Web	5\%	
2	1	End Post (Rt)		
		Cover Plate	10\%	
		Outbd TF		
		Outbd BF		
		Outbd Web		
		Inbd TF		
		Inbd BF		
		Inbd Web		
2	1	Bottom Chord (Lt)		Tree limbs growing into bottom chord
		Outbd FI (top)	10\%	at L1L
			5\%	throughout length of member, except as noted above
		Outbd FI (btm)		
		Inbd FI (top)	5\%	
		Inbd FI (btm)		
		Web		20\% SL at 50\% of lacing bars
2	1	Bottom Chord (Rt)		
		Outbd FI (top)	10\%	
		Outbd Fl (btm)		

Page 8 of 37
For abbreviations, see Legend on first page of Appendix 4.
For guide to numbering system and directional designations, see Appendix 3.

Salinas River Bridge

 Inspection ReportTABLE 1
TRUSS MEMBERS

SPAN	PANEL OR PANEL PT.	COMPONENT	$\begin{array}{\|l\|} \hline \text { SECT. } \\ \text { LOSS } \\ \hline \end{array}$	COMMENT
		Inbd FI (top)	10\%	
		Inbd FI (btm)		
		Web		
2	L1L-U1L	Hanger (Lt)		
		Outbd FI (SF side)		
		Outbd FI (Mty side)	10\%	
		Inbd Fl (SF side)		
		Inbd FI (Mty side)		
		Web		
2	L1R-U1R	Hanger (Rt)		
		Outbd FI (SF side)	25\%	along top of gusset plate at L1R
		Outbd FI (Mty side)		
		Inbd FI (SF side)		
		Inbd FI (Mty side)		
		Web		
2	2	Bottom Chord (Lt)		Tree limbs growing into bottom chord
		Outbd FI (top)	5\%	
		Outbd FI (btm)	5\%	
		Inbd Fl (top)	5\%	
		Inbd FI (btm)	5\%	
		Web		20\% SL at 10% of lacing bars
2	2	Bottom Chord (Rt)		
		Outbd FI (top)	10\%	in area btw gusset plates at L2R (probably due to moisture associated with accumulation of debris/ballast btw gussets plates)
			5\%	throughout length of member, except as noted above
		Outbd Fl (btm)		
		Inbd FI (top)	10\%	in area btw gusset plates at L2R (probably due to moisture associated with accumulation of debris/ballast btw gussets plates)
			5\%	throughout length of member, except as noted above
		Inbd FI (btm)		
		Web		
2	2	Top Chord (Lt)		
		Cover Plate	15\%	
		Outbd TF		
		Outbd BF		
		Outbd Web		
		Inbd TF	20\%	
		Inbd BF	5\%	
		Inbd Web		
2	2	Top Chord (Rt)		

Page 9 of 37
For abbreviations, see Legend on first page of Appendix 4.
For guide to numbering system and directional designations, see Appendix 3.

TABLE 1
TRUSS MEMBERS

SPAN	PANEL OR PANEL PT.	COMPONENT	$\begin{array}{l\|} \hline \text { SECT. } \\ \text { LOSS } \\ \hline \end{array}$	COMMENT
		Cover Plate	5\%	
		Outbd TF		
		Outbd BF	10\%	
		Outbd Web	5\%	
		Inbd TF		
		Inbd BF		
		Inbd Web		
2	2	Diagonal (Lt)		
		Outbd FI (top)	5\%	near mid-point btw U1L \& L2L
		Outbd FI (btm)		
		Inbd FI (top)		
		Inbd FI (btm)		
		Web	20\%	in horiz leg of both top angles and in section of web plate btw angles, just above connection at L2L
2	2	Diagonal (Rt)		debris build-up btw gusset plates at L2R
		Outbd FI (top)		
		Outbd FI (btm)		
		Inbd FI (top)		
		Inbd FI (btm)		
		Web	10\%	in section of web plate btw angles
2	L2L-U2L	Post (Lt)		
		Outbd FI (SF side)		
		Outbd FI (Mty side)		
		Inbd FI (SF side)		
		Inbd FI (Mity side)		
		Web	5\%	located 3 ft above flbm connection
2	L2R-U2R	Post (Rt)		
		Outbd Fl (SF side)		
		Outbd Fl (Mty side)		
		Inbd FI (SF side)	25\%	along top of gusset plate at L2R
		Inbd Fl (Mty side)		
		Web		
2	3	Bottom Chord (L.t)		
		Outbd FI Plate		
		Outbd FI (top L)	5\%	
		Outbd Fl (btm L)	5\%	
		Inbd FI Plate		
		Inbd Fi (top L)	5\%	
		Inbd FI (btm L)	5\%	
		Web	10\%	in horiz leg of both top angles and in section of web plate btw angles
2	3	Bottom Chord (Rt)		

Page 10 of 37

For abbreviations, see Legend on first page of Appendix 4.
For guide to numbering system and directional designations, see Appendix 3.

Salinas River Bridge Inspection Report

TABLE 1
TRUSS MEMBERS

SPAN	PANEL OR PANEL PT.	COMPONENT	$\begin{aligned} & \text { SECT. } \\ & \text { LOSS } \end{aligned}$	COMMENT
		Outbd FI Plate		
		Outbd FI (top L)	5\%	
		Outbd Fl (btm L)		
		Inbd FI Plate		
		Inbd FI (top L)	5\%	
		Inbd FI (btm L)		
		Web	10\%	in horiz leg of both top angles and in section of web plate btw angles
2	3	Top Chord (Lt)		
		Cover Plate	25\%	
		Outbd TF		
		Outbd BF	10\%	
		Outbd Web		
		Inbd TF		
		Inbd BF	15\%	
		Inbd Web		
2	3	Top Chord (Rt)		
		Cover Plate	10\%	
		Outbd TF		
		Outbd BF	10\%	
		Outbd Web	5\%	
		Inbd TF		
		Inbd BF	10\%	
		Inbd Web		
2	3	Diagonal (Lt)		100% SL at two bottom lacing bars and 20\% SL at remaining bottom lacing bars
		Outbd TF		
		Outbd BF	5\%	
		Outbd Web		
		Inbd TF	10\%	
		Inbd BF	10\%	
		Inbd Web	5\%	
2	3	Diagonal (Rt)		
		Outbd TF	5\%	
		Outbd BF	5\%	
		Outbd Web		
		Inbd TF		
		Inbd BF		
		Inbd Web		
2	L3L-U3L	Hanger (Lt)		
		Outbd FI (SF side)		
		Outbd FI (Mty side)		

Page 11 of 37
For abbreviations, see Legend on first page of Appendix 4.
For guide to numbering system and directional designations, see Appendix 3.
Table 1

Salinas River Bridge Inspection Report

TABLE 1
TRUSS MEMBERS

SPAN	$\begin{array}{l}\text { PANEL OR } \\ \text { PANEL PT. }\end{array}$	COMPONENT	$\begin{array}{l}\text { SECT. } \\ \text { LOSS }\end{array}$	
		Inbd FI (SF side)		
		Inbd FI (Mty side)		

Page 12 of 37

For abbreviations, see Legend on first page of Appendix 4.
For guide to numbering system and directional designations, see Appendix 3.
Table 1

Salinas River Bridge

 Inspection ReportTABLE 1
TRUSS MEMBERS

Page 13 of 37

For abbreviations, see Legend on first page of Appendix 4.
For guide to numbering system and directional designations, see Appendix 3.

TABLE 1
TRUSS MEMBERS

SPAN	PANEL OR PANEL PT.	COMPONENT	$\begin{aligned} & \text { SECT. } \\ & \text { LOSS } \end{aligned}$	COMMENT
		Outbd TF		
		Outbd BF		
		Outbd Web		
		Inbd TF		
		Inbd BF	15\%	
		Inbd Web		
2	5	Top Chord (Rt)		
		Cover Plate	60\%	at 12" length of member adjacent to lateral connection plate at U4R
			15\%	throughout length of member, except as noted above
		Outbd TF		
		Outbd BF	15\%	
		Outbd Web	5\%	
		Inbd TF		
		Inbd BF		
		Inbd Web		
2	5	Diagonal (Lt)		
		Outbd FI (top)		
		Outbd FI (btm)		
		Inbd FI (top)		
		Inbd Fl (btm)		
		Web	20\%	in horiz leg of both top angles and in section of web plate btw angles (along 5 ft . length starting at L 4 L)
2	5	Diagonal (Rt)		
		Outbd Fl (top)		
		Outbd FI (btm)	5\%	along gusset plate at L4R
		Inbd FI (top)	20\%	along gusset plate at L4R
		Inbd FI (btm)	15\%	along gusset plate at L4R
		Web	10\%	in horiz leg of both top angles and in section of web plate btw angles
2	L5L-U5L.	Hanger (Lt)		
		Outbd FI (SF side)		
		Outbd Fl (Mty side)		
		Inbd FI (SF side)		
		Inbd Fl (Mty side)		
		Web	10\%	along 3 ft . length of member starting at top of flbm
2	L5R-U5R	Hanger (Rt)		
		Outbd FI (SF side)		
		Outbd FI (Mty side)		
		Inbd FI (SF side)		
		Inbd Fl (Mity side)		
		Web		

Page 14 of 37

For abbreviations, see Legend on first page of Appendix 4.
For guide to numbering system and directional designations, see Appendix 3.

Salinas River Bridge Inspection Report

TABLE 1
TRUSS MEMBERS

SPAN	PANEL OR PANEL PT.	COMPONENT	$\begin{aligned} & \text { SECT. } \\ & \text { LOSS } \end{aligned}$	COMMENT
2	6	Bottom Chord (Lt)		
		Outbd FI (top)	10\%	
		Outbd Fl (btm)		
		Inbd FI (top)	10\%	
		Inbd FI (btm)		
		Web		30\% SL at all lacing bars
2	6	Bottom Chord (Rt)		
		Outbd Fl (top)	5\%	
		Outbd Fl (btm)		
		Inbd FI (top)	5\%	
		Inbd FI (btm)		
		Web	10\%	in horiz legs of both top angles
2	6	End Post (Lt)		10\% SL at all bottom lacing bars
		Cover Plate	10\%	
		Outbd TF		
		Outbd BF		
		Outbd Web		
		Inbd TF		
		Inbd BF	10\%	
		Inbd Web		
2	6	End Post (Rt)		
		Cover Plate		
		Outbd TF		
		Outbd BF	5\%	
		Outbd Web		
		Inbd TF		
		Inbd BF		
		Inbd Web		
3	1	End Post (Lt)		50\% SL at 50\% of the bottom lacing bars
		Cover Plate		
		Outbd TF	5\%	
		Outbd BF	5\%	
		Outbd Web	5\%	
		Inbd TF	10\%	
		Inbd BF	5\%	
		Inbd Web		
3	1	End Post (Rt)		100% SL at ten bottom lacing bars; remainder of lacing bars in poor condition
		Cover Plate	10\%	
		Outbd TF		
		Outbd BF	5\%	
		Outbd Web		

Page 15 of 37
For abbreviations, see Legend on first page of Appendix 4.
For guide to numbering system and directional designations, see Appendix 3.

TABLE 1
TRUSS MEMBERS

SPAN	PANEL OR PANELPT.	COMPONENT	$\begin{array}{\|l\|} \hline \text { SECT. } \\ \text { LOSS } \\ \hline \end{array}$	COMMENT
		Inbd TF		
		Inbd BF		
		Inbd Web		
3	1	Bottom Chord (Lt)		
		Outbd FI (top)	10\%	
		Outbd Fl (btm)	15\%	
		Inbd FI (top)		
		Inbd FI (btm)	15\%	
		Web	20\%	in horiz leg of both top angles
				20\% SL of all lacing bars
3	1	Bottom Chord (Rt)		Tree limbs growing into bottom chord.
		Outbd FI (top)	5\%	
		Outbd Fl (btm)		
		Inbd Fl (top)	5\%	
		Inbd FI (btm)		
		Web	10\%	in horiz leg of both top angles
3	L1L-U1L	Hanger (Lt)		50% SL of inboard gusset plate at L1L, above floorbeam
		Outbd FI (SF side)	15\%	along top of gusset plate at L1L
		Outbd Fl (Mity side)	15\%	along top of gusset plate at L1L
		Inbd FI (SF side)	10\%	along top of gusset plate at L1L
		Inbd FI (Mty side)	10\%	along top of gusset plate at L1L
		Web	5\%	
3	L1R-U1R	Hanger (Rt)		
		Outbd FI (SF side)		
		Outbd FI (Mty side)		
		Inbd FI (SF side)	30\%	along top of gusset plate at L1R
		Inbd FI (Mty side)	30\%	along top of gusset plate at L1R
		Web		
3	2	Bottom Chord (Lt)		
		Outbd FI (top)	5\%	
		Outbd Fl (btm)		
		Inbd Fl (top)		
		Inbd Fl (btm)	5\%	
		Web	10\%	in horiz leg of both top angles
3	2	Bottom Chord (Rt)		
		Outbd FI (top)		
		Outbd Fl (btm)		
		Inbd FI (top)	5\%	
		Inbd Fl (btm)		
		Web	10\%	in horiz leg of Inbd top angle
			5\%	in horiz leg of Outbd top angle

Page 16 of 37

For abbreviations, see Legend on first page of Appendix 4.
For guide to numbering system and directional designations, see Appendix 3.

TABLE 1
TRUSS MEMBERS

SPAN	PANEL OR PANELPT.	COMPONENT	$\begin{aligned} & \text { SECT. } \\ & \text { LOSS } \end{aligned}$	COMMENT
3	2	Top Chord (L.t)		
		Cover Plate	15\%	
		Outbd TF		
		Outbd BF		
		Outbd Web		
		Inbd TF	5\%	
		Inbd BF	15\%	
		Inbd Web		
3	2	Top Chord (Rt)		
		Cover Plate	10\%	
		Outbd TF		
		Outbd BF	15\%	
		Outbd Web		
		Inbd TF		
		Inbd BF	10\%	
		Inbd Web		
3	2	Diagonal (Lt)		
		Outbd FI (top)	10\%	along top of gusset plate at L2L
		Outbd FI (btm)	5\%	
		Inbd FI (top)	10\%	along top of gusset plate at L2L
		Inbd FI (btm)	5\%	
		Web	20\%	in horiz leg of both top angles and in section of web plate between angles, along 4 ft . length of member starting from L2L
3	2	Diagonal (Rt)		
		Outbd Fl (top)	5\%	
		Outbd FI (btm)		
		Inbd FI (top)	30\%	along gusset plate at L2R
		Inbd FI (btm)	5\%	along gusset plate at L2R
		Web	5\%	in horiz leg of both top angles and in section of web plate between angles
3	L2L-U2L	Post (Lt)		
		Outbd FI (SF side)		
		Outbd FI (Mty side)		
		Inbd FI (SF side)	5\%	along top of gusset plate at L2L
		Inbd FI (Mty side)	5\%	along top of gusset plate at L2L
		Web	5\%	
3	L2R-U2R	Post (Rt)		
		Outbd FI (SF side)		
		Outbd FI (Mty side)		
		Inbd FI (SF side)	5\%	along top of gusset plate at L2R
		Inbd FI (Mty side)		

Page 17 of 37
For abbreviations, see Legend on first page of Appendix 4.
For guide to numbering system and directional designations, see Appendix 3.

Salinas River Bridge Inspection Report

TABLE 1
TRUSS MEMBERS

SPAN	PANEL OR PANEL PT.	COMPONENT	$\begin{array}{l\|} \hline \text { SECT. } \\ \text { LOSS } \\ \hline \end{array}$	COMMENT
		Web		
3	3	Bottom Chord (Lt)		
		Outbd FI Plate		
		Outbd FI (top L)		
		Outbd FI (btm L)		
		Inbd FI Plate		
		Inbd FI (top L)		
		Inbd FI (btm L)		
		Web	20\%	in horiz leg of both top angles and in section of web plate btw angles
3	3	Bottom Chord (Rt)		
		Outbd FI Plate		
		Outbd FI (top L)	10\%	
		Outbd FI (btm L)		
		Inbd FI Plate		
		Inbd FI (top L)	10\%	
		Inbd FI (btm L)		
		Web	10\%	in horiz leg of both top angles and in section of web plate btw angles
3	3	Top Chord (Lt)		
		Cover Plate	50\%	
		Outbd TF		
		Outbd BF		
		Outbd Web		
		Inbd TF	5\%	
		Inbd BF	10\%	
		Inbd Web		
3	3	Top Chord (Rt)		
		Cover Plate	70\%	along 2 ft length of member adjacent to lateral connection plate at U2R
			15\%	typical SL along length of member, except as noted above
		Outbd TF		
		Outbd BF	10\%	
		Outbd Web		
		Inbd TF		
		Inbd BF	5\%	
		Inbd Web		
3	3	Diagonal (Lt)		20\% SL at 30% of the bottom lacing bars
		Outbd TF		
		Outbd BF		
		Outbd Web		

Page 18 of 37
For abbreviations, see Legend on first page of Appendix 4.
For guide to numbering system and directional designations, see Appendix 3.

Salinas River Bridge Inspection Report

TABLE 1
TRUSS MEMBERS

SPAN	PANELOR PANEL PT.	COMPONENT	$\begin{aligned} & \hline \text { SECT. } \\ & \text { LOSS } \\ & \hline \end{aligned}$	COMMENT
		Inbd TF		
		Inbd BF		
		Inbd Web		
3	3	Diagonal (Rt)		
		Outbd TF	5\%	
		Outbd BF	5\%	
		Outbd Web	5\%	
		Inbd TF	20\%	along edges of top lacing bars
		Inbd BF		
		Inbd Web	5\%	
3	L3L-U3L	Hanger (Lt)		
		Outbd FI (SF side)		
		Outbd FI (Mty side)		
		Inbd FI (SF side)		
		Inbd FI (Mty side)		
		Web	5\%	
3	L3R-U3R	Hanger (Rt)		
		Outbd FI (SF side)		
		Outbd FI (Mty side)		
		Inbd FI (SF side)		
		Inbd FI (Mty side)	5\%	
		Web	5\%	only in section of web plate between angles
3	4	Bottom Chord (Lt)		
		Outbd FI Plate		
		Outbd Fl (top L)		
		Outbd FI (btm L)		
		Inbd FI Plate		
		Inbd FI (top L)		
		Inbd FI (btm L)		
		Web	20\%	in horiz leg of both top angles and in section of web plate btw angles
3	4	Bottom Chord (Rt)		minor spreading at Inbd and Outbd flange angles and cover plates due to crevice corrosion
		Outbd FI Plate		
		Outbd FI (top L)	5\%	
		Outbd FI (btm L)		
		Inbd FI Plate		
		Inbd FI (top L)	10\%	
		Inbd FI (btm L)		
		Web	10\%	in horiz leg of both top angles and in section of web plate btw angles
3	4	Top Chord (Lt)		

For abbreviations, see Legend on first page of Appendix 4.
For guide to numbering system and directional designations, see Appendix 3.
Table 1

Salinas River Bridge Inspection Report

TABLE 1
TRUSS MEMBERS

SPAN	PANEL OR PANEL. PT.	COMPONENT	$\begin{aligned} & \text { SECT. } \\ & \text { LOSS } \end{aligned}$	COMMENT
		Cover Plate	50\%	
		Outbd TF		
		Outbd BF		
		Outbd Web		
		Inbd TF		
		Inbd BF	15\%	
		Inbd Web		
3	4	Top Chord (Rt)		
		Cover Plate	10\%	
		Outbd TF		
		Outbd BF	5\%	
		Outbd Web	5\%	
		Inbd TF		
		Inbd BF	5\%	
		Inbd Web		
3	4	Diagonal (Lt)		
		Outbd TF	5\%	
		Outbd BF	5\%	
		Outbd Web	5\%	
		Inbd TF	5\%	
		Inbd BF	5\%	
		Inbd Web	5\%	
3	4	Diagonal (Rt)		
		Outbd TF	30\%	
		Outbd BF	20\%	
		Outbd Web	5\%	
		Inbd TF	50\%	
		Inbd BF	5\%	
		Inbd Web	10\%	
3	L.4L-U4L	Post (Lt)		
		Outbd FI (SF side)	30\%	along top of gusset plate at L4L
		Outbd FI (Miy side)		
		Inbd FI (SF side)		
		Inbd FI (Mty side)		
		Web		
3	L4R-U4R	Post (Rt)		
		Outbd Fl (SF side)		
		Outbd FI (Miy side)		
		Inbd FI (SF side)	15\%	along gusset plate at L4R
		Inbd FI (Mty side)	5\%	along gusset plate at L.4R
		Web		
3	5	Bottom Chord (Lt)		

Page 20 of 37

For abbreviations, see Legend on first page of Appendix 4.
For guide to numbering system and directional designations, see Appendix 3.

Salinas River Bridge Inspection Report

TABLE 1
TRUSS MEMBERS

SPAN	$\begin{array}{l}\text { PANEL OR } \\ \text { PANEL PT. }\end{array}$	$\begin{array}{l}\text { COMPONENT }\end{array}$	$\begin{array}{c}\text { SECT. } \\ \text { LOSS }\end{array}$	
		Outbd FI (top)		
		Outbd FI (btm)		

Page 21 of 37
For abbreviations, see Legend on first page of Appendix 4.
For guide to numbering system and directional designations, see Appendix 3.

TABLE 1
TRUSS MEMBERS

SPAN	PANEL OR PANELPT.	COMPONENT	$\begin{array}{\|l\|} \hline \text { SECT. } \\ \text { LOSS } \end{array}$	COMMENT
		Outbd FI (Mty side)		
		Inbd Fl (SF side)	10\%	at two isolated locations: 1.5 ft from top of gusset plate at L 5 L , and 3 ft . from top of gusset plate at L 5 L
		Inbd FI (Mity side)		
		Web		
3	L5R-U5R	Hanger (Rt)		
		Outbd FI (SF side)		
		Outbd FI (Mty side)		
		Inbd FI (SF side)		
		Inbd FI (Mty side)		
		Web		
3	6	Bottom Chord (Lt)		
		Outbd FI (top)		
		Outbd Fl (btm)		
		Inbd FI (top)		
		Inbd FI (btm)		
		Web		30\% SL at 90% of the lacing bars
3	6	Bottom Chord (Rt)		
		Outbd FI (top)	5\%	
		Outbd FI (btm)		
		Inbd FI (top)	5\%	
		Inbd FI (btm)		
		Web	5\%	in horiz leg of both top angles
3	6	End Post (Lt)		
		Cover Plate		
		Outbd TF		
		Outbd BF		
		Outbd Web		
		Inbd TF	10\%	
		Inbd BF	10\%	
		Inbd Web		
3	6	End Post (Rt)		
		Cover Plate		
		Outbd TF		
		Outbd BF	5\%	
		Outbd Web		5\% SL in vertical leg of bottom angle
		Inbd TF		
		Inbd BF		
		Inbd Web		
4	1	End Post (Lt)		50% SL at 75% of the bottom lacing bars
		Cover Plate	5\%	
		Outbd TF		

Page 22 of 37
For abbreviations, see Legend on first page of Appendix 4.
For guide to numbering system and directional designations, see Appendix 3.

Salinas River Bridge Inspection Report

TABLE 1
TRUSS MEMBERS

SPAN	PANEL OR PANEL PT.	COMPONENT	$\begin{aligned} & \text { SECT. } \\ & \text { LOSS } \end{aligned}$	COMMENT
		Outbd BF		
		Outbd Web		
		Inbd TF	5\%	
		Inbd BF	10\%	
		Inbd Web		
4	1	End Post (Rt)		100\% SL at six of the bottom lacing bars
		Cover Plate	5\%	
		Outbd TF		
		Outbd BF	5\%	
		Outbd Web	5\%	
		Inbd TF		
		Inbd BF		
		Inbd Web		
4	1	Bottom Chord (Lt)		
		Outbd FI (top)	10\%	
		Outbd FI (btm)		
		Inbd FI (top)	10\%	
		Inbd Fl (btm)		
		Web	30\%	in horiz leg of both top angles
				50\% SL at 75\% of lacing bars
4	1	Bottom Chord (Rt)		
		Outbd FI (top)		
		Outbd FI (btm)		
		Inbd FI (top)	5\%	
		Inbd Fl (bim)		
		Web	10\%	in horiz leg of inboard top angle
4	L1L-U1L	Hanger (Lt)		
		Outbd FI (SF side)		
		Outbd FI (Mty side)	20\%	along 2 ft . length of member starting from top of gusset plate at L1L
		lnbd FI (SF side)		
		Inbd FI (Miy side)		
		Web		
4	L1R-U1R	Hanger (Rt)		
		Outbd FI (SF side)		
		Outbd FI (Mty side)		
		Inbd FI (SF side)		
		Inbd FI (Mty side)		
		Web	5\%	in section of web plate between angles
4	2	Bottom Chord (Lt)		
		Outbd FI (top)	10\%	
		Outbd FI (btm)		

Page 23 of 37
For abbreviations, see Legend on first page of Appendix 4.
For guide to numbering system and directional designations, see Appendix 3.

Salinas River Bridge Inspection Report

TABLE 1
TRUSS MEMBERS

SPAN	PANEL OR PANELPT.	COMPONENT	$\begin{aligned} & \hline \text { SECT. } \\ & \text { LOSS } \end{aligned}$	COMMENT
		Inbd FI (top)	10\%	
		Inbd FI (btm)		
		Web	15\%	in horiz leg of both top angles
				50% SL at all lacing bars
4	2	Bottom Chord (Rt)		
		Outbd FI (top)	5\%	
		Outbd FI (btm)		
		Inbd Fl (top)	5\%	
		Inbd Fl (btm)		
		Web	10\%	in horiz leg of inboard top angle
			5\%	in horiz leg of outboard top angle
4	2	Top Chord (Lt)		
		Cover Plate	30\%	
		Outbd TF		
		Outbd BF		
		Outbd Web		
		Inbd TF	5\%	
		Inbd BF	15\%	
		Inbd Web	5\%	
4	2	Top Chord (Rt)		
		Cover Plate	10\%	
		Outbd TF		
		Outbd BF	15\%	
		Outbd Web		
		Inbd TF		
		Inbd BF	5\%	
		Inbd Web		
4	2	Diagonal (Lt)		
		Outbd FI (top)	5\%	
		Outbd FI (btm)	5\%	
		Inbd FI (top)	30\%	along gusset plate at L2L
		Inbd Fl (btm)	5\%	
		Web	5\%	in horiz leg of both top angles and in section of web plate between angles
4	2	Diagonal (Rt)		
		Outbd FI (top)	5\%	along gusset plate at L2R
		Outbd Fl (btm)		
		Inbd FI (top)	10\%	along gusset plate at L2R
		Inbd FI (btm)	5\%	along gusset plate at L2R
		Web	5\%	in horiz leg of both top angles and in section of web plate between angles
4	L2L-U2L	Post (Lt)		

Page 24 of 37
For abbreviations, see Legend on first page of Appendix 4.
For guide to numbering system and directional designations, see Appendix 3.

Salinas River Bridge Inspection Report

TABLE 1
TRUSS MEMBERS

SPAN	PANEL OR PANEL PT.	COMPONENT	$\begin{array}{\|l\|} \hline \text { SECT. } \\ \text { LOSS } \\ \hline \end{array}$	COMMENT
		Outbd Fl (SF side)		
		Outbd Fl (Mty side)		
		Inbd Fl (SF side)		
		Inbd FI (Mty side)		
		Web		
4	L2R-U2R	Post (Rt)		
		Outbd FI (SF side)		
		Outbd FI (Mty side)		
		Inbd FI (SF side)	5\%	along gusset plate at L2R
		Inbd FI (Mty side)	5\%	along gusset plate at L 2 R
		Web		
4	3	Bottom Chord (Lt)		
		Outbd FI Plate		
		Outbd FI (top L)	10\%	
		Outbd FI (btm L)		
		Inbd FI Plate		
		Inbd FI (top L)	10\%	
		Inbd FI (btm L)		
		Web	20\%	in horiz leg of both top angles and in section of web plate btw angles
4	3	Bottom Chord (Rt)		minor spreading at Inbd and Outbd flange angles and cover plates due to crevice corrosion
		Outbd FI Plate		
		Outbd FI (top L)	10\%	
		Outbd FI (btm L)		
		Inbd FI Plate		
		Inbd FI (top L)	10\%	
		Inbd Fl (btm L)		
		Web	10\%	in horiz leg of both top angles and in section of web plate btw angles
4	3	Top Chord (Lt)		
		Cover Plate	50\%	
		Outbd TF		
		Outbd BF		
		Outbd Web		
		Inbd TF		
		Inbd BF		
		Inbd Web		
4	3	Top Chord (Rt)		
		Cover Plate	30\%	along edge of lateral connection plate at U2R
			10\%	throughout length of member, except as noted above
		Outbd TF		

Page 25 of 37

For abbreviations, see Legend on first page of Appendix 4.
For guide to numbering system and directional designations, see Appendix 3.

Salinas River Bridge Inspection Report

TABLE 1
TRUSS MEMBERS

SPAN	PANEL OR PANEL PT.	COMPONENT	$\begin{aligned} & \text { SECT. } \\ & \text { LOSS } \end{aligned}$	COMMENT
		Outbd BF	10\%	
		Outbd Web		
		Inbd TF		
		Inbd BF	10\%	
		Inbd Web		
4	3	Diagonal (Lt)		50\% SL at 10% of bottom lacing bars
		Outbd TF		
		Outbd BF		
		Outbd Web		
		Inbd TF		
		Inbd BF	5\%	
		Inbd Web		
4	3	Diagonal (Rt)		
		Outbd TF	5\%	
		Outbd BF	20\%	at an isolated location
		Outbd Web	5\%	
		Inbd TF	5\%	
		Inbd BF		
		Inbd Web		
4	L3L-U3L	Hanger (Lt)		
		Outbd FI (SF side)		
		Outbd FI (Miy side)		
		Inbd FI (SF side)		
		Inbd FI (Mity side)		
		Web		
4	L3R-U3R	Hanger (Rt)		
		Outbd FI (SF side)		
		Outbd FI (Mty side)		
		Inbd FI (SF side)		
		Inbd FI (Mty side)		
		Web		
4	4	Bottom Chord (Lt)		
		Outbd FI Plate		
		Outbd FI (top L)	10\%	
		Outbd FI (btm L)		
		Inbd FI Plate	10\%	
		Inbd FI (top L)		
		Inbd FI (btm L)		
		Web	20\%	in horiz leg of both top angles and in section of web plate btw angles
4	4	Bottom Chord (Rt)		minor spreading at Inbd and Outbd flange angles and cover plates due to crevice corrosion

Page 26 of 37

For abbreviations, see Legend on first page of Appendix 4 ,
For guide to numbering system and directional designations, see Appendix 3.

TABLE 1
TRUSS MEMBERS

SPAN	PANEL OR PANEL PT.	COMPONENT	$\begin{aligned} & \hline \text { SECT. } \\ & \text { LOSS } \end{aligned}$	COMMENT
		Outbd FI Plate		
		Outbd FI (top L)	10\%	
		Outbd Fl (btm L)		
		Inbd FI Plate		
		Inbd FI (top L)	10\%	
		Inbd Fl (btm L)		
		Web	10\%	in horiz leg of both top angles and in section of web plate btw angles
4	4	Top Chord (Lt)		
		Cover Plate	40\%	
		Outbd TF		
		Outbd BF		
		Outbd Web		
		Inbd TF	5\%	
		Inbd BF	20\%	
		Inbd Web		
4	4	Top Chord (Rt)		
		Cover Plate	50\%	in 2 ft length of member adjacent to lateral connection plate at U3R
			50\%	in 2 ft . length of member adjacent to lateral connection plate at U4R
			15\%	throughout length of member, except as noted above
		Outbd TF		
		Outbd BF	10\%	
		Outbd Web		
		Inbd TF		
		Inbd BF		
		Inbd Web		
4	4	Diagonal (Lt)		
		Outbd TF	25\%	along edge of lacing bar
		Outbd BF		
		Outbd Web		
		Inbd TF	25\%	along edge of lacing bar
		Inbd BF	25\%	
		Inbd Web		
4	4	Diagonal (Rt)		
		Outbd TF	15\%	
		Outbd BF	20\%	
		Outbd Web	10\%	
		Inbd TF	25\%	
		Inbd BF	15\%	
		Inbd Web	15\%	

Page 27 of 37
For abbreviations, see Legend on first page of Appendix 4.
For guide to numbering system and directional designations, see Appendix 3 .
Table 1

Salinas River Bridge Inspection Report

TABLE 1
TRUSS MEMBERS

SPAN	PANEL OR PANEL PT.	COMPONENT	$\begin{aligned} & \text { SECT, } \\ & \text { LOSS } \end{aligned}$	COMMENT
4	L4L-U4L	Post (Lt)		
		Outbd Fl (SF side)	30\%	along top of gusset plate at L4L
		Outbd FI (Mity side)	15\%	along top of gusset plate at L4L
		Inbd FI (SF side)		
		Inbd FI (Mty side)		
		Web	5\%	
4	L4R-U4R	Post (Rt)		
		Outbd FI (SF side)		
		Outbd FI (Mty side)	5\%	along top of gusset plate at L4R
		Inbd FI (SF side)		
		Inbd Fl (Mty side)		
		Web		
4	5	Bottom Chord (L.t)		
		Outbd FI (top)	10\%	
		Outbd FI (btm)		
		Inbd Fl (top)	10\%	
		Inbd FI (btm)		
		Web	15\%	in horiz leg of both top angles
				25\% SL at all lacing bars
4	5	Bottom Chord (Rt)		
		Outbd FI (top)	5\%	
			10\%	at L4R \& L5R (between gusset plates)
		Outbd Fl (btm)		
		Inbd FI (top)	5\%	
			10\%	at L4R \& L5R (between gusset plates)
		Inbd FI (btm)		
		Web	5\%	in horiz leg of both top angles
4	5	Top Chord (Lt)		
		Cover Plate	40\%	
		Outbd TF		
		Outbd BF		
		Outbd Web		
		Inbd TF		
		Inbd BF	10\%	
		Inbd Web		
4	5	Top Chord (Rt)		
		Cover Plate	50\%	in 1 ft . length of member adjacent to lateral connection plate at U4R
			15\%	throughout length of member, except as noted above
		Outbd TF		
		Outbd BF	15\%	
		Outbd Web	5\%	in vertical leg of bottom angle (only)

Page 28 of 37

For abbreviations, see Legend on first page of Appendix 4.
For guide to numbering system and directional designations, see Appendix 3.

TABLE 1
TRUSS MEMBERS

SPAN	PANEL OR PANEL PT.	COMPONENT	$\begin{aligned} & \text { SECT. } \\ & \text { LOSS } \end{aligned}$	COMMENT
		Inbd TF		
		Inbd BF	5\%	
		Inbd Web	5\%	in vertical leg of bottom angle (only)
4	5	Diagonal (Lt)		75% SL of inboard and outboard gusset plates at L4L in area located between the hanger and the diagonal of Panel 5.
		Outbd Fl (top)		
		Outbd FI (btm)	5\%	
		Inbd FI (top)		
		Inbd Fl (btm)		
		Web		
4	5	Diagonal (Rt)		
		Outbd FI (top)		
		Outbd FI (btm)		
		Inbd FI (top)	15\%	along gusset plate at L4R
		Inbd FI (btm)	10\%	along gusset plate at L4R
		Web		
4	L5L-U5L	Hanger (Lt)		
		Outbd FI (SF side)	20\%	along top of gusset plate at L5L
		Outbd FI (Mty side)		
		Inbd FI (SF side)		
		Inbd FI (Mty side)		
		Web		
4	L5R.U5R	Hanger (Rt)		
		Outbd FI (SF side)		
		Outbd FI (Mty side)		
		Inbd FI (SF side)		
		Inbd Fl (Mity side)		
		Web		
4	6	Bottom Chord (Lt)		
		Outbd FI (top)	5\%	
		Outbd FI (btm)	5\%	
		Inbd FI (top)	5\%	
		Inbd Fl (btm)		
		Web		25\% SL at 95\% of lacing bars
4	6	Bottom Chord (Rt)		
		Outbd FI (top)	5\%	
			10\%	at L5R (between gusset plates)
		Outbd FI (btm)		
		Inbd FI (top)	5\%	
			10\%	at L5R (between gusset plates)
		Inbd FI (btm)		

Page 29 of 37

For abbreviations, see Legend on first page of Appendix 4.
For guide to numbering system and directional designations, see Appendix 3.

Salinas River Bridge

 Inspection ReportTABLE 1
TRUSS MEMBERS

SPAN	PANEL OR PANEL PT.	COMPONENT	$\begin{array}{\|l\|} \hline \text { SECT. } \\ \text { LOSS } \\ \hline \end{array}$	COMMENT
		Web	10\%	in horiz leg of outboard top angle
			5\%	in horiz leg of inboard top angle
4	6	End Post (Lt)		
		Cover Plate		
		Outbd TF		
		Outbd BF		
		Outbd Web		
		Inbd TF	5\%	
		Inbd BF		
		Inbd Web		
4	6	End Post (Rt)		80% SL of outside pin plate and 30% SL of gusset plate, at the outboard side of the bearing pin at L6R (no SL at inside pin plate).
		Cover Plate		
		Outbd TF		
		Outbd BF	10\%	
		Outbd Web		
		Inbd TF		
		Inbd BF		
		Inbd Web		
5	1	End Post (Lt)		20\% SL at all bottom lacing bars (1 lacing bar broken)
		Cover Plate		
		Outbd TF		
		Outbd BF		
		Outbd Web		
		Inbd TF		
		Inbd BF		
		Inbd Web		
5	1	End Post (Rt)		100\% SL at four bottom lacing bars at top of end post
		Cover Plate	20\%	at isolated location along edge of bottom horiz angle of portal
		Outbd TF		
		Outbd BF		
		Outbd Web		
		Inbd TF		
		Inbd BF		
		Inbd Web		
5	1	Bottom Chord (Lt)		
		Outbd FI (top)	15\%	
		Outbd FI (btm)		
		Inbd FI (top)	10\%	
		Inbd FI (btm)		

Page 30 of 37
For abbreviations, see Legend on first page of Appendix 4 .
For guide to numbering system and directional designations, see Appendix 3.
Table 1

Salinas River Bridge Inspection Report

TABLE 1
TRUSS MEMBERS

SPAN	PANEL OR PANELPT.	COMPONENT	$\begin{aligned} & \text { SECT. } \\ & \text { LOSS } \end{aligned}$	COMMENT
		Web	10\%	in horiz leg of both top angles
				50\% SL at all lacing bars
5	1	Bottom Chord (Rt)		
		Outbd Fl (top)	5\%	
		Outbd Fl (btm)		
		Inbd Fl (top)	5\%	
		Inbd FI (btm)		
		Web	10\%	in horiz leg of top inboard angle
			5\%	in horiz leg of top outboard angle
5	L1L-U1L.	Hanger (Lt)		
		Outbd FI (SF side)		
		Outbd FI (Mty side)		
		Inbd FI (SF side)		
		Inbd Fl (Mty side)		
		Web		
5	L1R-U1R	Hanger (Rt)		
		Outbd FI (SF side)		
		Outbd FI (Mty side)		
		Inbd FI (SF side)	5\%	along top of gusset plate at L1R
		Inbd Fl (Mty side)	5\%	along top of gusset plate at L1R
		Web		
5	2	Bottom Chord (Lt)		
		Outbd FI (top)	5\%	
		Outbd FI (btm)		
		Inbd FI (top)	5\%	
		Inbd FI (btm)		
		Web	5\%	in horiz leg of top outboard angle
				50\% SL at all lacing bars
5	2	Bottom Chord (Rt)		
		Outbd Fl (top)	5\%	
		Outbd Fl (btm)		
		Inbd FI (top)	5\%	
		Inbd FI (btm)		
		Web	10\%	in horiz leg of both top angles
5	2	Top Chord (L.t)		
		Cover Plate	40\%	
		Outbd TF		
		Outbd BF		
		Outbd Web		
		Inbd TF		
		Inbd BF		
		Inbd Web	15\%	

Page 31 of 37
For abbreviations, see Legend on first page of Appendix 4 .
For guide to numbering system and directional designations, see Appendix 3 .
Table 1

Salinas River Bridge Inspection Report

TABLE 1
TRUSS MEMBERS

SPAN	PANEL OR PANEL PT	COMPONENT	$\begin{aligned} & \text { SECT. } \\ & \text { LOSS } \end{aligned}$	COMMENT
5	2	Top Chord (Rt)		
		Cover Plate	20\%	
		Outbd TF		
		Outbd BF	10\%	
		Outbd Web	10\%	in vertical leg of bottom angle (only)
		Inbd TF		
		Inbd BF	5\%	
		Inbd Web		
5	2	Diagonal (Lt)		
		Outbd Fl (top)	15\%	
		Outbd FI (btm)		
		Inbd FI (top)		
		Inbd FI (btm)		
		Web	25\%	in horiz leg of outboard top angle and in section of web plate between angles
5	2	Diagonal (Rt)		
		Outbd FI (top)		
		Outbd FI (btm)		
		Inbd FI (top)	15\%	along edge of gusset plate at L2R
		Inbd F\| (btm)	5\%	along edge of gusset plate at L2R
		Web	5\%	in horiz leg of outboard top angle and in section of web plate between angles
5	L2L-U2L	Post (Lt)		
		Outbd Fl (SF side)		
		Outbd FI (Mty side)		
		Inbd FI (SF side)		
		Inbd FI (Mty side)		
		Web		
5	L2R-U2R	Post (Rt)		
		Outbd FI (SF side)		
		Outbd FI (Mty side)		
		Inbd FI (SF side)		
		Inbd FI (Mty side)		
		Web		
5	3	Bottom Chord (Lt)		
		Outbd FI Plate		
		Outbd Fl (top L)	5\%	
		Outbd FI (btm L)		
		Inbd FI Plate		
		Inbd FI (top L)		
		Inbd FI (btm L)		

For abbreviations, see Legend on first page of Appendix 4.

Salinas River Bridge Inspection Report

TABLE 1

TRUSS MEMBERS

SPAN	PANEL OR PANEL PT.	COMPONENT	$\begin{aligned} & \hline \text { SECT: } \\ & \text { LOSS } \\ & \hline \end{aligned}$	COMMENT
		Web	10\%	in horiz leg of both top angles and in section of web plate btw angles
5	3	Bottom Chord (Rt)		minor spreading at Inbd and Outbd flange plates and angles due to crevice corrosion
		Outbd FI Plate		
		Outbd FI (top L)	5\%	
		Outbd Fl (btm L)		
		Inbd FI Plate		
		Inbd Fl (top L)	5\%	
		Inbd FI (btm L)		
		Web	10\%	in horiz leg of both top angles and in section of web plate btw angles
5	3	Top Chord (Lt)		
		Cover Plate	75\%	
		Outbd TF		
		Outbd BF		
		Outbd Web		
		Inbd TF	5\%	
		Inbd BF	20\%	
		Inbd Web		
5	3	Top Chord (Rt)		
		Cover Plate	50\%	near lateral connection plate at U2R
			30\%	throughout length of member, except as noted above
		Outbd TF		
		Outbd BF	10\%	
		Outbd Web	5\%	in vertical leg of bottom angle (only)
		Inbd TF		
		Inbd BF	5\%	
		Inbd Web		
5	3	Diagonal (Lt)		
		Outbd TF		
		Outbd BF		
		Outbd Web		
		Inbd TF		
		Inbd BF		
		Inbd Web		
5	3	Diagonal (Rt)		100\% SL at five bottom lacing bars
		Outbd TF	5\%	
		Outbd BF	5\%	
		Outbd Web	2\%	
		Inbd TF	5\%	
		Inbd BF		

Page 33 of 37

For abbreviations, see Legend on first page of Appendix 4.
For guide to numbering system and directional designations, see Appendix 3.

Salinas River Bridge

 Inspection Report
TABLE 1

TRUSS MEMBERS

SPAN	PANEL OR PANEL PT.	COMPONENT	$\begin{array}{\|l\|} \hline \text { SECT. } \\ \text { LOSS } \\ \hline \end{array}$	COMMENT
		Inbd Web		
5	L3L-U3L	Hanger (Lt)		25\% SL of inboard gusset plate at L3L, above flbm
		Outbd FI (SF side)		
		Outbd FI (Mty side)		
		Inbd FI (SF side)		
		Inbd FI (Mty side)		
		Web		
5	L3R-U3R	Hanger (Rt)		
		Outbd FI (SF side)		
		Outbd FI (Mty side)		
		Inbd FI (SF side)		
		Inbd FI (Mty side)		
		Web		
5	4	Bottom Chord (Lt)		
		Outbd FI Plate		
		Outbd Fl (top L)	20\%	
		Outbd FI (btm L)		
		Inbd FI Plate		
		Inbd FI (top L)	15\%	
		Inbd FI (btm L)		
		Web	15\%	in horiz leg of both top angles and in section of web plate btw angles
5	4	Bottom Chord (Rt)		minor spreading at Inbd and Outbd flange plates and angles due to crevice corrosion
		Outbd FI Plate		
		Outbd FI (top L)	5\%	
		Outbd FI (btm L)		
		Inbd FI Plate		
		Inbd FI (top L)	5\%	
		$\operatorname{lnbdFl}(\mathrm{btm} \mathrm{L})$		
		Web	10\%	in horiz leg of both top angles and in section of web plate btw angles
5	4	Top Chord (Lt)		
		Cover Plate	50\%	
		Outbd TF		
		Outbd BF		
		Outbd Web		
		Inbd TF	5\%	
		Inbd BF	15\%	
		Inbd Web		
5	4	Top Chord (Rt)		
		Cover Plate	40\%	near lateral connection plate at U3R

Page 34 of 37
For abbreviations, see Legend on first page of Appendix 4.
For guide to numbering system and directional designations, see Appendix 3.

TABLE 1
TRUSS MEMBERS

SPAN	PANEL OR PANEL PT.	COMPONENT	$\begin{array}{l\|} \hline \text { SECT. } \\ \text { LOSS } \\ \hline \end{array}$	COMMENT
			20\%	throughout length of member, except as noted above
		Outbd TF		
		Outbd BF	10\%	
		Outbd Web	5\%	in vertical leg of bottom angle (only)
		Inbd TF		
		Inbd BF		
		Inbd Web		
5	4	Diagonal (Lt)		90\% SL at 10% of top lacing bars
		Outbd TF		
		Outbd BF		
		Outbd Web		
		Inbd TF		
		Inbd BF	40\%	
		Inbd Web	10\%	
5	4	Diagonal (Rt)		100\% SL at one bottom lacing bar
				100\% SL at three top lacing bars
		Outbd TF	15\%	
		Outbd BF	10\%	
		Outbd Web	2\%	
		Inbd TF	15\%	
		Inbd BF		
		Inbd Web		
5	L4L-U4L	Post (Lt)		
		Outbd FI (SF side)	10\%	along top of gusset plate at L 4 L
		Outbd FI (Mty side)	10\%	along top of gusset plate at L4L
		Inbd Fl (SF side)		
		Inbd FI (Mty side)		
		Web		
5	L4R-U4R	Post (Rt)		
		Outbd FI (SF side)		
		Outbd FI (Mty side)		
		Inbd FI (SF side)		
		Inbd FI (Mty side)	5\%	along top of gusset plate at L4R
		Web		
5	5	Bottom Chord (Lt)		
		Outbd FI (top)		
		Outbd FI (btm)		
		Inbd Fl (top)		
		Inbd Fl (btm)		
		Web	20\%	in horiz leg of top inboard angle
				30% SL at all lacing bars
5	5	Bottom Chord (Rt)		

Page 35 of 37
For abbreviations, see Legend on first page of Appendix 4.
For guide to numbering system and directional designations, see Appendix 3.

Salinas River Bridge Inspection Report

TABLE 1
TRUSS MEMBERS

SPAN	PANEL OR PANEL PT.	COMPONENT	SECT. LOSS	\because COMMENT
		Outbd FI (top)	5\%	
		Outbd FI (btm)		
		Inbd FI (top)	5\%	
		Inbd FI (btm)		
		Web	10\%	in horiz leg of both angles
5	5	Top Chord (Lt)		
		Cover Plate	50\%	
		Outbd TF		
		Outbd BF		
		Outbd Web		
		Inbd TF		
		Inbd BF	10\%	
		Inbd Web		
5	5	Top Chord (Rt)		
		Cover Plate	50\%	near lateral connection plate at U4R
			25\%	throughout length of member, except as noted above
		Outbd TF		
		Outbd BF	10\%	
		Outbd Web	10\%	in vertical leg of bottom angle (only)
		Inbd TF		
		Inbd BF		
		Inbd Web		
5	5	Diagonal (Lt)		
		Outbd FI (top)		
		Outbd FI (btm)		
		Inbd FI (top)	30\%	along edge of gusset plate at L4L
		Inbd FI (bim)	20\%	along edge of gusset plate at L4L
		Web		
5	5	Diagonal (Rt)		
		Outbd Fl (top)	10\%	along edge of gusset plate at L4R
		Outbd FI (btm)	5\%	along edge of gusset plate at L4R
		Inbd FI (top)	10\%	along edge of gusset plate at L4R
		Inbd FI (btm)	5\%	along edge of gusset plate at L4R
		Web		
5	L5L-U5L	Hanger (Lt)		25% SL of inboard gusset plate at L5L, in area above floorbeam
		Outbd FI (SF side)		
		Outbd FI (Mty side)		
		Inbd Fl (SF side)		
		Inbd FI (Mty side)		
		Web		
5	L5R-U5R	Hanger (Rt)		

Page 36 of 37
For abbreviations, see Legend on first page of Appendix 4 ,
For guide to numbering system and directional designations, see Appendix 3.
Table 1

Salinas River Bridge Inspection Report

TABLE 1

TRUSS NEMBERS

SPAN	PANEL OR PANEL PT.	COMPONENT	$\begin{aligned} & \text { SECT, } \\ & \text { LOSS } \end{aligned}$	COMMENT
		Outbd FI (SF side)		
		Outbd FI (Mty side)		
		Inbd FI (SF side)	5\%	along top of gusset plate at L5R
		Inbd FI (Mty side)	5\%	along top of gusset plate at L5R
		Web		
5	6	Bottom Chord (Lt)		
		Outbd FI (top)	5\%	
		Outbd FI (btm)		
		Inbd FI (top)		
		Inbd FI (btm)		
		Web	10\%	in horiz leg of both top angles
				10\% SL at all lacing bars
5	6	Bottom Chord (Rt)		
		Outbd FI (top)	5\%	
		Outbd FI (btm)		
		Inbd FI (top)	5\%	
		Inbd FI (btm)		
		Web	10\%	in horiz leg of both top angles
5	6	End Post (Lt)		
		Cover Plate	20\%	at isolated location along edge of bottom horiz angle of portal frame
		Outbd TF		
		Outbd BF		
		Outbd Web		
		Inbd TF	5\%	
		Inbd BF	10\%	
		Inbd Web		
5	6	End Post (Rt)		
		Cover Plate	25\%	at isolated location along edge of bottom horiz angle of portal frame
		Outbd TF		
		Outbd BF		
		Outbd Web		
		Inbd TF		
		Inbd BF		
		Inbd Web		

Page 37 of 37
For abbreviations, see Legend on first page of Appendix 4
For guide to numbering system and directional designations, see Appendix 3.
Table 1

Salinas River Bridge

 Inspection ReportTABLE 2
TRUSS BRACING

SPAN	MEMBER NUMBER	COMPONENT	$\begin{aligned} & \text { SECT. } \\ & \text { LOSS } \end{aligned}$	COMMENT
1	LOL-L1R	Bottom Lateral		
1	LOR-L1L	Bottom Lateral		
1	U1L-U1R	Portal Frame	50\%	in bottom flange angles of top strut, at center-line of bridge
1	L1L-L2R	Bottom Lateral	25\%	near L1L
1	L1R-L2L	Bottom Lateral	50\%	near L1R
1	U1L-U2R	Top Lateral		
1	U1R-U2L	Top Lateral		
1	U2	Top Strut		
1	U2L	Knee Brace		
1	U2R	Knee Brace		
1	L2L-L3R	Bottom Lateral	50\%	near L2L
			50\%	near L3R
1	L2R-L3L	Bottom Lateral	30\%	near L3L
1	U2L-U3R	Top Lateral		
1	U2R-U3L	Top Lateral		
1	U3	Top Strut		
1	U3L	Knee Brace		
1	U3R	Knee Brace		
1	L3L-L4R	Bottom Lateral	50\%	near L3L
			50\%	near L4R
1	L3R-L4L	Bottom Lateral	50\%	near L3R
			50\%	near L4L
1	U3L-U4R	Top Lateral		
1	U3R-U4L	Top Lateral		
1	U4	Top Strut		
1	U4L	Knee Brace		
1	U4R	Knee Brace		
1	L4L-L5R	Bottom Lateral	50\%	near L5R
			40\%	near L4L
1	L4R-L5L	Bottom Lateral	50\%	near L4R
1	U4L-U5R	Top Lateral		
1	U4R-U5L	Top Lateral		
1	L5L-L6R	Bottom Lateral		
1	L5R-L6L	Bottom Lateral	50\%	near L5R
1	U5L-U5R	Portal Frame	50\%	in bottom flange angles of top strut, at center-line of bridge
2	LOL-L1R	Bottom Lateral		
2	LOR-L1L	Bottom Lateral		
2	U1L-U1R	Portal Frame		
2	L1L-L2R	Bottom Lateral		
2	L1R-L2L	Bottom Lateral		

Page 1 of 4

For abbreviations, see Legend on first page of Appendix 4
For guide to numbering system and directional designations, see Appendix 3. Inspection Report

TABLE 2

TRUSS BRACING

SPAN	MEMBER NUMBER	COMPONENT	$\begin{aligned} & \hline \text { SECT. } \\ & \text { LOSS } \end{aligned}$	COMMENT
2	U1L-U2R	Top Lateral		
2	U1R-U2L	Top Lateral		
2	U2	Top Strut	70\%	in bottom angles
2	U2	Sway Bracing	70\%	in bottom angles
2	L2L-L3R	Bottom Lateral		
2	L2R-L3L	Bottom Lateral		
2	U2L-U3R	Top Lateral		100\% SL of top connection plate at U2L
				50% SL of bottom connection plate at U2L
2	U2R-U3L	Top Lateral		
2	U3	Top Strut	70\%	in bottom angles
2	U3	Sway Bracing	70\%	in bottom angles
2	L3L-L4R	Bottom Lateral		
2	L3R-L4L	Bottom Lateral		
2	U3L-U4R	Top Lateral		90\% SL of top connection plate at U3L
				50% SL of bottom connection plate at U3L
2	U3R-U4L	Top Lateral		
2	U4	Top Strut		
2	U4	Sway Bracing	70\%	in bottom angles
2	L4L-L5R	Bottom Lateral		
2	L4R-L5L	Bottom Lateral		
2	U4L-U5R	Top Lateral		
2	U4R-U5L	Top Lateral		95\% SL of top connection plate at U5L
				25\% SL of bottom connection plate at U5L
2	L5L-L6R	Bottom Lateral		
2	L5R-L6L	Bottom Lateral		
2	U5L-U5R	Portal Frame		
3	LOL-L1R	Bottom Lateral		
3	LOR-L1L	Bottom Lateral		
3	U1L-U1R	Portal Frame		
3	L1L-L2R	Bottom Lateral		
3	L1R-L2L	Bottom Lateral		
3	U1L-U2R	Top Lateral		95\% SL of top connection plate at U1L
3	U1R-U2L	Top Lateral		95\% SL of top connection plate at U2L
3	U2	Top Strut	70\%	in bottom angles
3	U2	Sway Bracing	50\%	in bottom angles
3	L2L-L3R	Bottom Lateral		
3	L2R-L3L	Bottom Lateral		
3	U2L-U3R	Top Lateral		90\% SL of top connection plate at U2L
3	U2R-U3L.	Top Lateral		
3	U3	Top Strut	70\%	in bottom angles
3	U3	Sway Bracing	50\%	in bottom angles
3	L3L-L4R	Bottom Lateral		

Page 2 of 4

For abbreviations, see Legend on first page of Appendix 4
For guide to numbering system and directional designations, see Appendix 3.

TABLE 2
TRUSS BRACING

SPAN	MEMBER NUMBER	COMPONENT	$\begin{aligned} & \text { SECT. } \\ & \text { LOSS } \end{aligned}$	COMMENT
3	L3R-L4L	Bottom Lateral		
3	U3L-U4R	Top Lateral	70\%	in top angle near U3L
				70% SL of top connection plate at U3L
			50\%	in top angle at center connection
3	U3R-U4L	Top Lateral		90\% SL of top connection plate at U4L
3	U4	Top Strut		
3	U4	Sway Bracing		
3	L4L-L5R	Bottom Lateral		
3	L4R-L5L	Bottom Lateral		70\% SL of connection plate at L4R
3	U4L-U5R	Top Lateral		90\% SL of top connection plate at U4L
3	U4R-U5L	Top Lateral		100\% SL of top connection plate at U5L
3	L5L-L6R	Bottom Lateral		
3	L5R-L6L	Bottom Lateral		
3	U5L-U5R	Portal Frame		
4	LOL-L1R	Bottom Lateral		
4	L0R-L1L	Bottom Lateral		
4	U1L-U1R	Portal Frame		
4	L1L-L2R	Bottom Lateral		
4	L1R-L2L	Bottom Lateral		
4	U1L-U2R	Top Lateral		100\% SL of top connection plate at U1L
				25\% SL of bottom connection plate at U1L
4	U1R-U2L	Top Lateral		
4	U2	Top Strut	70\%	in bottom angles
				lacing bars in poor condition
4	U2	Sway Bracing	70\%	in bottom angles
4	L2L-L3R	Bottom Lateral		
4	L2R-L3L	Bottom Lateral		
4	U2L-U3R	Top Lateral		
4	U2R-U3L	Top Lateral	100\%	in bottom angle at U3L
4	U3	Top Strut	50\%	in bottom angles
4	U3	Sway Bracing	70\%	in bottom angles
4	L3L-L4R	Bottom Lateral		
4	L3R-L4L	Bottom Lateral		
4	U3L-U4R	Top Lateral		
4	U3R-U4L	Top Lateral	70\%	in bottom angle at U3R
4	U4	Top Strut	40\%	in bottom angles
4	U4	Sway Bracing	60\%	in bottom angles
4	L4L-L5R	Bottom Lateral		
4	L4R-L5L	Bottom Lateral		
4	U4L-U5R	Top Lateral		50\% SL of top connection plate at U4L
				75\% SL of top connection plate at U5R
4	U4R-U5L	Top Lateral		100\% SL of top connection plate at U5L

Page 3 of 4
For abbreviations, see Legend on first page of Appendix 4.
For guide to numbering system and directional designations, see Appendix 3.
Table 2

TABLE 2
TRUSS BRACING

SPAN	MEMBER NUMBER	COMPONENT	$\begin{array}{\|l\|} \hline \text { SECT. } \\ \text { LOSS } \\ \hline \end{array}$	COMMENT
				40\% SL of bottom connection plate at U5L
4	L5L-L6R	Bottom Lateral		50% SL of connection plate at L6R
4	L5R-L6L	Bottom Lateral		
4	U5L-U5R	Portal Frame		
5	LOL-L1R	Bottom Lateral		
5	L0R-L1L	Bottom Lateral		
5	U1L-U1R	Portal Frame		
5	L1L-L2R	Bottom Lateral		
5	L1R-L2L	Bottom Lateral		
5	U1L-U2R	Top Lateral		100\% SL. of top connection plate at U1L
				50% SL of bottom connection plate at U1L
			50\%	in top angle between center connection and U2R
			30\%	in bottom angle between center connection and U2R
5	U1R-U2L	Top Lateral		95\% SL of top connection plate at U2L
5	U2	Top Strut	15\%	in bottom angles
5	U2	Sway Bracing	100\%	in bottom angles
5	L2L-L3R	Bottom Lateral		
5	L2R-L3L	Bottom Lateral		
5	U2L-U3R	Top Lateral		95\% SL of top connection plate at U2L
5	U2R-U3L	Top Lateral		90\% SL of top connection plate at U3L
5	U3	Top Strut	30\%	in bottom angles
5	U3	Sway Bracing	50\%	in bottom angles
5	L3L-L4R	Bottom Lateral		
5	L3R-L4L	Bottom Lateral		
5	U3L-U4R	Top Lateral		75\% SL of top connection plate at U3L
5	U3R-U4L	Top Lateral		50\% SL of top connection plate at U4L
				50% SL of top connection plate at U3R
5	U4	Top Strut		
5	U4	Sway Bracing		
5	L4L-L5R	Bottom Lateral		
5	L4R-L5L	Bottom Lateral		
5	U4L-U5R	Top Lateral		
5	U4R-U5L	Top Lateral		100\% SL of top connection plate at U5L
				75\% SL of bottom connection plate at U5L
5	L5L-L6R	Bottom Lateral		
5	L5R-L6L	Bottom Lateral		
5	U5L-U5R	Portal Frame		

Page 4 of 4

For abbreviations, see Legend on first page of Appendix 4.
For guide to numbering system and directional designations, see Appendix 3.
Table 2

TABLE 3

TRUSS BEARINGS

For abbreviations, see Legend on first page of Appendix 4.
For guide to numbering system and directional designations, see Appendix 3.
Table 3

Salinas River Bridge Inspection Report

TABLE 3

TRUSS BEARINGS

SPAN	PANEL OR PANEL PT.	COMPONENT	COMMENT
3	L6R	Truss Exp. Brg. (Rt)	Segmental rollers frozen.
			Channels of bearing pedestal have 20\% SL (average) in webs along bottom fillets.
			Minor section loss at bearing plate atop segmental rollers.
			Minor section loss at top surface of bed plate (1/4" thick pack rust).
			Outboard anchor bolt missing.
			50\% SL of inboard anchor bolt.
4	LOL	Truss Fixed Brg. (Lt)	I-beams of bearing pedestal have 20% SL (average) of bottom flanges.
4	LOR	Truss Fixed Brg. (Rt)	I-beams of bearing pedestal have 20% SL (average) of webs along bottom fillets.
			$1 / 4^{\prime \prime}$ to $1 / 2^{\prime \prime}$ thick pack rust with minor section loss at top surface of bearing plate atop pedestal I -beams, outside of bearing area.
			$1 / 4^{\text {" }}$ to $1 / 2^{\text {" }}$ thick pack rust with minor section loss at top surface of bed plate, outside of bearing area.
4	L6L	Truss Exp. Brg. (Lt)	Segmental rollers frozen.
			Channels of bearing pedestal have $10 \% \mathrm{SL}$ (average) in webs along bottom fillets.
			15% SL at top surface of bed plate, outside of bearing area.
4	L6R	Truss Exp. Brg. (Rt)	Segmental rollers frozen.
			Channels of bearing pedestal have 20% SL (average) of webs along bottom fillets.
			$1 / 4^{\prime \prime}$ to $1 / 2^{\prime \prime}$ thick pack rust with minor section loss at top surface of bed plate, outside of bearing area.
5	LOL	Truss Fixed Brg. (Lt)	The two inboard I-beams of the bearing pedestal have 15\% SL of top flanges and 15% SL of webs along 6 " length of beams, at the Monterey side of bearing.
			20\% SL at top surface of bed plate, outside of bearing area.
5	LOR	Truss Fixed Brg. (Rt)	l-beams of bearing pedestal have minor (less than 5\%) SL of webs along bottom fillets.
			$1 / 4$ " to $1 / 2^{\prime \prime}$ thick pack rust with minor section loss at top surface of bearing plate atop pedestal I-beams, outside of bearing area
			$1 / 4^{\text {" to }} 1 / 2^{\text {" }}$ thick pack rust with minor section loss at top surface of bed plate, outside of bearing area.
5	L6L	Truss Exp. Brg. (Lt)	
5	L6R	Truss Exp. Brg (Rt)	Channels of bearing pedestal have 5\% SL (average) of webs along bottom fillets.

Page 2 of 2

For abbreviations, see Legend on first page of Appendix 4.
For guide to numbering system and directional designations, see Appendix 3.
Table 3 Inspection Report

TABLE 4

FLOOR SYSTEM

SPAN	PANEL OR PANEL PT.	COMPONENT	$\begin{aligned} & \text { SECT. } \\ & \text { LOSS } \end{aligned}$	COMMENT
1	L0	Floorbeam 0		
		TF (SF side)	5\%	located 30 " left of center-line
		TF (Mty side)	5\%	located 30" left of center-line
		BF (SF side)	15\%	located $15^{\prime \prime}$ from end, left side
		BF (Mty side)	15\%	located $15^{\prime \prime}$ from end, left side
		Web		
1	LOL	End Post-FIbm TF Connection Plate (Lt)	30\%	
1	LOR	End Post-FIbm TF Connection Plate (Rt)	70\%	
1	L0	Str Bracket (L.t)		
		TF Outbd	95\%	
		TF Inbd	70\%	$1^{\prime \prime} \times 2^{\prime \prime}$ hole
1	LO	Str Bracket (Rt)		
		TF Outbd	10\%	
		TF Inbd	15\%	
1	Panel 1	Stringer (Lt)		
		TF Outbd		
		TF Inbd		
		BF Outbd		
		BF Inbd		
		Web		
1	Panel 1	Stringer (Rt)		
		TF Outbd		
		TF Inbd		
		BF Outbd		
		BF Inbd		
		Web		
1	Panel 1	Str Top Laterals		7" diameter hole in 2nd lateral connection plate from Flbm 0 , at Rt stringer.
1	$L 1$	Floorbeam 1		
		TF Cover Plate	10\%	located 30" left of center-line of fibm
		TF (SF side)		
		TF (Mty side)		
		BF Cover Plate		
		BF (SF side)		
		BF (Mty side)	10\%	horiz leg of angle, Lt side (between Str \& BC)
		Web		1" diameter hole in web (at top of Rt Str, Outbd side)
				3/4" diameter hole in web (at top of Lt Str)
		Lt Flbm Bracket		
		Rt Flbm Bracket		

Page 1 of 19
For abbreviations, see Legend on first page of Appendix 4.
For guide to numbering system and directional designations, see Appendix 3
Table 4

TABLE 4
FLOOR SYSTEM

SPAN	PANEL OR PANEL PT.	COMPONENT	$\begin{aligned} & \text { SECT. } \\ & \text { LOSS } \end{aligned}$	\therefore COMMENT
1	Panel 2	Stringer (Lt)		
		TF Outbd		
		TF Inbd		
		BF Outbd		
		BF Inbd		
		Web		
1	Panel 2	Stringer (Rt)		
		TF Outbd		
		TF Inbd		
		BF Outbd		
		BF Inbd		
		Web		
1	Panel 2	Str Top Laterals		
1	L2	Floorbeam 2		
		TF Cover Plate	5\%	at various locations including center-line of flbm
		TF (SF side)		
		TF (Mty side)		
		BF Cover Plate		
		BF (SF side)	5\%	horiz leg of angle, Lt side (between Str \& BC)
		BF (Mity side)		
		Web		
		Lt Fibm Bracket		
		Rt Flbm Bracket		
1	Panel 3	Stringer (Lt)		
		TF Outbd	5\%	
		TF Inbd		
		BF Outbd		
		BF Inbd		
		Web		
1	Panel 3	Stringer (Rt)		
		TF Outbd		
		TF Inbd		
		BF Outbd		
		BF Inbd		
		Web		
1	Panel 3	Str Top Laterals		
1	L3	Floorbeam 3		
		TF Cover Plate	10\%	at various locations
		TF (SF side)		
		TF (Mty side)		
		BF Cover Plate		
		BF (SF side)	25\%	horiz leg of angle, Rt side (between Str \& BC)

Page 2 of 19
For abbreviations, see Legend on first page of Appendix 4.
For guide to numbering system and directional designations, see Appendix 3

Salinas River Bridge

 Inspection ReportTABLE 4
FLOOR SYSTEM

SPAN	PANEL OR PANEL PT.	COMPONENT	$\begin{aligned} & \text { SECT, } \\ & \text { LOSS } \\ & \hline \end{aligned}$	COMMENT
			5\%	horiz leg of angle, Lt side (between Str \& BC)
		BF (Mty side)	25\%	horiz leg of angle, Rt side (between $\operatorname{Str} \& B C$)
			5\%	horiz leg of angle, Lt side (between Str \& BC)
		Web		1" diameter hole in web (at top of Rt Str, Outbd side)
		Lt Flbm Bracket		50% SL of horiz legs of both connection angles riveted to flbm TF
		Rt Flbm Bracket	10\%	in top portion of bracket plate
				50% SL of horiz legs of both connection angles riveted to flbm TF
1	Panel 4	Stringer (Lt)		
		TF Outbd	5\%	
		TF Inbd		
		BF Outbd		
		BF Inbd		
		Web		
1	Panel 4	Stringer (Rt)		
		TF Outbd		
		TF Inbd		
		BF Outbd		
		BF Inbd		
		Web		
1	Panel 4	Str Top Laterals		
1	L4	Floorbeam 4		
		TF Cover Plate	15\%	throughout entire length
		TF (SF side)		
		TF (Mty side)		
		BF Cover Plate		
		BF (SF side)	5\%	horiz leg of angle, Lt side (between $\mathrm{Str} \& \mathrm{BC}$)
			15\%	horiz leg of angle, Rt side (between Str \& BC)
		BF (Mty side)	15\%	horiz leg of angle, Lt side (between Str \& BC)
			15\%	horiz leg of angle, Rt side (between $\operatorname{Str} \& \mathrm{BC}$)
		Web		2" diameter hole in web (at top of Rt Str, Outbd. side)
		Lt Flbm Bracket		
		Rt Flbm Bracket		
1	Panel 5	Stringer (Lt)		
		TF Outbd	5\%	at mid-panel
		TF Inbd		
		BF Outbd		
		BF Inbd		
		Web		
1	Panel 5	Stringer (Rt)		
		TF Outbd		

Page 3 of 19
For abbreviations, see Legend on first page of Appendix 4.

Salinas River Bridge Inspection Report

TABLE 4
FLOOR SYSTEM

SPAN	PANEL OR PANEL.PT.	COMPONENT	$\begin{array}{\|l\|} \hline \text { SECT. } \\ \text { LOSS } \end{array}$	COMMENT
		TF Inbd		
		BF Outbd	10\%	
		BF Inbd		
		Web		
1	Panel 5	Str Top Laterals		
1	L5	Floorbeam 5		
		TF Cover Plate	15\%	throughout entire length
		TF (SF side)		
		TF (Mty side)		
		BF Cover Plate		
		BF (SF side)	25\%	horiz leg of angle, Rt side (between Str \& BC)
		BF (Mty side)	15\%	horiz leg of angle, Lt side (between Str \& BC)
			25\%	horiz leg of angle, Rt side (between Str \& BC)
		Web		$1 / 2^{\prime \prime} \times 2^{\prime \prime}$ hole in web (at top of Rt Str, Outbd side)
		Lt Fibm Bracket	40\%	in bracket plate
				75% SL of horiz legs of both connection angles riveted to flbm TF
		Rt Flbm Bracket	30\%	in bracket plate, along bottom connection angles
				90% SL of horiz legs of both connection angles riveted to fibm TF
1	Panel 6	Stringer (Lt)		
		TF Outbd	5\%	
		TF Inbd		
		BF Outbd		
		BF Inbd		
		Web		
1	Panel 6	Stringer (Rt)		
		TF Outbd		
		TF Inbd		
		BF Outbd	10\%	
		BF Inbd		
		Web		
1	Panel 6	Str Top Laterals		
1	L6	Floorbeam 6		
		TF (SF side)		
		TF (Mty side)		
		BF (SF side)	70\%	located 15" from end of flbm, Rt side
			10\%	located 31" from end of flbm, Rt side
			15\%	located $15^{\prime \prime}$ from end of flbm, Lt side
		BF (Mty side)	70\%	located $15^{\prime \prime}$ from end of flbm, Rt side
			40\%	located 31" from end of fibm, Rt side
			10\%	located 15" from end of fibm, Lt side

Page 4 of 19
For abbreviations, see Legend on first page of Appendix 4.
For guide to numbering system and directional designations, see Appendix 3

Salinas River Bridge Inspection Report

TABLE 4
FLOOR SYSTEM

SPAN	PANEL OR PANEL PT.	COMPONENT	$\begin{array}{\|l\|} \hline \text { SECT. } \\ \text { LOSS } \end{array}$	COMMENT
			15\%	located at center section of floorbeam (btw stringers)
		Web		5% SL in vertical leg of BF angle on Mty side, at center section of floorbeam (btw. stringers)
1	L6L	End Post-Flbm TF Connection Plate (Lt)	70\%	
1	L6R	End Post-Fibm TF Connection Plate (Rt)	90\%	
1	L6	Str Bracket (Lt)		
		TF Outbd	70\%	1" $\times 2$ " hole
		TF Inbd	80\%	$1^{\prime \prime} \times 2^{\prime \prime}$ hole
1	L6	Str Bracket (Rt)		
		TF Outbd	100\%	
		TF Inbd	80\%	1" $\times 2$ " hole
2	Panel 1	Stringer (Lt)		
		TF Outbd	10\%	at Flbm 1
		TF Inbd		
		BF Outbd		
		BF Inbd		
		Web		
2	Panel 1	Stringer (Rt)		
		TF Outbd	5\%	
		TF Inbd	5\%	
		BF Outbd	10\%	
		BF Inbd		
		Web		
2	Panel 1	Str. Top Laterals		
2	L1	Floorbeam 1		
		TF (SF side)	10\%	at 30" to Lt and Rt of center (under rails)
			10\%	at 50" to Lt and Rt of center (under guard timbers)
		TF (Mty side)	10\%	at $30^{\prime \prime}$ to Lt and Rt of center (under rails)
			10\%	at 50' to Lt and Rt of center (under guard timbers)
		BF (SF side)	5\%	Lt side (btw Str \& BC)
			10\%	Rt side (btw Str \& BC)
			5\%	center (btw stringers)
		BF (Mty side)	10\%	Lt side (btw Str \& BC)
			10\%	Rt side (btw Str \& BC)
			5\%	center (btw stringers)
		Web		
2	Panel 2	Stringer (Lt)		
		TF Outbd	10\%	at Flbms 1 \& 2
		TF Inbd		

Page 5 of 19
For abbreviations, see Legend on first page of Appendix 4.

Salinas River Bridge Inspection Report

TABLE 4
FLOOR SYSTEM

SPAN	PANEL OR PANEL PT.	COMPONENT	$\begin{aligned} & \text { SECT. } \\ & \text { LOSS } \end{aligned}$	COMMENT
		BF Outbd		
		BF Inbd		
		Web		
2	Panel 2	Stringer (Rt)		
		TF Outbd	5\%	
		TF Inbd	5\%	
		BF Outbd	10\%	
		BF Inbd		
		Web		
2	Panel 2	Str. Top Laterals		
2	12	Floorbeam 2		
		TF (SF side)	15\%	at 30' to Lt and Rt of center (under rails)
			15\%	at 50" to Lt and Rt of center (under guard timbers)
		TF (Mty side)	15\%	at 30" to Lt and Rt of center (under rails)
			15\%	at 50' to Lt and Rt of center (under guard timbers)
		BF (SF side)	10\%	Lt side (btw Str \& BC)
			10\%	Rt side (btw Str \& BC)
			5\%	center (btw stringers)
		BF (Mity side)	15\%	Lt side (btw Str \& BC)
			10\%	Rt side (btw Str \& BC)
			15\%	center (btw stringers)
		Web		
2	Panel 3	Stringer (Lt)		
		TF Outbd	10\%	at FIbm 2
		TF Inbd		
		BF Outbd		
		BF Inbd		
		Web		
2	Panel 3	Stringer (Rt)		
		TF Outbd	5\%	
		TF Inbd		
		BF Outbd	5\%	
		BF Inbd		
		Web		
2	Panel 3	Str. Top Laterals		
2	L3	Floorbeam 3		
		TF (SF side)	10\%	at 30" to Lt and Rt of center (under rails)
			10\%	at 50" to Lt and Rt of center (under guard timbers)
		TF (Mty side)	10\%	at 30'1 to Lt and Rt of center (under rails)
			10\%	at 50" to Lt and Rt of center (under guard timbers)
		BF (SF side)	10\%	Lt side (btw Str \& BC)
			15\%	Rt side (btw Str \& BC)

Page 6 of 19
For abbreviations, see Legend on first page of Appendix 4.
For guide to numbering system and directional designations, see Appendix 3
Table 4

Salinas River Bridge Inspection Report

TABLE 4
FLOOR SYSTEM

SPAN	PANEL OR PANELPT.	COMPONENT	SECT. LOSS	COMMENT
			10\%	center (btw stringers)
		BF (Mty side)	15\%	Lt side (btw Str \& BC)
			10\%	Rt side (btw Str \& BC)
			5\%	center (btw stringers)
		Web		$3 / 4^{\prime \prime}$ diameter hole in web at top of Rt Str, Outbd side
2	Panel 4	Stringer (Lt)		
		TF Outbd	15\%	at Flbms 3 \& 4
		TF Inbd		
		BF Outbd	5\%	
		BF Inbd		
		Web		
2	Panel 4	Stringer (Rt)		
		TF Outbd	5\%	
		TF Inbd	5\%	
		BF Outbd	10\%	
		BF Inbd		
		Web		
2	Panel 4	Str. Top Laterals		
2	L4	Floorbeam 4		
		TF (SF side)	10\%	at 30' to Lt and Rt of center (under rails)
			10\%	at 50" to Lt and Rt of center (under guard timbers)
		TF (Mty side)	10\%	at 30" to Lt and Rt of center (under rails)
			10\%	at 50" to Lt and Rt of center (under guard timbers)
		BF (SF side)	10\%	Lt side (btw Str \& BC)
			10\%	Rt side (btw Str \& BC)
		BF (Mty side)	15\%	Lt side (btw Str \& BC)
			15\%	Rt side (btw Str \& BC)
			5\%	center (btw stringers)
		Web	5\%	Lt side (btw Str \& BC)
2	Panel 5	Stringer (Lt)		
		TF Outbd	10\%	along 7 ft . length of member starting from L4L
		TF Inbd		
		BF Outbd		
		BF Inbd		
		Web		
2	Panel 5	Stringer (Rt)		
		TF Outbd	5\%	
		TF Inbd	5\%	
		BF Outbd	15\%	
		BF Inbd		
		Web		
2	Panel 5	Str. Top Laterals		

Page 7 of 19
For abbreviations, see Legend on first page of Appendix 4.
For guide to numbering system and directional designations, see Appendix 3 Inspection Report

TABLE 4

FLOOR SYSTEM

SPAN	PANEL OR PANEL PT.	COMPONENT	$\begin{aligned} & \text { SECT. } \\ & \text { LOSS } \end{aligned}$	COMMENT
2	L5	Floorbeam 5		
		TF (SF side)	10\%	at 301 to Lt and Rt of center (under rails)
			10\%	at 50" to Lt and Rt of center (under guard timbers)
		TF (Mty side)	10\%	at 30" to Lt and Rt of center (under rails)
			10\%	at 50" to Lt and Rt of center (under guard timbers)
		BF (SF side)	5\%	Lt side (btw Str \& BC)
			15\%	Rt side (btw Str \& BC)
			10\%	center (btw stringers)
		BF (Mty side)	15\%	Lt side (btw Str \& BC)
			15\%	Rt side (btw Str \& BC)
		Web		
2	Panel 6	Stringer (Lt)		
		TF Outbd		
		TF Inbd		
		BF Outbd	30\%	at bearing at Pier 2
		BF Inbd		
		Web		
2	Panel 6	Stringer (Rt)		
		TF Outbd	5\%	
		TF Inbd	5\%	
		BF Outbd	10\%	
		BF Inbd		
		Web		
2	Panel 6	Str. Top Laterals		
3	Panel 1	Stringer (Lt)		
		TF Outbd		
		TF Inbd		
		BF Outbd	20\%	at the bearing at Pier 2
			10\%	along 3 ft length of member starting from the bearing
		BF Inbd		
		Web		
3	Panel 1	Stringer (Rt)		
		TF Outbd	5\%	
		TF Inbd	5\%	
		BF Outbd	10\%	
		BF Inbd		
		Web		
3	Panel 1	Str. Top Laterals		
3	11	Floorbeam 1		
		TF (SF side)	10\%	at 30' to Lt and Rt of center (under rails)
			10\%	at $50^{\prime \prime}$ to Lt and Rt of center (under guard timbers)
		TF (Mty side)	10\%	at 30" to Lt and Rt of center (under rails)

Page 8 of 19
For abbreviations, see Legend on first page of Appendix 4.
For guide to numbering system and directional designations, see Appendix 3
Table 4

Salinas River Bridge

 Inspection ReportTABLE 4
FLOOR SYSTEM

SPAN	PANEL OR PANEL PT.	COMPONENT	SECT. LOSS	COMMENT
			10\%	at 50' to Lt and Rt of center (under guard timbers)
		BF (SF side)	15\%	Rt side (btw Str \& BC)
		BF (Mity side)	10\%	Rt side (btw Str \& BC)
		Web		
3	Panel 2	Stringer (Lt)		
		TF Outbd	10\%	
		TF Inbd		
		BF Outbd		
		BF Inbd		
		Web		
3	Panel 2	Stringer (Rt)		
		TF Outbd	10\%	
		TF Inbd	10\%	
		BF Outbd	10\%	
		BF Inbd		
		Web		
3	Panel 2	Str. Top Laterals		
3	L2	Floorbeam 2		
		TF (SF side)	10\%	at 30' to Lt and Rt of center (under rails)
			10\%	at $50^{\prime \prime}$ to Lt and Rt of center (under guard timbers)
		TF (Mty side)	10\%	at 30' to Lt and Rt of center (under rails)
			10\%	at 50" to Lt and Rt of center (under guard timbers)
		BF (SF side)	10\%	Lt side (btw Str \& BC)
			10\%	Rt side (btw Str \& BC)
			5\%	center (btw stringers)
		BF (Mity side)	15\%	Lt side (btw Str \& BC)
			10\%	Rt side (btw Str \& BC)
			5\%	center (btw stringers)
		Web	5\%	Lt side (btw Str \& BC)
				$1-1 / 2^{\prime \prime} \times 13^{\prime \prime}$ hole in web at top of Lt Str
				1" $\times 13^{\prime \prime}$ hole in web at top of Rt Str
3	Panel 3	Stringer (Lt)		
		TF Outbd	10\%	along $3 \mathrm{ft}$. length at both ends of stringer
		TF Inbd		
		BF Outbd		
		BF Inbd		
		Web		
3	Panel 3	Stringer (Rt)		
		TF Outbd	10\%	
		TF Inbd	10\%	
		BF Outbd	10\%	at horiz leg of angle
			5\%	at vertical leg of angle

Page 9 of 19
For abbreviations, see Legend on first page of Appendix 4.
For guide to numbering system and directional designations, see Appendix 3
Table 4

TABLE 4
FLOOR SYSTEM

SPAN	PANEL OR PANEL PT.	COMPONENT	$\begin{array}{l\|} \hline \text { SECT. } \\ \text { LOSS } \end{array}$	COMMENT
		BF Inbd		
		Web		
3	Panel 3	Str. Top Laterals		
3	L3	Floorbeam 3		
		TF (SF side)	10\%	at $30^{\prime \prime}$ to Lt and Rt of center (under rails)
			10\%	at 501 to Lt and Rt of center (under guard timbers)
		TF (Mty side)	10\%	at $30^{\prime \prime}$ to Lt and Rt of center (under rails)
			10\%	at 501 to Lt and Rt of center (under guard timbers)
		BF (SF side)	10\%	Lt side (btw Str \& BC)
			10\%	Rt side (btw Str \& BC)
			5\%	center (btw stringers)
		BF (Mty side)	5\%	Lt side (btw Str \& BC)
			15\%	Rt side (btw Str \& BC)
			10\%	center (btw stringers)
		Web		$1^{\prime \prime} \times 13^{\prime \prime}$ hole in web at top of Rt Str
3	Panel 4	Stringer (Lt)		
		TF Outbd		
		TF Inbd		
		BF Outbd		
		BF Inbd		
		Web		
3	Panel 4	Stringer (Rt)		
		TF Outbd	10\%	
		TF Inbd	10\%	
		BF Outbd	15\%	
		BF Inbd		
		Web		
3	Panel 4	Str. Top Laterals		
3	L4	Floorbeam 4		
		TF (SF side)	15\%	at 30 " to Lt and Rt of center (under rails)
			15\%	at 50" to Lt and Rt of center (under guard timbers)
		TF (Mty side)	15\%	at $30^{\prime \prime}$ to Lt and Rt of center (under rails)
			15\%	at 50" to Lt and Rt of center (under guard timbers)
		BF (SF side)	5\%	Lt side (btw Str \& BC)
			5\%	Rt side (btw Str \& BC)
		BF (Mty side)	10\%	Lt side (btw Str \& BC)
			15\%	Rt side (btw Str \& BC)
			10\%	center (btw stringers)
		Web	25\%	Lt side (btw Str \& BC) along top of bottom flange angle
				$1^{\prime \prime} \times 4^{\prime \prime}$ hole in web at Lt side, at btm lateral connection angle
				$1-1 / 2^{\prime \prime} \times 13^{\prime \prime}$ hole in web at top of Lt Str

Page 10 of 19
For abbreviations, see Legend on first page of Appendix 4.
For guide to numbering system and directional designations, see Appendix 3

Salinas River Bridge

 Inspection ReportTABLE 4
FLOOR SYSTEM

SPAN	$\begin{array}{l}\text { PANEL OR } \\ \text { PANEL PT. }\end{array}$	COMPONENT	$\begin{array}{c}\text { SECT. } \\ \text { LOSS }\end{array}$	
$\mathbf{3}$	Panel 5	Stringer (Lt)		
		TF Outbd		

Page 11 of 19
For abbreviations, see Legend on first page of Appendix 4.
For guide to numbering system and directional designations, see Appendix 3
Table 4

TABLE 4
FLOOR SYSTEM

SPAN	PANEL OR PANEL PT.	COMPONENT	$\begin{aligned} & \text { SECT. } \\ & \text { LOSS } \end{aligned}$	COMMENT
		BF Inbd		
		Web		
4	Panel 1	Stringer (Rt)		
		TF Outbd	10\%	
		TF Inbd	10\%	
		BF Outbd	10\%	
		BF Inbd		
		Web		
4	Panel 1	Str. Top Laterals		
4	L1	Floorbeam 1		
		TF (SF side)	15\%	at 30" to Lt and Rt of center (under rails)
			15\%	at 50" to Lt and Rt of center (under guard timbers)
		TF (Mty side)	15\%	at $30^{\prime \prime}$ to Lt and Rt of center (under rails)
			15\%	at $50^{\prime \prime}$ to Lt and Rt of center (under guard timbers)
		BF (SF side)	10\%	Lt side (btw Str \& BC)
			15\%	Rt side (btw Str \& BC)
			5\%	center (btw stringers)
		BF (Mty side)	10\%	Lt side (btw Str \& BC)
			15\%	Rt side (btw Str \& BC)
			10\%	center (btw stringers)
		Web		$1 / 2^{\prime \prime} \times 13^{\prime \prime}$ hole in web at top of Rt stringer
4	Panel 2	Stringer (Lt)		
		TF Outbd		
		TF Inbd		
		BF Outbd		
		BF Inbd		
		Web		
4	Panel 2	Stringer (Rt)		
		TF Outbd	10\%	
		TF Inbd	10\%	
		BF Outbd	15\%	
		BF Inbd		
		Web		
4	Panel 2	Str. Top Laterals		
4	L2	Floorbeam 2		
		TF (SF side)	15\%	at $30^{\prime \prime}$ to Lt and Rt of center (under rails)
			15\%	at 50" to Lt and Rt of center (under guard timbers)
		TF (Mty side)	15\%	at $30^{\prime \prime}$ to Lt and Rt of center (under rails)
			15\%	at 50" to Lt and Rt of center (under guard timbers)
		BF (SF side)	15\%	Lt side (btw Str \& BC)
			10\%	Rt side (btw Str \& BC)
			5\%	center (btw stringers)

Page 12 of 19
For abbreviations, see Legend on first page of Appendix 4 .

TABLE 4
FLOOR SYSTEM

SPAN	PANEL OR PANEL PT.	COMPONENT	$\begin{aligned} & \text { SECT. } \\ & \text { LOSS } \end{aligned}$	COMMENT
		BF (Mty side)	15\%	Lt side (btw Str \& BC)
			15\%	Rt side (btw Str \& BC)
			10\%	center (btw stringers)
		Web	5\%	Lt side (btw Str \& BC)
				1 " diameter hole in web at top of Lt stringer
4	Panel 3	Stringer (Lt)		
		TF Outbd		
		TF Inbd		
		BF Outbd		
		BF Inbd		
		Web		
4	Panel 3	Stringer (Rt)		
		TF Outbd		
		TF Inbd		
		BF Outbd	15\%	
		BF Inbd		
		Web		
4	Panel 3	Str. Top Laterals		
4	L3	Floorbeam 3		
		TF (SF side)	10\%	at 30 " to Lt of center (under rail)
			15\%	at $30^{\prime \prime}$ to Rt of center (under rail)
			10\%	at 501' to Lt of center (under guard timber)
			15\%	at $50^{\prime \prime}$ to Rt of center (under guard timber)
		TF (Mty side)	10\%	at $30^{\prime \prime}$ to Lt of center (under rail)
			15\%	at $30^{\prime \prime}$ to Rt of center (under rail)
			10\%	at $50^{\prime \prime}$ to Lt of center (under guard timber)
			15\%	at 50" to Rt of center (under guard timber)
		BF (SF side)	5\%	Lt side (btw Str \& BC)
			10\%	Rt side (btw Str \& BC)
			10\%	center (btw stringers)
		BF (Mty side)	10\%	Lt side (btw Str \& BC)
			10\%	Rt side (btw Str \& BC)
			5\%	center (btw stringers)
		Web		
4	Panel 4	Stringer (Lt)		
		TF Outbd		
		TF Inbd		
		BF Outbd		
		BF Inbd		
		Web		
4	Panel 4	Stringer (Rt)		
		TF Outbd	5\%	

Page 13 of 19
For abbreviations, see Legend on first page of Appendix 4.

Salinas River Bridge

 Inspection ReportTABLE 4
FLOOR SYSTEM

SPAN	PANEL OR PANEL PT.	COMPONENT	$\begin{array}{\|l\|} \hline \text { SECT. } \\ \text { LOSS } \end{array}$	COMMENT
		TF Inbd	5\%	
		BF Outbd	10\%	
		BF Inbd		
		Web		
4	Panel 4	Str. Top Laterals		
4	L4	Floorbeam 4		
		TF (SF side)	20\%	at $30^{\prime \prime}$ to Lt of center (under rail)
			15\%	at $30^{\prime \prime}$ to Rt of center (under rail)
			20\%	at $50^{\prime \prime}$ to Lt of center (under guard timber)
			15\%	at $50^{\prime \prime}$ to Rt of center (under guard timber)
		TF (Mty side)	20\%	at $30^{\prime \prime}$ to Lt of center (under rail)
			15\%	at $30^{\prime \prime}$ to Rt of center (under rail)
			20\%	at $50^{\prime \prime}$ to Lt of center (under guard timber)
			15\%	at $50^{\prime \prime}$ to Rt of center (under guard timber)
		BF (SF side)	20\%	Lt side (btw Str \& BC)
			10\%	Rt side (btw Str \& BC)
			5\%	center (btw stringers)
		BF (Mty side)	20\%	Lt side (btw Str \& BC)
			10\%	Rt side (btw Str \& BC)
			5\%	center (btw stringers)
		Web		web plate thickness reduced 50% along 1 ft . length of bottom flange angle, starting 1.5 ft . from left end of floorbeam
4	Panel 5	Stringer (Lt)		
		TF Outbd		
		TF Inbd		
		BF Outbd	5\%	
		BF Inbd		
		Web		
4	Panel 5	Stringer (Rt)		
		TF Outbd	10\%	
		TF Inbd	10\%	
		BF Outbd	10\%	
		BF inbd		
		Web		
4	Panel 5	Str. Top Laterals		
4	L5	Floorbeam 5		
		TF (SF side)	20\%	at $30^{\prime \prime}$ to Lt of center (under rail)
			15\%	at $30^{\prime \prime}$ to Rt of center (under rail)
			20\%	at 50" to Lt of center (under guard timber)
			15\%	at 501 to Rt of center (under guard timber)
		TF (Mty side)	20\%	at $30^{\prime \prime}$ to Lt of center (under rail)

Page 14 of 19
For abbreviations, see Legend on first page of Appendix 4.
For guide to numbering system and directional designations, see Appendix 3

Salinas River Bridge Inspection Report

TABLE 4
FLOOR SYSTEM

SPAN	PANEL OR PANEL PT.	COMPONENT	$\begin{aligned} & \text { SECT. } \\ & \text { LOSS } \end{aligned}$	COMMENT
			15\%	at 30" to Rt of center (under rail)
			20\%	at 50" to Lt of center (under guard timber)
			15\%	at $50^{\prime \prime}$ to Rt of center (under guard timber)
		BF (SF side)	10\%	Lt side (btw Str \& BC)
			10\%	Rt side (btw Str \& BC)
		BF (Mty side)	10\%	Lt side (btw Str \& BC)
			15\%	Rt side (btw Str \& BC)
		Web		$1^{\prime \prime} \times 13^{\prime \prime}$ hole in web at top of Rt stringer
4	Panel 6	Stringer (Lt)		
		TF Outbd		
		TF Inbd		
		BF Outbd	10\%	at the bearing, at Pier 4
		BF Inbd		
		Web		
4	Panel 6	Stringer (Rt)		
		TF Outbd	5\%	
		TF Inbd	5\%	
		BF Outbd	10\%	
		BF Inbd		
		Web		
4	Panel 6	Str. Top Laterals		
5	Panel 1	Stringer (Lt)		
		TF Outbd		
		TF Inbd		
		BF Outbd		
		BF inbd		
		Web		
5	Panel 1	Stringer (Rt)		
		TF Outbd	5\%	
		TF Inbd	5\%	
		BF Outbd	30\%	notch in edge of BF at an isolated location just past the sole plate at the fixed bearing
			15\%	throughout length of member, except as noted above
		BF Inbd		
		Web		
5	Panel 1	Str. Top Laterals		
5	L1	Floorbeam 1		
		TF (SF side)	10\%	at 30" to Lt and Rt of center (under rails)
			10\%	at 50 " to Lt and Rt of center (under guard timbers)
		TF (Mty side)	10\%	at 30" to Lt and Rt of center (under rails)
			10\%	at 50" to Lt and Rt of center (under guard timbers)
		BF (SF side)	10\%	Rt side (btw Str \& BC)

Page 15 of 19
For abbreviations, see Legend on first page of Appendix 4
For guide to numbering system and directional designations, see Appendix 3

Salinas River Bridge Inspection Report

TABLE 4
FLOOR SYSTEM

SPAN	PANEL OR PANELPT.	COMPONENT	$\begin{aligned} & \text { SECT. } \\ & \text { LOSS } \end{aligned}$	COMMENT
		BF (Mty side)	10\%	Lt side (btw Str \& BC)
			10\%	Rt side (btw Str \& BC)
			5\%	center (btw stringers)
		Web		
5	Panel 2	Stringer (Lt)		
		TF Outbd		
		TF Inbd		
		BF Outbd		
		BF Inbd		
		Web		
5	Panel 2	Stringer (Rt)		
		TF Outbd	10\%	
		TF Inbd	10\%	
		BF Outbd	5\%	
		BF Inbd		
		Web		
5	Panel 2	Str. Top Laterals		
5	L2	Floorbeam 2		
		TF (SF side)	10\%	at $30^{\prime \prime}$ to Lt of center (under rail)
			15\%	at $30^{\prime \prime}$ to Rt of center (under rail)
			10\%	at 50 " to Lt of center (under guard timber)
			15\%	at 50 " to Rt of center (under guard timber)
		TF (Mty side)	10\%	at 30 " to Lt of center (under rail)
			15\%	at $30^{\prime \prime}$ to Rt of center (under rail)
			10\%	at $50^{\prime \prime}$ to Lt of center (under guard timber)
			15\%	at 50" to Rt of center (under guard timber)
		BF (SF side)	10\%	Lt side (btw Str \& BC)
			15\%	Rt side (btw Str \& BC)
			5\%	center (btw stringers)
		BF (Mty side)	20\%	Lt side (btw Str \& BC)
			15\%	Rt side (btw Str \& BC)
			5\%	center (btw stringers)
		Web		web plate thickness reduced 50% along edge of bottom flange angle, Lt side (btw Str \& BC)
5	Panel 3	Stringer (Lt)		
		TF Outbd		
		TF Inbd		
		BF Outbd		
		BF Inbd		
		Web		
5	Panel 3	Stringer (Rt)		
		TF Outbd	10\%	

Page 16 of 19
For abbreviations, see Legend on first page of Appendix 4.

Salinas River Bridge Inspection Report

TABLE 4
FLOOR SYSTEM

SPAN	PANEL OR PANEL PT.	COMPONENT	$\begin{aligned} & \text { SECT. } \\ & \text { LOSS } \end{aligned}$	COMMENT
		TF Inbd	10\%	
		BF Outbd	10\%	
		BF Inbd		
		Web		
5	Panel 3	Str. Top Laterals		
5	L3	Floorbeam 3		
		TF (SF side)	15\%	at 30' to Lt and Rt of center (under rails)
			15\%	at 50" to Lt and Rt of center (under guard timbers)
			30\%	at 20" to Lt of center
		TF (Mty side)	15\%	at 30' to Lt and Rt of center (under rails)
			15\%	at 50" to Lt and Rt of center (under guard timbers)
			30\%	at $20^{\prime \prime}$ to Lt of center
		BF (SF side)	10\%	Lt side (btw Str \& BC)
			10\%	Rt side (btw Str \& BC)
			5\%	center (btw stringers)
		BF (Mty side)	5\%	Lt side (btw Str \& BC)
			10\%	Rt side (btw Str \& BC)
			10\%	center (btw stringers)
		Web		web plate thickness reduced by 20% along edge of bottom flange angle, Lt side (btw Str \& BC)
5	Panel 4	Stringer (Lt)		
		TF Outbd		
		TF Inbd		
		BF Outbd		
		BF Inbd		
		Web		
5	Panel 4	Stringer (Rt)		
		TF Outbd	10\%	
		TF Inbd	10\%	
		BF Outbd	10\%	
		BF Inbd		
		Web		
5	Panel 4	Str. Top Laterals		
5	L4	Floorbeam 4		
		TF (SF side)	10\%	at 30" to Lt of center (under rail)
			5\%	at $30^{\prime \prime}$ to Rt of center (under rail)
			10\%	at 50" to Lt of center (under guard timber)
			5\%	at 50" to Rt of center (under guard timber)
		TF (Mty side)	10\%	at 30" to Lt of center (under rail)
			5\%	at 30" to Rt of center (under rail)
			10\%	at 50" to Lt of center (under guard timber)
			5\%	at 50" to Rt of center (under guard timber)

Page 17 of 19
For abbreviations, see Legend on first page of Appendix 4.

Salinas River Bridge

 Inspection ReportTABLE 4
FLOOR SYSTEM

SPAN	PANEL OR PANEL PT.	COMPONENT	$\begin{array}{\|l\|} \hline \text { SECT. } \\ \text { LOSS } \\ \hline \end{array}$	COMMENT
		BF (SF side)	5\%	Rt side (btw Str \& BC)
		BF (Mty side)	5\%	Lt side (btw Str \& BC)
			10\%	Rt side (btw Str \& BC)
			5\%	center (btw stringers)
		Web		$1^{\prime \prime} \times 13^{\prime \prime}$ hole in web at top of Lt stringer
5	Panel 5	Stringer (Lt)		
		TF Outbd		
		TF Inbd		
		BF Outbd		
		BF Inbd		
		Web		
5	Panel 5	Stringer (Rt)		
		TF Outbd	10\%	
		TF Inbd	10\%	
		BF Outbd	15\%	
		BF Inbd		
		Web		
5	Panel 5	Str. Top Laterals		
5	L5	Floorbeam 5		
		TF (SF side)	10\%	at 30 " to Lt of center (under rail)
			15\%	at 30 " to Rt of center (under rail)
			10\%	at $50^{\prime \prime}$ to Lt of center (under guard timber)
			15\%	at 50" to Rt of center (under guard timber)
		TF (Mty side)	10\%	at $30^{\prime \prime}$ to Lt of center (under rail)
			15\%	at $30^{\prime \prime}$ to Rt of center (under rail)
			10\%	at 50 " to Lt of center (under guard timber)
			15\%	at 50" to Rt of center (under guard timber)
		BF (SF side)	5\%	Lt side (btw Str \& BC)
			15\%	Rt side (btw Str \& BC)
			10\%	center (btw stringers)
		BF (Mty side)	15\%	Lt side (btw Str \& BC)
			10\%	Rt side (btw Str \& BC)
			10\%	center (btw stringers)
		Web		
5	Panel 6	Stringer (Lt)		
		TF Outbd		
		TF Inbd		
		BF Outbd		
		BF Inbd		
		Web		
5	Panel 6	Stringer (Rt)		
		TF Outbd	10\%	

Page 18 of 19
For abbreviations, see Legend on first page of Appendix 4.
For guide to numbering system and directional designations, see Appendix 3

TABLE 4

FLOOR SYSTEM

SPAN	PANEL OR PANEL PT.	COMPONENT	SECT. LOSS	
		TF Inbd	10%	
		BF Outbd	5%	
		BF Inbd		
5	Web			

TABLE 5

STRINGER BEARINGS

SPAN	PANEL OR PANEL PT.	COMPONENT	COMMENT
2	L0	Str. Fixed Brg. (Lt)	
2	LO	Str. Fixed Brg. (Rt)	
2	L6	Str Exp. Brg (Lt)	Corrosion at stringer BF , sole plate, shim plate and bed plate, with no visible signs of expansion and contraction ($30 \% \mathrm{SL}$ in stringer $B F$, outboard side).
2	L6	Str. Exp. Brg. (Rt)	Corrosion at stringer $B F$, sole plate, shim plate and bed plate, with no visible signs of expansion and contraction.
			End of stringer in contact with stringer of Span 3, Panel 1 (probably due to previously documented movement of substructure caused by an earthquake).
3	L0	Str. Fixed Brg. (Lt)	Corrosion at stringer BF, sole plate, shim plate and bed plate.
3	L0	Str. Fixed Brg. (Rt)	Corrosion at stringer BF, sole plate, shim plate and bed plate.
			End of stringer in contact with stringer of Span 2, Panel 6 (probably due to previously documented movement of substructure caused by an earthquake).
3	L6	Str. Exp. Brg. (Lt)	Minor corrosion at shim plate and bed plate.
3	L6	Str. Exp. Brg. (Rt)	Corrosion at stringer BF, sole plate, shim plate and bed plate with SL along edges of plates and btm flange.
4	L0	Str. Fixed Brg. (Lt)	Minor corrosion at shim plate and bed plate.
4	L0	Str Fixed Brg. (Rt)	Corrosion at stringer BF , sole plate, shim plate and bed plate with minor section loss in Str BF and along edges of plates.
			10\% SL of the end bearing stiffener, outboard side.
4	L6	Str. Exp. Brg (Lt)	Corrosion at stringer BF , sole plate, shim plate and bed plate with minor section loss in Str BF and along edges of plates.
4	L6	Str. Exp. Brg (Rt)	Corrosion at stringer BF, sole plate, shim plate and bed plate with minor section loss in Str BF and along edges of plates.
			20\% SL of the end bearing stiffener, outboard side.
5	L0	Str. Fixed Brg. (Lt)	Corrosion at sole plate, shim plate and bed plate with minor section loss along edges of plates.
5	L0	Str. Fixed Brg. (Rt)	Corrosion at stringer BF , sole plate, shim plate and bed plate with minor section loss along edges of plates.
5	L6	Str. Exp. Brg. (Lt)	
5	L6	Str. Exp Brg. (Rt)	Minor corrosion on top surfaces of stringer bottom flange and sole plate.

Page 1 of 1
For abbreviations, see Legend on first page of Appendix 4.
For guide to numbering system and directional designations, see Appendix 3.
Table 5

APPENDIX 5

LOAD RATINGS

MEMBER	CAPACITY (KIPS)	DL (KIPS)	LL (E80-AXLE-KIPS)	DIST.	IMPACT \%	RE \%	LL+1 (KIPS)	WIND	LONGIT.	LATERAL	RF	E80-RATING
End Post	814.9	91.53	775.9	0.5	21.5	5.875	499.1	9.5	0.0	2.89	1.42	113.8
Bottom Chord (BC1)	386.5	56.19	476.3	0.5	21.5	5.875	306.4	49.2	148.0	29.2	0.58	46.5
Bottom Chord (BC2)	698.4	102.46	826.5	0.5	21.5	5.875	531.6	65.5	148.0	37.5	0.74	59.2
Top Chord	736.5	90.99	738.6	0.5	21.5	5.875	475.1	16.7	0.0	2.8	1.32	105.3
Diagonal (T) (ten.)	474.8	56.69	514.8	0.5	21.5	5.875	331.1	5.7	0.0	2.3	1.24	98.9
Diagonal (D) (comp.)	475.4	18.69	299.3	0.5	21.5	5.875	192.5	1.9	0.0	1.7	2.34	187.3
Hanger (center)	271.7	19.50	290.8	0.5	39.0	5.875	214.0	3.0	0.0	2.74	1.15	92.0

TRUSS MEMBERS - LOAD CASE B

MEMBER	CAPACITY (KIPS)	DL (KIPS)	LL (E80-AXLE-KIPS)	DIST.	IMPACT \%	RE\%	LL+1 (KIPS)	WIND	LONGIT.	LATERAL	RF	E8O-RATING
End Post	1191.0	91.53	775.9	0.5	21.5	5.875	499.1	9.5	0.0	2.89	2.17	173.7
Botfom Chord (8Cl)	562.2	56.19	476.3	0.5	21.5	5.875	306.4	49.2	148.0	29.2	0.94	75.6
Bottom Chord (BC2)	1015.8	102.46	826.5	0.5	21.5	5.875	531.6	65.5	148.0	37.5	1.18	94.6
Top Chord	1069.6	90.99	738.6	0.5	21.5	5.875	475.1	16.7	0.0	2.8	2.01	161.0
Diagonal (T) (ten.)	690.6	56.69	514.8	0.5	21.5	5.875	331.1	5.7	0.0	2.3	1.88	150.7
Diagonal (D) (comp.)	691.8	18.69	299.3	0.5	21.5	5.875	192.5	1.9	0.0	1.7	3.46	276.4
Hanger (center)	395.3	19.50	290.8	0.5	39.0	5.875	214.0	3.0	0.0	2.74	1.72	137.6

TRUSS MEMBERS - LOAD CASE A

MEMBER	CAPACITY (KIPS)	DL (KIPS)	LL (E80-AXLE-KIPS)	DIST.	IMPACT \%	RE\%	LL+I (KIPS)	RF	E8O-RATING
End Post	636.50	84.17	766.62	0.5	21.5	5.875	493.1	1.12	89.6
Bottom Chord (LC1)	343.2	50.61	460.85	0.5	21.5	5.875	296.4	0.99	79.0
Bottom Chord (LC2)	601.9	91.63	799.53	0.5	21.5	5.875	514.3	0.99	79.4
Top Chord	568.30	80.90	715.06	0.5	21.5	5.875	459.9	1.06	84.8
Diagonal (D1) (ten.)	394.00	50.38	508.6	0.5	21.5	5.875	327.1	1.05	84.0
Diagonal (D2) (comp.)	379.50	17.84	296.01	0.5	21.5	5.875	190.4	1.90	152.0
Hanger (center)	332.1	18.00	290.8	0.5	39.0	5.875	214.0	1.47	117.4

MEMBER	CAPACITY (KIPS)	DL (KIPS)	LL (E80-AXLE-KIPS)	DIST.	IMPACT \%	RE\%	LL+I (KIPS)	RF	E80-RATING
End Post	923.80	84.17	766.62	0.5	21.5	5.875	493.1	1.70	136.2
Bottom Chord (LC1)	499.2	50.61	460.85	0.5	21.5	5.875	296.4	1.51	121.1
Bottom Chord (LC2)	875.5	91.63	799.53	0.5	21.5	5.875	514.3	1.52	121.9
Top Chord	829.00	80.90	715.06	0.5	21.5	5.875	459.9	1.63	130.1
Diagonal (D1) (ten.)	573.1	50.38	508.6	0.5	21.5	5.875	327.1	1.60	127.8
Diagonal (D2) (comp.)	550.20	17.84	296.01	0.5	21.5	5.875	190.4	2.80	223.7
Hanger (center)	483.10	18.00	290.8	0.5	39.0	5.875	214.0	2.17	173.9

Appendix 5

SALINAS RIVER

RAILROAD BRIDGE

AS-INSPECTED
LOAD RATING

CALCULATIONS

SPAN 1

S．2L	160	186	918．9	512	50	79.99 L	LL＂も8	00185	$979 \cap 150 \mathrm{~d}$ Pu3
6.66	$5 \square 1$	£＇ワ1乙	9 18.9	0.68	50	で16己	OS＇91	78乙	SMS 7
13П7サへ\＃	\＃\＃\＃	00	S 28.5	0.68	9.0				ヤกヤ7
日П7＊へ\＃	\＃\＃\＃	00	SL89	068	50				2ПZ7
8.86	$\varepsilon \square^{\prime} 1$	と＇ャに	5189	0.68	5.0	て＇162	09＇91	$18 乙$	1ก17
2.901	£＇ 1	0＇ワ1て	SL8＇9	0.68	50	8.062	0081	Z08	
789	580	$1 \angle Z \varepsilon$	S 18.9		50	9.809	$88^{\circ} 09$	OEE	［นө！）（10）＇6olo c7p
$\angle \mathrm{OZ1}$	$15^{\circ} 1$	7.061	5189	$\mathrm{S}^{\circ} \mathrm{L}$	50	10962	$78^{\circ} \mathrm{LL}$	GOE	（duos）（za）6oloticn
$00^{\circ} \mathrm{O} 1$	SL＇I	7061	9 28.9	S12	50	10.962	$78 . \angle 1$	LSE	
075	860	$1 \angle 乙 \varepsilon$	5185	G＇IV	90	9809	88.05	ESE	
689	$78^{\circ} 0$	6.657	9 28.9	G＇lర	9.0	90.912	06.08	$L \angle F$	Gnpnplouつ dol
969	$\angle 80$	6．657	5 18.9	512	S＇0	$90^{\circ} \mathrm{CLL}$	0608	187	ャกeก pJouつ dol
1.69	980	6.657	SL8＇9	S＇l	$5 \cdot 0$	90.912	0608	8 27	Enzก plouつ dol
50 L	880	． 6.65	S $\angle 8.5$	517	G＇O	90.512	06.08	987	乙กlก PJo4つ dol
L29	810	7．96乙	S 189	$9 \cdot 10$	G＇0	58.097	19.09	$\varepsilon 87$	9777（157）pato uotfog
9.97	880	E． 19	9 18.5	S＇lて	9.0	E9．66L	89＇16	OCS	¢721（2）7）prouつ แ01109
8.89	610	7968	9 189	G＇ll	S＇0	98.097	1909	982	61071157）pro4つ u04tog
9.18	601	1.867	SLE＇9	512	CO	79992	$\angle 178$	¢で9	1707150d puy
SNIIVソ－08］	Jd	（Saly） $1+77$	\％캥	\％DVAWI	1SIO	［Sdly－${ }^{\text {a }}$（XV－08ヨ］ 77	（Sdly） 70	（Sdlx）LUDVdVO	8コgWコW

NORMAL RATING

0.78	50%	$186\rangle$	9 88.9	$5 \cdot 12$	S＇0	29．991	L17\％	209	$9750+50 \mathrm{~d}$ Puy
7＇101	$\angle C^{\prime}$	どゅして	5 18.9	068	9.0	て＇16乙	09．91	887	SПG7
ヨП7ヲへ\＃	\＃\＃\＃	00	S 18.5	0.68	5.0	\＆コ8NGW ヨつyod Oyaz			ヤก¢7
引ก7Vへ\＃	\＃\＃\＃	00	9 189	0.68	50				ZПて！
G701	$87^{\circ} 1$	$\varepsilon{ }^{\prime} \downarrow 1 ర$	S 28.5	0.68	90	て＇16乙	0¢91	162	$1 \cap 17$
1＇86	$91^{\circ} 1$	$0 \downarrow 1 乙$	S 18.9	068	50	8062	0081	197	
L．89	08.0	1＇LてE	S 18.9	917	90	9809	$80^{\circ} 09$	118	（uel）（［0）＇6old sifn
ャてEl	99＊	\％061	5189	S＇l	90	$10.96 乙$	78.21	EEE	（＇duoo）（za）＇Dola tien
c＇lて！	Z5＇1	\％＇061	$9 \angle 8.9$	9.17	$9^{\circ} \mathrm{O}$	10.962	$78^{\circ} \mathrm{Ll}$	$\angle O E$	
¥ $\angle 9$	780	$1^{\circ} \angle Z E$	$9 \angle 89$	G1Z	50	9809	88.09	978	
$1 \angle 5$	120	6．697	9 18.9	S＇l	50	$90.51 /$	06.08	607	¢ntก pioul dol
\％19	$\angle L O$	6.657	$918{ }^{\circ} 9$	516	90	90.51 L	0608	785	ちnen prous dol
Lと9	080	6.657	$5 / 8.5$	S＇ll	90	$90.91 L$	06.08	$\angle \square \square$	Enzก proub dol
で $\angle S$	乙LO	6.657	S $18^{\circ} 9$	G＊て	$5^{\circ} 0$	90.912	06.08	O1t	Znin pJoup doi
\％ 19	$\angle \angle O$	7．96己	S $\angle 8.9$	S゙して	S＇O	58.097	$18^{\circ} \mathrm{OS}$	8L乙	97\％711つ7）plouつ wotfog
812	060	E＇t15	$9 / 89$	51Z	$9^{\circ} 0$	85＇66L	89＊16	ESS	\＄767（257）P1040 WOHOg
189	980	$796 乙$	5 289	S＇l	90	98.097	1905	COE	6707（1）7）pro40 wofog
9.98	80°	1867	S $\angle 8.9$	c＇ll	50	79．99L	L178	819	1007150dPug
5NI \forall d－083	± 8	（SdIX） $1+77$	\％38	\％10VdW	1510	（Sdly－ヨ7XV－083） 71	｜Sdlx］ 70	（Sdly）kll	dコ8WHW

MAXIMUM RATING
Appendix 5

MEMBER	CAPACITY（KIPS）	DL（KIPS）	LL（E80－AXLE－KIPS）	DIST．	IMPACT \％	RE\％	LL＋1（KIPS）	WIND	LONGIT．	LATERAL	RF	E80－RATING
End Post LOUT	773	84.17	766.62	0.5	21.5	5.875	493.1	10.8	0.0	5.00	1.36	108.9
Botfom Chord（LC1）LOL2	381	50.61	460.85	0.5	21.5	5.875	296.4	49.8	148.0	30.4	0.59	47.3
Bottom Chord（LC2）L2L4	691	91.63	799.53	0.5	21.5	5.875	514.3	66.6	148.0	39.7	0.76	60.7
Bottom Chord（LC） L4L6	348	50.61	460.85	0.5	21.5	5.875	296.4	49.8	148.0	30.4	0.52	41.7
Top Chord U1U2	513	80.90	715.06	0.5	21.5	5.875	459.9	17.7	0.0	4.8	0.89	71.3
Top Chord U2U3	559	80.90	715.06	0.5	21.5	5.875	459.9	17.7	0.0	4.8	0.99	79.3
Top Chord U3U4	543	80.90	715.06	0.5	21.5	5.875	459.9	17.7	0.0	4.8	0.96	76.5
Top Chord U4U5	511	80.90	715.06	0.5	21.5	5.875	459.9	17.7	0.0	4.8	0.89	71.0
U1L2 Diagonal（D1）（ten．）	408	50.38	508.6	0.5	21.5	5.875	327.1	6.5	0.0	4.0	1.06	84.8
L2U3 Diagonai（D2）（comp．）	384	17.84	296.01	0.5	21.5	5.875	190.4	2.2	0.0	3.0	1.88	150.6
U314 Diagonal（D2）（comp．）	416	17.84	296.01	0.5	21.5	5.875	190.4	2.2	0.0	3.0	2.05	163.8
U4L． 5 Diagonal（D1）（ten．）	389	50.38	508.6	0.5	21.5	5.875	327.1	6.5	0.0	4.0	1.00	80.2
L3U3 Hanger（center）	334	18.00	290.8	0.5	39.0	5.875	214.0	3.5	0.0	4.80	1.43	114.3
LIU1	364	16.50	291.2	0.5	39.0	5.875	214.3	3.5	276.0	4.80	0.69	55.6
L2U2	ZERO FORCE MEMBER			0.5	39.0	5.875	0.0	3.5	276.0	4.80	\＃\＃\＃	\＃VALUE！
L4U4	ZERO FORCE MEMBER			0.5	39.0	5.875	0.0	3.5	276.0	4.80	\＃\＃\＃	\＃VALUE！
L5U5	360	16.50	291.2	0.5	39.0	5.875	214.3	3.5	276.0	4.80	0.69	54.9
End Post U5L． 6	753	84.17	766.62	0.5	21.5	5.875	493.1	10.8	0.0	5.00	1.32	105.7

MEMBER	CAPACITY（KIPS）	DL（KIPS）	LL（E80－AXLE－KIPS）	DIST．	IMPACT \％	RE\％	LL＋1（KIPS）	WIND	LONGIT．	LATERAL	RF	E80－RATING
End Post LOUl	1111	84.17	766.62	0.5	21.5	5.875	493.1	10.8	0.0	5.00	2.04	163.2
Bottom Chord（LC）LOL2	508	50.61	460.85	0.5	21.5	5.875	296.4	49.8	148.0	30.4	0.86	68.7
Bottom Chord［LC2）L2L．4	1005	91.63	799.53	0.5	21.5	5.875	514.3	66.6	148.0	39.7	1.21	96.5
Bottom Chord（LCl）L4L6	505	50.61	460.85	0.5	21.5	5.875	296.4	49.8	148.0	30.4	0.85	68.2
Top Chord UiU2	745	80.90	715.06	0.5	21.5	5.875	459.9	17.7	0.0	4.8	1.39	111.3
Top Chord U2U3	813	80.90	715.06	0.5	21.5	5.875	459.9	17.7	0.0	4.8	1.54	123.0
Top Chord U3U4	790	80.90	715.06	0.5	21.5	5.875	459.9	17.7	0.0	4.8	1.49	119.0
Top Chord U4U5	744	80.90	715.06	0.5	21.5	5.875	459.9	17.7	0.0	4.8	1.39	111.1
U1L2 Diagonal（D1）（ten．）	593	50.38	508.6	0.5	21.5	5.875	327.1	6.5	0.0	4.0	1.62	129.5
L2U3 Diogonal（D2）（comp．）	558	17.84	296.01	0.5	21.5	5.875	190.4	2.2	0.0	3.0	2.78	222.5
U314 Diagonal（D2）（comp．）	606	17.84	296.01	0.5	21.5	5.875	190.4	2.2	0.0	3.0	3.03	242.4
U4L5 Diagonal（D1）（fen．）	565	50.38	508.6	0.5	21.5	5.875	327.1	6.5	0.0	4.0	1.53	122.8
L3U3 Hanger（center）	486	18.00	290.8	0.5	39.0	5.875	214.0	3.5	0.0	4.80	2.12	169.9
LU1	529	16.50	291.2	0.5	39.0	5.875	214.3	3.5	0.0	4.80	2.32	185.9
L2U2	ZERO FORCE MEMBER			0.5	39.0	5.875	0.0	3.5	0.0	4.80	\＃\＃\＃	\＃VALUE！
L4U4	ZERO FORCE MEMBER			0.5	39.0	5.875	0.0	3.5	0.0	4.80	等等拼	\＃VALUE！
L5U5	524	16.50	291.2	0.5	39.0	5.875	214.3	3.5	0.0	4.80	2.30	184.1
End Post U5Li	1094	84.17	766.62	0.5	21.5	5.875	493.1	10.8	0.0	5.00	2.01	160.5

MEMBER		CAPACITY (KSI)	DL (KSI)	LL (E8O-KSI)	DIST.	IMPACT \%	RE\%	LL+I (KSII)	RF
E8O-RATING									
Stringer Panel 1 (Lt.) (moment)	16.5	0.62	10.51	1.0	39.0	14.275	16.7	0.95	76.1
Stringer Panel 1 (Rt.) (moment)	16.5	0.62	10.51	1.0	39.0	14.275	16.7	0.95	76.1
Stringer Panel 2 (Lt.) (moment)	16.5	0.62	10.51	1.0	39.0	14.275	16.7	0.95	76.1
Stringer Panel 2 (Rt.) (moment)	16.5	0.62	10.51	1.0	39.0	14.275	16.7	0.95	76.1
Stringer Panel 3 (Lt.) (moment)	16.5	0.62	10.53	1.0	39.0	14.275	16.7	0.95	76.0
Stringer Panel 3 (Rt.) (moment)	16.5	0.62	10.51	1.0	39.0	14.275	16.7	0.95	76.1
Stringer Panel 4 (Lt.) (moment)	16.5	0.62	10.53	1.0	39.0	14.275	16.7	0.95	76.0
Stringer Panel 4 (Rt.) (moment)	16.5	0.62	10.51	1.0	39.0	14.275	16.7	0.95	76.1
Stringer Panel 5 (Lt.) (moment)	16.5	0.62	10.53	1.0	39.0	14.275	16.7	0.95	76.0
Stringer Panel 5 (Rt.) (moment)	16.5	0.62	10.56	1.0	39.0	14.275	16.8	0.95	75.7
Stringer Panel 6 (Lt.) (moment)	16.5	0.62	10.53	1.0	39.0	14.275	16.7	0.95	76.0
Stringer Panel 6 (Rt.) (moment)	16.5	0.64	10.77	1.0	39.0	14.275	17.1	0.93	74.2
Floorbeam L1 (moment)	16.5	0.78	9.55	1.0	39.0	5.875	14.1	1.12	89.5
Floorbeam L2 (moment)	16.5	0.78	9.45	1.0	39.0	5.875	13.9	1.13	90.4
Floorbeam L3 (moment)	16.5	0.84	10.17	1.0	39.0	5.875	15.0	1.05	83.7
Floorbeam L4 (moment)	16.5	0.81	9.83	1.0	39.0	5.875	14.5	1.08	86.8
Floorbeam L5 (moment)	16.5	0.83	10.08	1.0	39.0	5.875	14.8	1.06	84.5
Stringer (shear)	10.5	0.364	7.35	1.0	39.0	14.275	11.7	0.87	69.5
Floorbeam (shear)	10.5	0.53	6.3	1.0	39.0	5.875	9.3	1.08	86.0

Appendix 5

MAEMBER	CAPACITY (KSI)	DL (KSI)	LL (E80-KSI)	DISI.	IMPACI \%	RE\%	LL+I (KSI)	RF	E80-RATING
Stringer Panel 1 (Lt.) (moment)	24.0	0.62	10.51	1.0	39.0	14.275	16.7	1.40	112.0
Stringer Panel 1 (Rt.) (moment)	24.0	0.62	10.51	1.0	39.0	5.875	15.5	1.51	120.9
Stringer Panel 2 (Lt.) (moment)	24.0	0.62	10.51	1.0	39.0	5.875	15.5	1.51	120.9
Stringer Panel 2 (Rt.) (moment)	24.0	0.62	10.51	1.0	39.0	5.875	15.5	1.51	120.9
Stringer Panel 3 (Lt.) (moment)	24.0	0.62	10.53	1.0	39.0	5.875	15.5	1.51	120.7
Stringer Panel 3 (Rt.) (moment)	24.0	0.62	10.51	1.0	39.0	5.875	15.5	1.51	120.9
Stringer Panel 4 (Lt.) (moment)	24.0	0.62	10.53	1.0	39.0	5.875	15.5	1.51	120.7
Strínger Panel 4 (Rt.) (moment)	24.0	0.62	10.51	1.0	39.0	5.875	15.5	1.51	120.9
Stringer Panel 5 (Lt.) (moment)	24.0	0.62	10.53	1.0	39.0	5.875	15.5	1.51	120.7
Stringer Panel 5 (Rt.) (moment)	24.0	0.62	10.56	1.0	39.0	5.875	15.5	1.50	120.4
Stringer Panel 6 (Lt.) (moment)	24.0	0.62	10.53	1.0	39.0	5.875	15.5	1.51	120.7
Stringer Panel 6 (Rt.) (moment)	24.0	0.64	10.77	1.0	39.0	5.875	15.8	1.47	117.9
Floorbeam L1 (moment)	24.0	0.78	9.55	1.0	39.0	5.875	14.1	1.65	132.2
Floorbeam L2 (moment)	24.0	0.78	9.45	1.0	39.0	5.875	13.9	1.67	133.6
Floorbeam L3 (moment)	24.0	0.84	10.17	1.0	39.0	5.875	15.0	1.55	123.8
Floorbeam L4 (moment)	24.0	0.81	9.83	1.0	39.0	5.875	14.5	1.60	128.2
Floorbeam L5 (moment)	24.0	0.83	10.08	1.0	39.0	5.875	14.8	1.56	125.0
Stringer (shear)	18.0	0.364	7.35	1.0	39.0	14.275	11.7	1.51	120.8
Floorbeam (shear)	18.0	0.53	6.3	1.0	39.0	5.875	9.3	1.88	150.7

SALINAS RIVER

RAILROAD BRIDGE

AS-INSPECTED
LOAD RATING

CALCULATIONS

SPAN 2

Appendix 5

SALINAS RIVER BRIDGE

AS-INSPECTED LOAD RATING - 30 FI. DEEP TRUSS

LEFT TRUSS MEMBERS - LOAD CASE A

AS－INSPECTED LOAD RATING－ 30 FT．DEEP TRUSS
 RIGHT TRUSS MEMBERS－LOAD CASE A

MEMBER	CAPACITY（KIPS）	DL［ KIPS ］	LL（E80－AXLE－K．PS）	DIST．	IMPACT \％	RE \％	LL＋1（KIPS）	RF	E80－RATING
End Post LOU1	640	91.53	775.9	0.5	21.5	5.875	499.1	1.10	87.9
Botfom Chard（BC1）L012	296	56.19	476.3	0.5	21.5	5.875	306.4	0.78	62.6
Bottom Chord（BC2）L2L4	527	102.46	826.5	0.5	21.5	5.875	531.6	0.80	63.9
Battom Chord（BC1）L4L6	295	56.19	476.3	0.5	21.5	5.875	306.4	0.78	62.4
Top Chord UIU2	573	90.99	738.6	0.5	21.5	5.875	475.1	1.01	81.2
Top Chord U2U3	562	90.99	738.6	0.5	21.5	5.875	475.1	0.99	79.3
Top Chord U3U4	564	90.99	738.6	0.5	21.5	5.875	475.1	1.00	79.7
Top Chord U4U5	503	90.99	738.6	0.5	21.5	5.875	475.1	0.87	69.4
UIL2 Diag．（T）（ten．）	370	56.69	514.8	0.5	21.5	5.875	331.1	0.95	75.7
L2U3 Diag．（D）（comp．）	378	18.69	299.3	0.5	21.5	5.875	192.5	1.87	149.3
U3L4 Diag．（D）（comp．）	358	18.69	299.3	0.5	21.5	5.875	192.5	1.76	141.0
U4L5 Diag．（fen．）	344	56.69	514.8	0.5	21.5	5.875	331.1	0.87	69.4
L3U3 Hanger（center）	212	19.50	290.8	0.5	39.0	5.875	214.0	0.90	72.0
LIU1	210	18.00	291.2	0.5	39.0	5.875	214.3	0.90	71.7
L2U2	ZERO FORCE MEMBER			0.5	39.0	5.875	0.0	\＃\＃\＃\＃	\＃VALUE！
L4U4	ZERO FORCE MEMBER			0.5	39.0	5.875	0.0	\＃\＃\＃\＃	\＃Valuel
LSUS	217	18.00	291.2	0.5	39.0	5.875	214.3	0.93	74.3
End Post U5L6	651	91.53	775.9	0.5	21.5	5.875	499.1	1.12	89.7

MEMBER	CAPACITY（KIPS）	DL．（KIPS）	LL（E80－AXLE－KXPS）	DIST．	IMPACT \％	RE\％	LL＋1（KIPS）	RF	E80－RATING
End Post LOUT	931	91.53	775.9	0.5	21.5	5.875	499.1	1.68	134.6
Boltom Chard（BC）LOL2	430	56.19	476.3	0.5	21.5	5.875	306.4	1.22	97.6
Boitom Chord（BC2）L2L4	767	102.46	826.5	0.5	21.5	5.875	531.6	1.25	100.0
Bottom Chord（BC1）L4L6	428	56.19	476.3	0.5	21.5	5.875	306.4	1.21	97.1
Top Chord UlU2	833	90.99	738.6	0.5	21.5	5.875	475.1	1.56	125.0
Top Chord U2U3	817	90.99	738.6	0.5	21.5	5.875	475.1	1.53	122.3
Top Chord U3U4	821	90.99	738.6	0.5	21.5	5.875	475.1	1.54	122.9
Top Chord U4U5	732	90.99	738.6	0.5	21.5	5.875	475.1	1.35	107.9
Ul2 Diag．（7）（ten．）	538	56.69	514.8	0.5	21.5	5.875	331.1	1.45	116.3
L2U3 Diag．（D）（comp．）	550	18.69	299.3	0.5	21.5	5.875	192.5	2.76	220.8
U3L4 Diag．（D）／comp．）	521	18.69	299.3	0.5	21.5	5.875	192.5	2.61	208.7
U4L5 Diag．（fen－）	500	56.69	514.8	0.5	21.5	5，875	331.1	1.34	107.1
L3U3 Hanger（center）	309	19.50	290.8	0.5	39.0	5.875	214.0	1.35	108.2
LIU1	305	18.00	291.2	0.5	39.0	5.875	214.3	1.34	107.2
L2U2	ZERO FORCE MEMBER			0.5	39.0	5.875	0.0	\＃\＃\＃\＃	\＃VALUEI
L．4U4	ZERO FORCE MEMBER			0.5	39.0	5.875	0.0	\＃\＃\＃\＃	\＃VALUE！
L5U5	316	18.00	291.2	0.5	39.0	5.875	214.3	1.39	111.3
End Post U5L6	947	91.53	775.9	0.5	21.5	5.875	499.1	1.71	137.1

LEFT TRUSS MEMBERS - LOAD CASE B

MEMBER	CAPACITY (KSPS)	DL (KIPS)	LL (E80-AXLE-KIPS)	DIST.	IMPACT \%	RE\%	LL+1 (KIPS)	WIND	LONGIT.	LATERAL	RF	E80-RATING
End Post LOU1	804.0	91.53	775.9	0.5	21.5	5.875	499.1	9.5	0.0	2.89	1.40	112.0
Bottom Chord (BCl) LOL2	370.0	56.19	476.3	0.5	21.5	5.875	306.4	49.2	148.0	29.2	0.55	43.8
Bottom Chord (BC2) LL4	618.0	102.46	826.5	0.5	21.5	5.875	531.6	65.5	148.0	37.5	0.63	50.2
Bottom Chord (BC) L.4L6	341.0	56.19	476.3	0.5	21.5	5.875	306.4	49.2	148.0	29.2	0.49	39.0
Iop Chord UlU2	706.0	90.99	738.6	0.5	21.5	5.875	475.1	16.7	0.0	2.8	1.25	100.2
Top Chord U2U3	684.0	90.99	738.6	0.5	21.5	5.875	475.1	16.7	0.0	2.8	1.21	96.5
Top Chord U3U4	641.0	90.99	738.6	0.5	21.5	5.875	475.1	16.7	0.0	2.8	1.12	89.3
Top Chord U4U5	690.0	90.99	738.6	0.5	21.5	5.875	475.1	16.7	0.0	2.8	1.22	97.5
U1L2 Diag. (T) (ten.)	446.0	56.69	514.8	0.5	21.5	5.875	331.1	5.7	0.0	2.3	1.15	92.0
L2U3 Diag. (D) (comp.)	458.0	18.69	299.3	0.5	21.5	5.875	192.5	1.9	0.0	1.7	2.25	180.2
U3L4 Diag. (D) (comp.)	451.0	18.69	299.3	0.5	21.5	5.875	192.5	1.9	0.0	1.7	2.22	177.3
U4L5 Diag. (T) (ten.)	450.0	56.69	514.8	0.5	21.5	5.875	331.1	5.7	0.0	2.3	1.16	93.0
L3U3 Hanger (center)	265.0	19.50	290.8	0.5	39,0	5.875	214.0	3.0	0.0	2.74	1.12	89.5
L1U1	268.0	18.00	291.2	0.5	39.0	5.875	214.3	3.0	0.0	2.74	1.14	91.1
L2U2	ZERO FORCE MEMBER			0.5	39.0	5.875	0.0	3.0	0.0	2.74	\#\#\#\#	\#VALUEI
L4U4	ZERO FORCE MEMBER			0.5	39.0	5.875	0.0	3.0	0.0	2.74	\#\#\#\#	\#VaLUEI
LSU5	263.0	18.00	291.2	0.5	39.0	5.875	214.3	3.0	0.0	2.74	1.12	89.2
End Post USL6	796.0	91.53	775.9	0.5	21.5	5.875	499.1	9.5	0.0	2.89	1.38	110.8

[^1]| MEMBER | CAPACITY (KIPS) | DL (KPPS) | LL (E80-AXLE-KIPS) | DIST. | IMPACT \% | RE\% | UL+1 (KIPS) | WIND | LONGIT. | LATERAL | RF | EBO-RATING |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| End Post L0U1 | 1169.0 | 91.53 | 775.9 | 0.5 | 21.5 | 5.875 | 499.1 | 9.5 | 0.0 | 2.89 | 2.13 | 170.2 |
| Bottom Chord (BCl) L012 | 538.0 | 56.19 | 476.3 | 0.5 | 21.5 | 5.875 | 306.4 | 49.2 | 148.0 | 29.2 | 0.89 | 71.6 |
| Bottom Chord (BC2) L2L4 | 899.0 | 102.46 | 826.5 | 0.5 | 21.5 | 5.875 | 531.6 | 65.5 | 148.0 | 37.5 | 1.02 | 81.6 |
| Botfom Chord (BC1) L4L6 | 496.0 | 56.19 | 476.3 | 0.5 | 21.5 | 5.875 | 306.4 | 49.2 | 148.0 | 29.2 | 0.81 | 64.6 |
| Top Chord UlU2 | 1026.0 | 90.99 | 738.6 | 0.5 | 21.5 | 5.875 | 475.1 | 16.7 | 0.0 | 2.8 | 1.92 | 153.7 |
| Top Chord U2U3 | 996.0 | 90.99 | 738.6 | 0.5 | 21.5 | 5.875 | 475.1 | 16.7 | 0.0 | 2.8 | 1.86 | 148.7 |
| Top Chord U3U4 | 934.0 | 90.99 | 738.6 | 0.5 | 21.5 | 5.875 | 475.1 | 16.7 | 0.0 | 2.8 | 1.73 | 138.3 |
| Top Chord U4U5 | 1004.0 | 90.99 | 738.6 | 0.5 | 21.5 | 5.875 | 475.1 | 16.7 | 0.0 | 2.8 | 1.88 | 150.0 |
| Ull 2 Diag. (7) (ten.) | 649.0 | 56.69 | 514.8 | 0.5 | 21.5 | 5.875 | 331.1 | 5.7 | 0.0 | 2.3 | 1.76 | 140.7 |
| L2U3 Diag. (D) (comp.) | 665.0 | 18.69 | 299.3 | 0.5 | 21.5 | 5.875 | 192.5 | 1.9 | 0.0 | 1.7 | 3.32 | 265.4 |
| U3L4 Diag. (D) (comp.) | 656.0 | 18.69 | 299.3 | 0.5 | 21.5 | 5.875 | 192.5 | 1.9 | 0.0 | 1.7 | 3.27 | 261.7 |
| U4L5 Diag. (7) (fen.) | 655.0 | 56.69 | 514.8 | 0.5 | 21.5 | 5.875 | 331.1 | 5.7 | 0.0 | 2.3 | 1.78 | 142.2 |
| L3U3 Hanger (cenier) | 386.0 | 18.50 | 290.8 | 0.5 | 39.0 | 5.875 | 214.0 | 3.0 | 0.0 | 2.74 | 1.68 | 134.2 |
| LIUI | 390.0 | 18.00 | 291.2 | 0.5 | 39.0 | 5.875 | 214.3 | 3.0 | 0.0 | 2.74 | 1.70 | 136.0 |
| 12 L | ZERO FORCE MEMBER | | | 0.5 | 39.0 | 5.875 | 0.0 | 3.0 | 0.0 | 2.74 | \#\#\#\#\# | \#VALUE! |
| L.4U4 | ZERO FORCE MEMBER | | | 0.5 | 39.0 | 5.875 | 0.0 | 3.0 | 0.0 | 2.74 | \#\#\#\# | \#VALUEI |
| 1.505 | 383.0 | 18.00 | 291.2 | 0.5 | 39.0 | 5.875 | 214.3 | 3.0 | 0.0 | 2.74 | 1.67 | 133.4 |
| End Post U5L6 | 1158.0 | 91.53 | 775.9 | 0.5 | 21.5 | 5.875 | 499.1 | 9.5 | 0.0 | 2.89 | 2.11 | 168.5 |

MEMBER	CAPACITY（KIPS）	DL（KIPS）	LL（E80－AXLE－K］PS）	DIST．	IMPACT \％	RE \％	LL＋1（KIPS）	WIND	LONGIT．	LATERAL	RF	E日C－RATING
End Post LOU1	800.0	91.53	775.9	0.5	21.5	5.875	499.1	9.5	0.0	2.89	1.39	111.4
Baltom Chord（ BCl ）LOL2	370.0	56.19	476.3	0.5	21.5	5.875	306.4	49.2	148.0	29.2	0.55	43.8
Bottom Chord（BC2）L2L4	659.0	102.46	826.5	0.5	21.5	5.875	531.6	65.5	148.0	37.5	0.68	54.8
Bottom Chord（BCl）L4L6	369.0	56.19	476.3	0.5	21.5	5.875	306.4	49.2	148.0	29.2	0.55	43.6
Top Chord U1U2	716.0	90.99	738.6	0.5	21.5	5.875	475.1	16.7	0.0	2.8	1.27	101.8
Top Chord U2U3	703.0	90.99	738.6	0.5	21.5	5.875	475.1	16.7	0.0	2.8	1，25	99.7
Top Chord U3U4	705.0	90.99	738.6	0.5	21.5	5.875	475.1	16.7	0.0	2.8	1.25	100.0
Top Chord U4U5	629.0	90.99	738.6	0.5	21.5	5.875	475.1	16.7	0.0	2.8	1.09	87.3
UIL2 Diag．［T］（ten．）	463.0	56.69	514.8	0.5	21.5	5.875	331.1	5.7	0.0	2.3	1.20	96.1
L2U3 Diag．（D）（comp．）	473.0	18.69	299.3	0.5	21.5	5.875	192.5	1.9	0.0	1.7	2.33	186.3
U3L4 Diag．（D）（comp．）	448.0	18.69	299.3	0.5	21.5	5.875	192.5	1.9	0.0	1.7	2.20	176.0
U4L5 Diag．（I）（ten．）	430.0	56.69	514.8	0.5	21.5	5.875	331.1	5.7	0.0	2.3	1.10	88.2
L3U3 Hanger（center）	265.0	19.50	290.8	0.5	39.0	5.875	214.0	3.0	0.0	2.74	1.12	89.5
111	263.0	18.00	291.2	0.5	39.0	5.875	214.3	3.0	0.0	2.74	1.12	89.2
L2U2	ZERO FORCE MEMBER			0.5	39.0	5.875	0.0	3.0	0.0	2.74	\＃\＃\＃\＃	\＃VALUE！
L4U4	ZERO FORCE MEMBER			0.5	39.0	5.875	0.0	3.0	0.0	2.74	\＃\＃\＃\＃等	\＃Valuel
L．5U5	271.0	18.00	291.2	0.5	39.0	5.875	214.3	3.0	0.0	2.74	1.15	92.2
End Post U5L．6	814.0	91.53	775.9	0.5	21.5	5.875	499.1	9.5	0.0	2.89	1.42	113.6

MEMBER	CAPACITY（KIPS）	DL（KIPS）	LL［E80－AXLE－K1PS］	DIST．	IMPACT \％	RE \％	LL＋1（KIPS）	WIND	LONGIT．	LATERAL	RF	E80－RATING
End Post LOU1	1164.0	91.53	775.9	0.5	21.5	5.875	499.1	9.5	0.0	2.89	2.12	169.4
Bottom Chord（BC1）LOL2	538.0	56.19	476.3	0.5	21.5	5.875	306.4	49.2	148.0	29.2	0.89	71.6
Bottom Chord（BC2）L2L4	959.0	102.46	826.5	0.5	21.5	5.875	531.6	65.5	148.0	37.5	1.10	88.2
Botiom Chord（BC1）L4L6	535.0	56.19	476.3	0.5	21.5	5.875	306.4	49.2	148.0	29.2	0.89	71.1
lop Chord U1U2	1041.0	90.99	738.6	0.5	21.5	5.875	475.1	16.7	0.0	2.8	1.95	156.2
Top Chord U2U3	1021.0	90.99	738.6	0.5	21.5	5.875	475.1	16.7	0.0	2.8	1.91	152.9
Top Chord U3U4	1026.0	90.99	738.6	0.5	21.5	5.875	475.1	16.7	0.0	2.8	1.92	153.7
Iop Chord U4U5	915.0	90.99	738.6	0.5	21.5	5.875	475.1	16.7	0.0	2.8	1.69	135.1
U1L2 Diag．（I）（ten．）	673.0	56.69	514.8	0.5	21.5	5.875	331.1	5.7	0.0	2.3	1.83	146.5
L2U3 Diag．（D）（comp．）	688.0	18.69	299.3	0.5	21.5	5.875	192.5	1.9	0.0	1.7	3.44	274.9
U3L4 Diag．（D）（comp．）	651.0	18.69	299.3	0.5	21.5	5.875	192.5	1.9	0.0	1.7	3.25	259.6
U4L5 Diag．（T）（fen．）	625.0	56.69	514.8	0.5	21.5	5.875	331.1	5.7	0.0	2.3	1.69	135.0
L3U3 Hanger（center）	386.0	19.50	290.8	0.5	39.0	5.875	214.0	3.0	0.0	2.74	1.68	134.2
LIU1	381.0	18.00	291.2	0.5	39.0	5.875	214.3	3.0	0.0	2.74	1.66	132.7
12 U 2	ZERO FORCE MEMBER			0.5	39.0	5.875	0.0	3.0	0.0	2.74	茾等等等	\＃VALUE！
L4\4	ZERO FORCE MEMBER			0.5	39.0	5.875	0.0	3.0	0.0	2.74	茾等方亣	\＃VALUE！
L5U5	395.0	18.00	291.2	0.5	39.0	5.875	214.3	3.0	0.0	2.74	1.72	137.9
End Post U5L6	1184.0	91.53	775.9	0.5	21.5	5.875	499.1	9.5	0.0	2.89	2.16	172.6

SCTED LOAD RATING - 30 FT. DEEP TRUSS
SPAN 2
FLOOR SYSTEM - LOAD CASE A
NORMAL RATING

 $\stackrel{\rightharpoonup}{n}$ 75.3 $\underset{\sim}{n} \underset{\sim}{n}$ 74.5 $\stackrel{\rightharpoonup}{~}$ $\stackrel{M}{\dot{n}} \underset{\sim}{N}$ 72.4 $\stackrel{+}{\dot{n}} \underset{\sim}{\infty}$

 LL+I (KSI)

MAXIMUM RATING									
MEMBER	CAPACITY (KSI)	DL (KSI)	LL (E80-KSI)	DIST.	IMPACT \%	RE \%	LL+1 (KSI)	RF	E80-RATING
Stringer Panel 1 (Lt.) (moment)	24.0	0.659	10.6	1.0	39.0	14.275	16.8	1.39	110.9
Stringer Panel 1 (Rt.) (moment)	24.0	0.675	10.86	1.0	39.0	14.275	17.3	1.35	108.2
Stringer Panel 2 (Lt.) (moment)	24.0	0.659	10.6	1.0	39.0	14.275	16.8	1.39	110.9
Stringer Panel 2 (Rt) (moment)	24.0	0.675	10.86	1.0	39.0	14.275	17.3	1.35	108.2
Stringer Panel 3 (Lt.) (moment)	24.0	0.659	10.6	1.0	39.0	14.275	16.8	1.39	110.9
Stringer Panel 3 (Rt.) (moment)	24.0	0.665	10.7	1.0	39.0	14.275	17.0	1.37	109.8
Stringer Panel 4 (Lt.) (moment)	24.0	0.665	10.7	1.0	39.0	14.275	17.0	1.37	109.8
Stringer Panel 4 (Rt.) (moment)	24.0	0.675	10.86	1.0	39.0	14.275	17.3	1.35	108.2
Stringer Panel 5 (L.t.) (moment)	24.0	0.659	10.6	1.0	39.0	14.275	16.8	1.39	110.9
Stringer Panel 5 (Rt.) (moment)	24.0	0.683	11	1.0	39.0	14.275	17.5	1.33	106.8
Stringer Panel 6 (Lt.) (moment)	24.0	0.706	11.36	1.0	39.0	14.275	18.0	1.29	103.3
Stringer Panel 6 (Rt.) (moment)	24.0	0.675	10.86	1.0	39.0	14.275	17.3	1.35	108.2
Floorbeam L1 (moment)	24.0	0.9	10.21	1.0	39.0	14.275	16.2	1.42	113.9
Floorbeam L2 (moment)	24.0	0.919	10.42	1.0	39.0	14.275	16.6	1.39	111.6
Floorbeam L3 (moment)	24.0	0.915	10.38	1.0	39.0	14.275	16.5	1.40	112.0
Floorbeam L4 (moment)	24.0	0.889	10.08	1.0	39.0	14.275	16.0	1.44	115.5
Floorbeam L5 (moment)	24.0	0.898	10.19	1.0	39.0	5.875	15.0	1.54	123.2
Stringer (shear)	18.0	0.322	5.92	1.0	39.0	14.275	9.4	1.88	150.4
Floorbeam (shear)	18.0	0.576	6.4	1.0	39.0	5.875	9.4	1.85	148.0

SALINAS RIVER

RAILROAD BRIDGE

AS-INSPECTED
 LOAD RATING

CALCULATIONS

SPAN 3

Appendix 5

Appendix 5

LEFT TRUSS MEMBERS - LOAD CASE B

MEMBER	CAPACITY (KIPS)	DL (KIPS)	LL [E80-AXLE-KIPS	DIST.	IMPACT \%	RE\%	LL+1 (KPSI	WIND	LONGIT.	LATERAL	RF	E8O-RATING
End Post LOU1	799.0	91.53	775.9	0.5	21.5	5.875	499.1	9.5	0.0	2.89	1.39	111.2
Botiom Chord (BC1) LOL2	333.0	56.19	476.3	0.5	21.5	5.875	306.4	49.2	148.0	29.2	0.47	37.7
Bottom Chord (BC2) L2L4	669.0	102.46	826.5	0.5	21.5	5.875	531.6	65.5	148.0	37.5	0.70	55.9
Bottom Chord (BC1) L4L6	371.0	56.19	476.3	0.5	21.5	5.875	306.4	49.2	148.0	29.2	0.55	43.9
Top Chord U1U2	704.0	90.99	738.6	0.5	21.5	5.875	475.1	16.7	0.0	2.8	1.25	99.8
Top Chord U2 U3	654.0	90.99	738.6	0.5	21.5	5.875	475.1	16.7	0.0	2.8	1.14	91.5
Top Chord U3U4	654.0	90.99	738.6	0.5	21.5	5.875	475.1	16.7	0.0	2.8	1.14	91.5
Top Chord U4U5	653.0	90.99	738.6	0.5	21.5	5.875	475.1	16.7	0.0	2.8	1.14	91.3
UIL2 Diag. (T) (ten.)	426.0	56.69	514.8	0.5	21.5	5.875	331.1	5.7	0.0	2.3	1.09	87.2
L2U3 Diag. (D) (comp.)	475.0	18.69	299.3	0.5	21.5	5.875	192.5	1.9	0.0	1.7	2.34	187.2
U3L. 4 Diag. (D) (comp.)	454.0	18.69	299.3	0.5	21.5	5.875	192.5	1.9	0.0	1.7	2.23	178.5
U4L5 Diag. (T) (ten.)	466.0	56.69	514.8	0.5	21.5	5.875	331.1	5.7	0.0	2.3	1.21	96.8
L3U3 Hanger (center)	268.0	19.50	290.8	0.5	39.0	5.875	214.0	3.0	0.0	2.74	1.13	90.6
L1U1	248.0	18.00	291.2	0.5	39.0	5.875	214.3	3.0	0.0	2.74	1.05	83.7
L2U2	ZERO FORCE MEMBER			0.5	39.0	5.875	0.0	3.0	0.0	2.74	\#\#\#\#	\#VALUE!
L4U4	ZERO FORCE MEMBER			0.5	39.0	5.875	0.0	3.0	0.0	2.74	\#\#\#\#	\#VALUE!
L5U5	268.0	18.00	291.2	0.5	39.0	5.875	214.3	3.0	0.0	2.74	1.14	91.1
End Post U5L6	810.0	91.53	775.9	0.5	21.5	5.875	499.1	9.5	0.0	2.89	1.41	113.0

MEMBER	CAPACITY (KIPS)	DL (KIPS)	LL (E80-AXLE-K]PS)	DIST.	IMPACT \%	RE\%	LL+1 [K$] \mathrm{PS}$]	WIND	LONGIT.	LAIERAL	RF	E80-RATING
End Post LOU1	1161.0	91.53	775.9	0.5	21.5	5.875	499.1	9.5	0.0	2.89	2.11	168.9
Batlom Chard (BC1) LOL2	484.0	56.19	476.3	0.5	21.5	5.875	306.4	49.2	148.0	29.2	0.78	62.6
Bottom Chard (BC2) L2L4	973.0	102.46	826.5	0.5	21.5	5.875	531.6	65.5	148.0	37.5	1.12	89.8
Bottorn Chard (BC)] L4L6	540.0	56.19	476.3	0.5	21.5	5.875	306.4	49.2	148.0	29.2	0.90	71.9
Top Chord U1U2	1024.0	90.97	738.6	0.5	21.5	5.875	475.1	16.7	0.0	2.8	1.92	153.4
Top Chard U2U3	951.0	90.99	738.6	0.5	21.5	5.875	475.1	16.7	0.0	2.8	1.76	141.2
Top Chord U3U4	950.0	90.99	738.6	0.5	21.5	5.875	475.1	16.7	0.0	2.8	1.76	141.0
Iop Chord U4U5	949.0	90.99	738.6	0.5	21.5	5.875	475.1	16.7	0.0	2.8	1.76	140.8
U1L2 Diag. (T) (ten.)	620.0	56.69	514.8	0.5	21.5	5.875	331.1	5.7	0.0	2.3	1.67	133.8
L2U3 Diag. (D) (comp.)	693.0	18.69	299.3	0.5	21.5	5.875	192.5	1.9	0.0	1.7	3.46	276.9
U3L4 Diag. (D) (comp.)	660.0	18.69	299.3	0.5	21.5	5.875	192.5	1.9	0.0	1.7	3.29	263.4
U4L5 Diag. (T) (ten.)	679.0	56.69	514.8	0.5	21.5	5.875	331.1	5.7	0.0	2.3	1.85	147.9
L3U3 Hanger (center)	389.0	17.50	290.8	0.5	39.0	5.875	214.0	3.0	0.0	2.74	1.69	135.3
L1U1	361.0	18.00	291.2	0.5	39.0	5.875	214.3	3.0	0.0	2.74	1.57	125.3
12 U 2	ZERO FORCE MEMBER			0.5	39.0	5.875	0.0	3.0	0.0	2.74	\#\#\#\#	\#VALUEI
L4154	ZERO FORCE MEMBER			0.5	39.0	5.875	0.0	3.0	0.0	2.74	\#\#\#\#	\#VALUE!
L5U5	390.0	18.00	291.2	0.5	39.0	5.875	214.3	3.0	0.0	2.74	1.70	136.0
End Post U5L6	1178.0	91.53	775.9	0.5	21.5	5.875	499.1	9.5	0.0	2.89	2.15	171.6

AS－INSPECTED LOAD RATING＝ 30 F．DEEP TRUSS

RIGHT TRUSS MEMBERS－LOAD CASE B

MEMBER	CAPACITY（KIPS）	DL［KPS）	LL（E80－AXLE－KPS）	DIST．	IMPACT $\%$	RE\％	LL＋1（KIPS）	WIND	LONGIT．	LATERAL	RF	E80－RATNG
End Post L．OUl	796.0	91.53	775.9	0.5	21.5	5.875	499.1	9.5	0.0	2.89	1.38	110.8
Boftom Chord［8C1）LOL2	369.0	56.19	476.3	0.5	21.5	5.875	306.4	49.2	148.0	29.2	0.55	43.6
Bottom Chord（BC2）L2L4	666.0	102.46	826.5	0.5	21.5	5.875	531.6	65.5	148.0	37.5	0.69	55.6
Bottom Chord（BC1）L4L6	373.0	56.19	476.3	0.5	21.5	5.875	306.4	49.2	148.0	29.2	0.55	44.3
Top Chord U1U2	708.0	90.99	738.6	0.5	21.5	5.875	475.1	16.7	0.0	2.8	1.26	100.5
Top Chord U2U3	620.0	90.99	738.6	0.5	21.5	5.875	475.1	16.7	0.0	2.8	1.07	85.8
Top Chord U3U4	709.0	90.99	738.6	0.5	21.5	5.875	475.1	16.7	0.0	2.8	1.26	100.7
Top Chord U4U5	716.0	90.99	738.6	0.5	21.5	5.875	475.1	16.7	0.0	2.8	1.27	101.8
U1L2 Diag．（7）（ten．）	436.0	56.69	514.8	0.5	21.5	5.875	331.1	5.7	0.0	2.3	1.12	89.6
L2U3 Dlag．（D）（comp．）	451.0	18.69	299.3	0.5	21.5	5.875	192.5	1.9	0.0	1.7	2.22	177.3
U3L4 Diag．（D）（comp．）	424.0	18.69	299.3	0.5	21.5	5.875	192.5	1.9	0.0	1.7	2.08	166.2
U4L5 Diag．（T）（fen．）	443.0	56.69	514.8	0.5	21.5	5.875	331.1	5.7	0.0	2.3	1.14	91.3
L3U3 Hanger（center）	265.0	19.50	290.8	0.5	39.0	5.875	214.0	3.0	0.0	2.74	1.12	89.5
LIUI	249，0	18.00	291.2	0.5	39.0	5.875	214.3	3.0	0.0	2.74	1.05	84.0
L2U2	ZERO FORCE MEMBER			0.5	39.0	5.875	0.0	3.0	0.0	2.74	\＃\＃\＃\＃	\＃VALUE！
1404	ZERO FORCE MEMBER			0.5	39.0	5.875	0.0	3.0	0.0	2.74	\＃\＃\＃\＃	\＃VALUE！
L．5U5	271.0	18.00	291.2	0.5	39.0	5.875	214.3	3.0	0.0	2.74	1.15	92.2
End Post U5L6	814.0	91.53	775.9	0.5	21.5	5.875	499.1	9.5	0.0	2.89	1.42	113.6

MAXIMUM RATING

	号		－	$\begin{array}{l\|l} 8 \\ \infty & y \\ \end{array}$	Niv	$\stackrel{\text { ¢ }}{\substack{\text { ¢ }}}$	$\begin{aligned} & -\underset{\sim}{\dot{0}} \\ & \underline{U} \end{aligned}$		$\underset{\sim}{n}$		$\left\|\begin{array}{c} \underset{\sim}{3} \\ \underset{\sim}{4} \end{array}\right\|$			$\underset{\sim}{y}$			$\begin{aligned} & 0 \\ & \underset{\sim}{2} \end{aligned}$	－
L	$\overline{\mathrm{v}}$	$=\begin{aligned} & \mathrm{g} \\ & \mathbf{j} \\ & \mathrm{o} \\ & \hline \end{aligned}$			$\begin{array}{l\|l} \hline 0 \\ 0 & 2 \\ -1 \\ \hline \end{array}$	$\stackrel{8}{2}$	$\stackrel{\square}{2}$	$\stackrel{2}{2}$	\xrightarrow{N}	ה	$\dot{j} \left\lvert\, \begin{gathered} \hat{m} \\ \hline \end{gathered}\right.$	n	808	n			$\stackrel{\sim}{\sim}$	\bigcirc
		N－	$\stackrel{\sim}{c}$	$\stackrel{n}{n}$	$$	－${ }_{\sim}^{\infty}$	$\stackrel{\sim}{\sim}$	$\stackrel{\infty}{\sim}$	－${ }_{\sim}$	\bigcirc	\because	－${ }_{\sim}^{\sim}$	$\stackrel{\underset{N}{\mathrm{~N}}}{ }$	\dot{i}	N	N	$\left\|\begin{array}{c} \stackrel{\rightharpoonup}{c} \\ \underset{\sim}{2} \end{array}\right\|$	$\stackrel{\sim}{\sim}$
	0	ら。			운 응	10	O	O	O	0		O응	응	O	\bigcirc	O	\bigcirc	\bigcirc
$\frac{0}{2}$	$\left.\begin{array}{\|c} 120 \\ 0 \end{array} \right\rvert\,$	－	$$		N	－	$\stackrel{\sim}{2}$	－	，${ }_{\sim}^{5}$	\bigcirc	$\stackrel{\sim}{-}$	${ }_{\sim}^{1}$	$\mathrm{S}_{0} \mathrm{O}$	0	\bigcirc	$\stackrel{0}{\square}$	O	$\stackrel{12}{2}$
$\left\|\begin{array}{l} \frac{n}{2} \\ \frac{2}{玉} \\ \underline{y} \end{array}\right\|$	$\begin{aligned} & \bar{\alpha} \\ & \stackrel{\rightharpoonup}{寸} \end{aligned}$	$\begin{gathered} + \\ 0 \\ 0 \\ 0 \end{gathered}$						\dot{y}	$\stackrel{i}{i}$	$\begin{aligned} & u_{2} \\ & \stackrel{N}{2} \end{aligned}$	$\left\|\begin{array}{c} \stackrel{0}{\dot{a}} \\ \underset{\sim}{2} \end{array}\right\|$	－	$\stackrel{+}{+}$	$\stackrel{\underset{\sim}{\dot{\sim}}}{\stackrel{+}{4}}$	0	\bigcirc	$\underset{\sim}{s} \left\lvert\, \frac{?}{\dot{N}}\right.$	－
$\left\|\begin{array}{c} \stackrel{y}{s} \\ \underset{\sim}{2} \end{array}\right\|$	$\left.\begin{array}{\|c\|} \hline n \\ \infty \\ 0 \\ n \end{array} \right\rvert\,$	$\left.\begin{array}{l} 6 \\ \hline \\ i \end{array}\right)$	$\left.\begin{array}{c} 0 \\ \hline 0 \\ \hline \end{array}\right)$			$\begin{array}{c\|c} 9 & 2 \\ \hline & 0 \\ \hline \end{array}$		$5 \begin{gathered} \circ \\ \hline \end{gathered}$				$\begin{array}{l\|l} n \\ \substack{\infty \\ \\ \\ \hline \\ \hline \\ \hline \\ \hline} \\ \hline \end{array}$		$\begin{gathered} 3 \\ \vdots \end{gathered}\left\|\begin{array}{c} n \\ \vdots \\ \end{array}\right\|$				con
$\left\|\begin{array}{l} 1 \\ y \\ \frac{x}{z} \\ \underline{y} \end{array}\right\|$	$\stackrel{4}{\sim}$		$\underset{\sim}{n} \frac{n}{n}$	$\stackrel{\sim}{4}$	$\stackrel{\sim}{\sim} \stackrel{\sim}{\sim}$	－	$\stackrel{\sim}{\sim}$	尔	$\frac{18}{2}$	$\stackrel{\sim}{2}$	\cdots	$\stackrel{\sim}{\sim}$	$\stackrel{0}{0}$	$\stackrel{O}{\circ}$	$\left\|\begin{array}{c} \dot{Q} \\ \dot{\sim} \end{array}\right\|$	$\left.\begin{gathered} 0 \\ 0 \\ \hline \end{gathered} \right\rvert\,$	$\left.\begin{array}{\|c} 9 \\ 0 \\ \stackrel{9}{2} \end{array} \right\rvert\,$	$\stackrel{\sim}{\sim}$
$\frac{\dot{2}}{2}$	0	${ }^{3}$	$03\|c c c\| c$	$\begin{array}{l\|l} n \\ 0 & \text { n } \\ \hline \end{array}$	03	3	${ }_{0}^{3}$	On	${ }^{4}$	${ }_{3}$	$\stackrel{3}{\circ}$	$3{ }^{\circ}$	${ }_{0}^{4}$	S_{0}	$\stackrel{3}{2}$	$3{ }^{\circ}$	${ }_{3}$	$\stackrel{3}{0}$
	$\left\|\begin{array}{c} a \\ \stackrel{\omega}{\hat{N}} \end{array}\right\|$	\hat{i}	$\stackrel{r}{c} \stackrel{\sim}{c}$			$\stackrel{0}{0} \underset{\sim}{0}$			$\dot{0} \dot{0}$	$\stackrel{?}{2}$			$\underset{\sim}{\circ} \underset{\sim}{\sim}$	$\stackrel{\underset{N}{N}}{\substack{n}}$		\sum_{0}^{4}		$\begin{aligned} & a \\ & \substack{n \\ \lambda} \end{aligned}$
$\left\|\begin{array}{l} \frac{2}{2} \\ \vec{a} \end{array}\right\|$	$\left.\frac{n}{2} \right\rvert\,$	$\mathfrak{?}$		品		$\dot{\alpha}$	$\begin{aligned} & 0 \\ & 0 \\ & \dot{\alpha} \end{aligned}$	$\dot{\alpha}$	$\left\|\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}\right\|$		\dot{b}	$\begin{array}{ll} 0 \\ 0 \\ 0 & 0 \\ 0 \end{array}$	$\stackrel{\rightharpoonup}{\circ}$			$\begin{aligned} & \sum_{2} \\ & \sum_{1} \\ & \hline \end{aligned}$		$\stackrel{\sim}{\square}$
	$=8$	$\underbrace{2}_{3}$	$\stackrel{C}{C}$		웅	家品	$\begin{aligned} & 0 \\ & -8 \\ & 0 \end{aligned}$	号		$\left\|\begin{array}{l} 0 \\ 0 \\ 0.0 \\ 0 \end{array}\right\|$	$0 \left\lvert\, \begin{gathered} 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \end{gathered}\right.$	$\left.\begin{array}{c} 0 \\ \hline \end{array}\right)$			$-\begin{aligned} & 4 \\ & \hline \\ & 0 \\ & \text { 皆 } \end{aligned}$		$\left\|\begin{array}{c} 0 \\ \dot{e} \\ \vdots \\ \hline \end{array}\right\|$	－
								2 $?$ $\overrightarrow{3}$ \vdots 0 0 0 0 0 0 0							y	$\left\|\begin{array}{l} \stackrel{\rightharpoonup}{\vec{y}} \end{array}\right\|$		

SALINAS RIVER BRIDGE
AS-INSPECTED LOAD RATING - 30 FT. DEEP TRUSS
FLOOR SYSTEM - LOAD CASE A

MEMBER	CAPACITY (KSI)	DL (KSI)	LL (E80-KSI)	DIST.	IMPACT \%	RE \%	LL+I (KSI)	RF	E8O-RATING
Stringer Panel 1 (Lt.) (moment)	16.5	0.672	10.81	1.0	39.0	14.275	17.2	0.92	73.7
Stringer Panel 1 (Rt.) (moment)	16.5	0.675	10.86	1.0	39.0	14.275	17.3	0.92	73.4
Stringer Panel 2 (Lt.) (moment)	16.5	0.659	10.6	1.0	39.0	14.275	16.8	0.94	75.3
Stringer Panel 2 (Rt.) (moment)	16.5	0.679	10.92	1.0	39.0	14.275	17.3	0.91	73.0
Stringer Panel 3 (Lt.) (moment)	16.5	0.656	10.55	1.0	39.0	14.275	16.8	0.95	75.6
Stringer Panel 3 (Rt.) (moment)	16.5	0.684	11	1.0	39.0	14.275	17.5	0.91	72.4
Stringer Panel 4 (Lt.) (moment)	16.5	0.656	10.55	1.0	39.0	14.275	16.8	0.95	75.6
Stringer Panel 4 (Rt.) (moment)	16.5	0.687	11.05	1.0	39.0	14.275	17.6	0.90	72.1
Stringer Panel 5 (Lt.) (moment)	16.5	0.656	10.55	1.0	39.0	14.275	16.8	0.95	75.6
Stringer Panel 5 (Rt.) (moment)	16.5	0.687	11.05	1.0	39.0	14.275	17.6	0.90	72.1
Stringer Panel 6 (Lt.) (moment)	16.5	0.656	10.55	1.0	39.0	14.275	16.8	0.95	75.6
Stringer Panel 6 (Rt.) (moment)	16.5	0.675	10.86	1.0	39.0	14.275	17.3	0.92	73.4
Floorbeam L1 (moment)	16.5	0.881	9.99	1.0	39.0	5.875	14.7	1.06	85.0
Floorbeam L2 (moment)	16.5	0.897	10.17	1.0	39.0	5.875	15.0	1.04	83.4
Floorbeam L3 (moment)	16.5	0.906	10.27	1.0	39.0	5.875	15.1	1.03	82.5
Floorbeam L4 (moment)	16.5	0.92	10.43	1.0	39.0	5.875	15.3	1.02	81.2
Floorbeam L5 (moment)	16.5	0.897	10.17	1.0	39.0	5.875	15.0	1.04	83.4
Stringer (shear)	10.5	0.322	5.92	1.0	39.0	14.275	9.4	1.08	86.6
Floorbeam (shear)	10.5	0.576	6.4	1.0	39.0	5.875	9.4	1.05	84.3

 RF
1.36
1.35
1.39
1.34
1.39
1.33
1.39
1.33 1.33
1.39 $?$ 1.46 $\underset{\sim}{\sim} \underset{\sim}{\sim}$ $\stackrel{7}{?}$
 N
0
0 16.3
16.6 $\begin{array}{cc}0 \\ 2 i & \\ 0\end{array}$

17.2
17.3
16.8
17.3
16.8
$\frac{16.8}{17.6}$
17.6
16.8
17.6 16.8 17.3 14.275 14.275
14.275 14.275
14.275 14.275 14.275 14.275
5.875 $\frac{14.275}{5.875}$ 5.875
MAXIMUM RATING

SALINAS RIVER

RAILROAD BRIDGE

AS-INSPECTED
LOAD RATING

CALCULATIONS

SPAN 4

LEFT TRUSS MEMBERS - LOAD CASE A

MEMBER	CAPACITY (KIPS)	DL (KIPS)	LL (E80-AXLE-KIPS)	DIST.	IMPACT \%	RE \%	LL+1 (KIPS)	RF	E8O-RATNG
End Post LOUT	641	91.53	775.9	0.5	21.5	5.875	499.1	1.10	88.1
Bottom Chord (8C1) LOL2	272	56.19	476.3	0.5	21.5	5.875	306.4	0.70	56.4
Bottom Chord (BC2) L2L4	519	102.46	826.5	0.5	21.5	5.875	531.6	0.78	62.7
Bottom Chord (BC1) L4L6	284	56.19	476.3	0.5	21.5	5.875	306.4	0.74	59.5
Top Chord UIU2	539	90.99	738.6	0.5	21.5	5.875	475.1	0.94	75.4
Top Chord U2U3	529	90.99	738.6	0.5	21.5	5.875	475.1	0.92	73.8
Top Chord U3U4	532	90.99	738.6	0.5	21.5	5.875	475.1	0.93	74.3
Top Chord U4U5	536	90.99	738.6	0.5	21.5	5.875	475.1	0.94	74.9
UIL2 Diag. (T) (ten.)	346	56.69	514.8	0.5	21.5	5.875	331.1	0.87	69.9
L2U3 Diag. (D) (comp.)	379	18.69	299.3	0.5	21.5	5.875	192.5	1.87	149.7
U3L4 Diag. (D) (comp.)	365	18.69	299.3	0.5	21.5	5.875	192.5	1.80	143.9
U4L5 Diag. (ten.)	377	56.69	514.8	0.5	21.5	5.875	331.1	0.97	77.4
L3U3 Hanger (center)	217	19.50	290.8	0.5	39.0	5.875	214.0	0.92	73.8
L.1U1	211	18.00	291.2	0.5	39.0	5.875	214.3	0.90	72.1
12 L 2	2ERO FORCE MEMBER			0.5	39.0	5.875	0.0	\#\#\#\#	\#Valuel
L4U4	ZERO FORCE MEMBER			0.5	39.0	5.875	0.0	\#\#哏等	\#VALUEI
L5U5	211	18.00	291.2	0.5	39.0	5.875	214.3	0.90	72.1
End Post U5L6	652	91.53	775.9	0.5	21.5	5.875	499.1	1.12	89.8

MAXIMUM RATING

MEMBER
End Post LDU1
Bottorn Chord (BC1) LOL2
Bottom Chord (BC2) L2L4
Bottom Chord (BC1) L4L6
Top Chord U1U2
Top Chord U2U3
Top Chord U3U4
Top Chord U4U5
U1L2 Diag. (T) (ten.)
L2U3 Diag. (D) (comp.)
U3L4 Diag. (D) (comp.)
U4L5 Diag. (ten.)
L3U3 Hanger (center)
LIU1
L2U2
L4U4
L5US
End Posi U5L6

LEFT TRUSS MEMBERS - LOAD CASE B

MEMBER	CAPACITY (KIPS)	DL (KIPS)	LL (E80-AXLE-KIPS]	DIST.	IMPACT \%	RE \%	$\mathrm{LL+1}$ (KIPS)	WIND	LONGIT.	LATERAL	RF	E8O-RATING
End Post LOUl	801.0	91.53	775.9	0.5	21.5	5.875	499.1	9.5	0.0	2.89	1.39	111.6
Bottom Chord (BC)) LOL2	340.0	56.19	476.3	0.5	21.5	5.875	306.4	49.2	148.0	29.2	0.49	38.8
Boltom Chord (BC2) L2L. 4	649.0	102.46	826.5	0.5	21.5	5.875	537.6	65.5	148.0	37.5	0.67	53.7
8offom Chord (BC1) L4L6	355.0	56.19	476.3	0.5	21.5	5.875	306.4	49.2	148.0	29.2	0.52	41.3
Top Chord Ulu2	674.0	90.99	738.6	0.5	21.5	5.875	475.1	16.7	0.0	2.8	1.18	94.8
Top Chord U2U3	661.0	90.99	738.6	0.5	21.5	5.875	475.1	16.7	0.0	2.8	1.16	92.6
Top Chord U3U4	665.0	90.99	738.6	0.5	21.5	5.875	475.1	16.7	0.0	2.8	1.17	93.3
Iop Chard U4U5	670.0	90.99	738.6	0.5	21.5	5.875	475.1	16.7	0.0	2.8	1.18	94.1
UlL2 Diag. (1) (ten,	433.0	56.69	514.8	0.5	21.5	5.875	331.1	5.7	0.0	2.3	1.11	88.9
L2U3 Diag. (D) (comp.)	474.0	18.69	299.3	0.5	21.5	5,875	192.5	1.9	0.0	1.7	2.33	186.7
U3L4 Diag. (D) (comp.)	456.0	18.69	299.3	0.5	21.5	5.875	192.5	1.9	0.0	1.7	2.24	179.3
U4L5 Diag. [7] (fen.)	471.0	56.69	514.8	0.5	21.5	5.875	331.1	5.7	0.0	2.3	1.23	98.0
L3U3 Hanger (center)	271.0	19.50	290.8	0.5	39.0	5.875	214.0	3.0	0.0	2.74	1.15	91.7
L)U1	264.0	18.00	291.2	0.5	39.0	5.875	214.3	3.0	0.0	2.74	1.12	89.6
12 U 2	ZERO FORCE MEMBER			0.5	39.0	5.875	0.0	3.0	0.0	2.74		\#VALUE!
L4U4	ZERO FORCE MEMBER			0.5	39.0	5.875	0.0	3.0	0.0	2.74	\#\#\#\#\#	\#VALUEI
L5U5	264.0	18.00	291.2	0.5	39.0	5.875	214.3	3.0	0.0	2.74	1.12	89.6
End Post U5L6	815.0	91.53	775.9	0.5	21.5	5.875	499.1	9.5	0.0	2.89	1.42	113.8

MAXIMUM RATING

MEMBER	CAPACITY (KPSS)	DL. (KPS)	LL (EBO-AXLE-KPS	DIST.	IMPACT\%	RE\%	LL+1 (K)PS)	WIND	LONGIT.	LATERAL	RF	E80-RATING
End Post LOU1	1166.0	91.53	775.9	0.5	21.5	5.875	499.1	9.5	0.0	2.89	2.12	169.7
Boftom Chord (8C1) L0L2	494.0	56.19	476.3	0.5	21.5	5.875	306.4	49.2	148.0	29.2	0.80	64.3
Baltam Chord (BC2) L2L4	944.0	102.46	826.5	0.5	21.5	5.875	531.6	65.5	148.0	37.5	1.08	86.6
Bottom Chord (BC1) L4L6	516.0	56.19	476.3	0.5	21.5	5.875	306.4	49.2	148.0	29.2	0.85	67.9
Top Chord U1U2	980.0	90.99	738.6	0.5	21.5	5.875	475.1	16.7	0.0	2.8	1.83	146.0
Top Chord U2U3	961.0	90.99	738.6	0.5	21.5	5.875	475.1	16.7	0.0	2.8	1.79	142.8
Top Chord U3U4	968.0	90.99	738.6	0.5	21.5	5.875	475.1	16.7	0.0	2.8	1.80	144.0
Top Chord U4U5	975.0	90.99	738.6	0.5	21.5	5.875	475.1	16.7	0.0	2.8	1.81	145.2
Ull2 Diag. (T) (ten.)	629.0	56.69	514.8	0.5	21.5	5.875	331.1	5.7	0.0	2.3	1.70	135.9
L2U3 Diag. (D) (comp.)	690.0	18.69	299.3	0.5	21.5	5.875	192.5	1.9	0.0	1.7	3.45	275.7
U3L4 Diag. (D) (comp.)	664.0	18.69	299.3	0.5	21.5	5.875	192.5	1.9	0.0	1.7	3.31	265.0
U4L.5 Diag. (T) (ten.)	685.0	56.69	514.8	0.5	21.5	5.875	331.1	5.7	0.0	2.3	1.87	149.4
L3U3 Hanger (center)	395.0	19.50	290.8	0.5	39.0	5.875	214.0	3.0	0.0	2.74	1.72	137.5
LIU1	384.0	18.00	291.2	0.5	39.0	5.875	214.3	3.0	0.0	2.74	1.67	133.8
L2U2	ZERO FORCE MEMBER			0.5	39.0	5.875	0.0	3.0	0.0	2.74	\#\#\#\#	\#Valuel
L4U4	ZERO FORCE MEMBER			0.5	39.0	5.875	0.0	3.0	0.0	2.74	\#\#\#\#	\#VALUE!
L5U5	384.0	18.00	291.2	0.5	39.0	5.875	214.3	3.0	0.0	2.74	1.67	133.8
End Post U5L6	1185.0	91.53	775.9	0.5	21.5	5.875	499.1	9.5	0.0	2.89	2.16	172.8

RIGHT TRUSS MEMBERS＝LOAD CASE B

NORMAL RATING

MEMBER	CAPACITY（KIPS）	DL（KPP）	LL（E80－AXLE－KIPS］	DIST．	IMPACT\％	RE\％	$\underline{L T+1(X] P S)}$	WIND	LONGIT．	LATERAL	RF	E8O－RATING
End Post LOUl	796.0	91.53	775.9	0.5	21.5	5.875	499.1	9.5	0.0	2.89	1.38	1.10 .8
Botfom Chord（BC1） 1012	371.0	56.19	476.3	0.5	21.5	5.875	306.4	49.2	148.0	29.2	0.55	43.9
Bottom Chord（BC2）L2L4	666.9	102.46	826.5	0.5	21.5	5.875	531.6	65.5	148.0	37.5	0.69	55.6
Boltom Chord（ BCl ）L4L6	363.0	56.19	476.3	0.5	21.5	5.875	306.4	49.2	148.0	29.2	0.53	42.6
Top Chord U1U2	710.0	90.99	738.6	0.5	21.5	5.875	475.1	16.7	0.0	2.8	1.26	100.8
Top Chord U2U3	680.0	90.99	738.6	0.5	21.5	5.875	475.1	16.7	0.0	2.8	1.20	95.8
Top Chord U3U4	655.0	90.99	738.6	0.5	21.5	5.875	475.1	16.7	0.0	2.8	1.15	91.6
Top Chard U4U5	650.0	90.99	738.6	0.5	21.5	5.875	475.1	16.7	0.0	2.8	1.13	90.8
Ull2 Diag．IT］（ten．］	453.0	56.69	514.8	0.5	21.5	5.875	331.1	5.7	0.0	2.3	1.17	93.7
L2U3 Diag．（D）（comp．	460.0	18.69	299.3	0.5	21.5	5.875	192.5	1.9	0.0	1.7	2.26	181.0
U3L4 Diag．（D）（comp．）	415.0	18.69	299.3	0.5	21.5	5.875	192.5	1.9	0.0	1.7	2.03	162.4
U4L5 Dlag．［I］（ten．）	455.0	56.69	514.8	0.5	21.5	5.875	331.1	5.7	0.0	2.3	1.18	94.2
L3U3 Hanger（center）	271.0	19.50	290.8	0.5	39.0	5.875	214.0	3.0	0.0	2.74	1.15	91.7
LIUT	270.0	18.00	291.2	0.5	39.0	5.875	214.3	3.0	0.0	2.74	1.15	91.8
L2U2	ZERO FORCE MEMBER			0.5	39.0	5.875	0.0	3.0	0.0	2.74	\＃\＃\＃\＃\＃	\＃VALUEI
L4U4	ZERO FORCE MEMBER			0.5	39.0	5.875	0.0	3.0	0.0	2.74	弄辛\＃	\＃VALJE！
LSU5	271.0	18.00	291.2	0.5	39.0	5.875	214.3	3.0	0.0	2.74	1.15	92.2
End Post USL6	813.0	91.53	775.9	0.5	21.5	5.875	499.1	9.5	0.0	2.89	1.42	113.5

	$\begin{aligned} & 8 \\ & 0 \\ & 0 \end{aligned}$		\therefore	$\begin{array}{c\|c} n \\ 0 & 0 \\ 0 & 0 \\ 0 \end{array}$	$\left\|\begin{array}{c} a \\ \dot{\sim} \\ \stackrel{\sim}{n} \end{array}\right\|$	\dot{c}			$\begin{array}{\|c} \underset{\sim}{\mathrm{j}} \\ \underset{\mathrm{v}}{ } \end{array}$							$\begin{aligned} & \stackrel{\rightharpoonup}{3} \\ & \frac{4}{8} \end{aligned}$		
$\stackrel{4}{2}$	$\overline{\mathrm{v}}$	0		$\begin{array}{cc} 9 & \infty \\ - & 0 \\ 0 \end{array}$	$\stackrel{\sim}{\sim}$	－	馬	$\stackrel{\sim}{\sim}$	$\stackrel{0}{2}$	$\left\|\begin{array}{c} \vec{m} \\ \underset{r}{2} \end{array}\right\|$	$\stackrel{0}{2}$	$\stackrel{8}{8}$	$\underset{\sim}{\text { N }}$	卫		等	$\stackrel{N}{N}$	\cdots
	$\left\|\begin{array}{l} 0 \\ \underset{\sim}{\sim} \\ \dot{N} \end{array}\right\|$	$\underset{i}{\substack{9 \\ \\ \\ \hline}}$	$\begin{gathered} y \\ \mathrm{~N} \end{gathered}$	$\stackrel{\sim n}{m}\left\|\begin{array}{c} \underset{N}{N} \\ \dot{N} \end{array}\right\|$	\sim	$\stackrel{\infty}{\sim}$	－	$\stackrel{\infty}{\sim}$	$\stackrel{3}{\sim}$	$\stackrel{ }{-}$	－	\bigcirc	－	N	$\hat{\mathrm{i}}$	N	$\stackrel{\text { N }}{\text { N }}$	
$\begin{gathered} 4 \\ \frac{0}{3} \\ 2 \\ 9 \end{gathered}$	$\mid 0$					0	80	0	\bigcirc				O	O	－	\bigcirc	\bigcirc	
$\frac{0}{2}$	$\left\lvert\, \begin{aligned} & n \\ & 0 \end{aligned}\right.$	$\left\|\begin{array}{l} n \\ \frac{a}{\sigma} \end{array}\right\|$	$\begin{gathered} \text { y } \\ \vdots \end{gathered}$	\dot{c}	$\stackrel{1}{6}$	0	0	\bigcirc	น ${ }^{\text {d }}$	$\stackrel{\sim}{-}$	－	令	O	\bigcirc	O	ल	O	$\stackrel{4}{2}$
$\begin{aligned} & \stackrel{\rightharpoonup}{2} \\ & \underline{\underline{3}} \end{aligned}$	$\left\lvert\, \begin{aligned} & \stackrel{\rightharpoonup}{0} \\ & \hline \end{aligned}\right.$	$\left\|\begin{array}{c} 7 \\ 0 \\ 0 \\ 0 \end{array}\right\|$			$\left\|\begin{array}{c} \bar{n} \\ \stackrel{N}{寸} \end{array}\right\|$		$\begin{gathered} \dot{8} \\ \hline \end{gathered}$					$\stackrel{?}{2}$	－	$\left\|\frac{m}{i}\right\|$	0	\bigcirc		－
$\left\|\begin{array}{c} 0_{0}^{0} \\ \dot{x} \\ \underset{x}{2} \end{array}\right\|$	$\left\|\begin{array}{c} n \\ 0 \\ 0 \\ n \end{array}\right\|$				\mathfrak{c}	$\begin{gathered} n \\ \\ \\ \hline \end{gathered}$			$\left\lvert\, \begin{gathered} n \\ \stackrel{n}{c} \\ \stackrel{y}{c} \end{gathered}\right.$	$\left\|\begin{array}{c} \infty \\ \infty \\ \infty \\ \infty \\ w \end{array}\right\|$			5	\mathfrak{c}	\mathfrak{c}	$\left\lvert\, \begin{gathered} n \\ \stackrel{\rightharpoonup}{\infty} \\ \text { n } \end{gathered}\right.$	$\begin{array}{\|c\|} \substack{n \\ 0 \\ \omega \\ 心 \\ \hline} \end{array}$	W
$\begin{array}{\|c\|} \hline 0 \\ \hline \\ 0 \\ x \\ n \\ 2 \end{array}$	$\left\lvert\, \frac{n}{\infty}\right.$		$\frac{?}{v} \stackrel{?}{\sim}$	$\underset{\sim}{n} \frac{10}{\infty}$	$\stackrel{\sim}{\sim}$	$\underset{\sim}{3} \stackrel{3}{4}$	$\frac{n}{4}-\frac{n}{\bar{\alpha}}$	\cdots	－	$\stackrel{\sim}{\sim}$	$\dot{\star}$	$\underset{\sim}{n} \underset{\sim}{n}$	$\stackrel{i}{9}$	$\left\|\begin{array}{c} 0 \\ 9 \end{array}\right\|$	0	$\stackrel{-}{\circ}$	$\left.\begin{aligned} & 0 \\ & 0 \\ & \end{aligned} \right\rvert\,$	$\stackrel{4}{2}$
	$\begin{array}{\|c\|} \hline 2 \\ 3 \\ \hline \end{array}$	$\left.\begin{array}{\|c} 40 \\ 0 \end{array} \right\rvert\,$		$\begin{array}{l\|l\|l\|} \hline 0 & 0 \\ 0 & 0 \\ \hline \end{array}$	30	3	30^{3}	$0 \text { n }$	$\stackrel{3}{0}$	${ }_{0}^{2}$	\mathfrak{n}	$\bigcirc 3$	${ }^{3}$	$\begin{aligned} & n \\ & 0 \\ & 0 \end{aligned}$	5	O	\bigcirc	$\stackrel{\square}{0}$
	$\frac{a}{2}$				$\left\|\begin{array}{l} 0 \\ 0 \\ p \end{array}\right\|$			\mathfrak{c}	$\begin{aligned} & \infty \\ & \stackrel{\infty}{i} \\ & \stackrel{y}{n} \end{aligned}$	$\stackrel{y}{n} \stackrel{y}{2}$		$$	$\stackrel{\substack{\infty \\ \vdots \\ \vdots \\ \vdots \\ \vdots \\ \\ \hline}}{ }$	3			(x)	N
$\frac{\frac{2}{z}}{\square}$	$\frac{18}{2}$	$\frac{a}{9}$	\dot{c}	$\underset{\sim}{\circ}$	$j \begin{aligned} & \infty \\ & i \\ & i \\ & i \end{aligned}$	\hat{S}_{6}^{2}			$\left\|\begin{array}{l} 0 \\ 0 \\ 0 \\ 0 \end{array}\right\|$			$\left.\begin{array}{c} 0 \\ 0 \\ \infty \end{array}\right)$	\dot{a}	$\begin{array}{\|c} 8 \\ 0 \\ 0 \end{array}$	$\begin{aligned} & \sum_{2} \\ & u \\ & u \\ & 0 \\ & 0 \\ & 0 \end{aligned}$		8	$\stackrel{\square}{\square}$
$\left\|\begin{array}{l} \frac{a}{c} \\ \frac{c}{2} \\ \bar{y} \\ \frac{0}{4} \\ 0 \end{array}\right\|$	0	$\left\|\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \end{array}\right\|$		$\underset{0}{2}$	S		웅			0		0	号		$\left\|\begin{array}{c} \stackrel{\rightharpoonup}{0} \\ \stackrel{\sim}{\tilde{N}} \\ \underset{\sim}{2} \end{array}\right\|$	畄	0 0 0	$\stackrel{\rightharpoonup}{2} \underset{\sim}{2} \underset{\sim}{\square}$
嶉	$\left(\begin{array}{l} \overrightarrow{3} \\ \frac{3}{5} \\ \frac{2}{2} \\ \frac{1}{4} \\ \frac{1}{4} \end{array}\right.$				Top Chord U1U2											$\left\lvert\, \begin{aligned} & \mathrm{g} \\ & \hline \end{aligned}\right.$	3	

FLOOR SYSTEM - LOAD CASE A

MEMBER	CAPACITY (KSI)	DL (KSI)	LL (E8O-KSI)	DIST.	IMPACT \%	RE \%	LL+I (KSI)	RF	E8O-RATING
Stringer Panel 1 (Lt.) (moment)	16.5	0.672	10.81	1.0	39.0	14.275	17.2	0.92	73.7
Stringer Panel 1 (Rt.) (moment)	16.5	0.679	10.92	1.0	39.0	14.275	17.3	0.91	73.0
Stringer Panel 2 (Lt.) (moment)	16.5	0.656	10.55	1.0	39.0	14.275	16.8	0.95	75.6
Stringer Panel 2 (Rt.) (moment)	16.5	0.687	11.05	1.0	39.0	14.275	17.6	0.90	72.1
Stringer Panel 3 (Lt.) (moment)	16.5	0.656	10.55	1.0	39.0	14.275	16.8	0.95	75.6
Stringer Panel 3 (Rt.) (moment)	16.5	0.68	10.94	1.0	39.0	14.275	17.4	0.91	72.8
Stringer Panel 4 (Lt.) (moment)	16.5	0.656	10.55	1.0	39.0	14.275	16.8	0.95	75.6
Stringer Panel 4 (Rt.) (moment)	16.5	0.675	10.86	1.0	39.0	14.275	17.3	0.92	73.4
Stringer Panel 5 (Lt.) (moment)	16.5	0.664	10.68	1.0	39.0	14.275	17.0	0.93	74.7
Stringer Panel 5 (Rt.) (moment)	16.5	0.679	10.92	1.0	39.0	14.275	17.3	0.91	73.0
Stringer Panel 6 (Lt.) (moment)	16.5	0.656	10.55	1.0	39.0	14.275	16.8	0.95	75.6
Stringer Panel 6 (Rt.) (moment)	16.5	0.675	10.86	1.0	39.0	14.275	17.3	0.92	73.4
Floorbeam L1 (moment)	16.5	0.915	10.37	1.0	39.0	5.875	15.3	1.02	81.7
Floorbeam L2 (moment)	16.5	0.927	10.51	1.0	39.0	5.875	15.5	1.01	80.5
Floorbeam L3 (moment)	16.5	0.919	10.42	1.0	39.0	5.875	15.3	1.02	81.3
Floorbeam L4 (moment)	16.5	0.904	10.25	1.0	39.0	5.875	15.1	1.03	82.7
Floorbeam L5 (moment)	16.5	0.932	10.57	1.0	39.0	5.875	15.6	1.00	80.1
Stringer (shear)	10.5	0.322	5.92	1.0	39.0	14.275	9.4	1.08	86.6
Floorbeam (shear)	10.5	0.576	6.4	1.0	39.0	5.875	9.4	1.05	84.3

MEMBER	CAPACITY (KSI)	DL (KSI)	LL (E80-KSI)	DIST.	IMPACT \%	RE $\%$	LL +1 (KSI)	RF	E80-RATING
Stringer Panel 1 (Lt.) (moment)	24.0	0.672	10.81	1.0	39.0	14.275	17.2	1.36	108.7
Stringer Panel 1 (Rt.) (moment)	24.0	0.679	10.92	1.0	39.0	14.275	17.3	1.34	107.6
Stringer Panel 2 (Lt.) (moment)	24.0	0.656	10.55	1.0	39.0	14.275	16.8	1.39	111.4
Stringer Panel 2 (Rt.) (moment)	24.0	0.687	11.05	1.0	39.0	14.275	17.6	1.33	106.3
Stringer Panel 3 (Lt.) (moment)	24.0	0.656	10.55	1.0	39.0	14.275	16.8	1.39	111.4
Stringer Panel 3 (Rt.) (moment)	24.0	0.68	10.94	1.0	39.0	14.275	17.4	1.34	107.4
Stringer Panel 4 (Lt.) (moment)	24.0	0.656	10.55	1.0	39.0	14.275	16.8	1.39	111.4
Stringer Panel 4 (Rt.) (moment)	24.0	0.675	10.86	1.0	39.0	14.275	17.3	1.35	108.2
Stringer Panel 5 (Lt.) (moment)	24.0	0.664	10.68	1.0	39.0	14.275	17.0	1.38	110.0
Stringer Panel 5 (Rt.) (moment)	24.0	0.679	10.92	1.0	39.0	14.275	17.3	1.34	107.6
Stringer Panel 6 (Lt.) (moment)	24.0	0.656	10.55	1.0	39.0	14.275	16.8	1.39	111.4
Stringer Panel 6 (Rt.) (moment)	24.0	0.675	10.86	1.0	39.0	14.275	17.3	1.35	108.2
Floorbeam L1 (moment)	24.0	0.915	10.37	1.0	39.0	14.275	16.5	1.40	112.1
Floorbeam L (moment)	24.0	0.927	10.51	1.0	39.0	14.275	16.7	1.38	110.6
Floorbeam L3 (moment)	24.0	0.919	10.42	1.0	39.0	14.275	16.6	1.39	111.6
Floorbeam L4 (moment)	24.0	0.904	10.25	1.0	39.0	14.275	16.3	1.42	113.5
Floorbeam L5 (moment)	24.0	0.932	10.57	1.0	39.0	5.875	15.6	1.48	118.6
Stringer (shear)	18.0	0.322	5.92	1.0	39.0	14.275	9.4	1.88	150.4
Floorbeam (shear)	18.0	0.576	6.4	1.0	39.0	5.875	9.4	1.85	148.0

SALINAS RIVER

RAILROAD BRIDGE

AS-INSPECTED
LOAD RATING

CALCULATIONS

SPAN 5

Appendix 5

			NORMAL RATIN						
MEMBER	CAPACITY (K)PS)	DL (KIPS)	LL (E80-AXLE-KJPS)	DIST.	IMPACT \%	RE \%	LL+1 (KJPS)	RF	E80-RATING
End Posit LOU1	654	91.53	775.9	0.5	21.5	5.875	499.1	1.13	90.2
Bottom Chord (BCl) LOL 2	284	56.19	476.3	0.5	21.5	5.875	306.4	0.74	59.5
Bottorn Chord (BC2) L2L4	517	102.46	826.5	0.5	21.5	5.875	531.6	0.78	62.4
Bottom Chord (BC1) L4L6	298	56.19	476.3	0.5	21.5	5.875	306.4	0.79	63.1
Top Chord U1U2	541	90.99	738.6	0.5	21.5	5.875	475.1	0.95	75.8
Top Chord U2U3	487	90.99	738.6	0.5	21.5	5.875	475.1	0.83	66.7
Top Chord U3U4	522	90.97	738.6	0.5	21.5	5.875	475.1	0.91	72.6
Top Chord U4U5	524	90.99	738.6	0.5	21.5	5.875	475.1	0.91	72.9
U1L2 Diag. (T) (ten.)	354	56.69	514.8	0.5	21.5	5.875	331.1	0.90	71.8
L2U3 Diag. (D) (comp.)	380	18.69	299.3	0.5	21.5	5.875	192.5	1.88	150.1
U3L4 Diag. (D) (comp.)	359	18.69	299.3	0.5	21.5	5.875	192.5	1.77	141.4
U4L5 Diag. (ten.)	347	56.69	514.8	0.5	21.5	5.875	331.1	0.88	70.1
L3U'3 Hanger (center)	217	19.50	290.8	0.5	39.0	5.875	214.0	0.92	73.8
L1U1	227	18.00	291.2	0.5	39.0	5.875	214.3	0.98	78.0
L2U2	ZERO FORCE MEMBER			0.5	39.0	5.875	0.0	\#\#\#\#	\#VALUEI
L4U4	ZERO FORCE MEMBER			0.5	39.0	5.875	0.0	\#\#\#\#	\#VALUEI
L.5U5	217	18.00	291.2	0.5	39.0	5.875	214.3	0.93	74.3
End Post USL6	622	91.53	775.9	0.5	21.5	5.875	499.1	1.06	85.0

SNIVY WNWIXVW
Appendix 5

MEMBER	CAPACITY (KPS)	DL (KIPS)	LL (E8O-AXLE-KIPS)	DIST.	IMPACT \%	RE\%	LL+1 (KIPS)	WIND	LONGIT.	LATERAL	RF	E80-RATING
End Post LDU1	818.0	91.53	775.9	0.5	21.5	5.875	499.1	9.5	0.0	2.89	1.43	114.3
Boltom Chord (BC1) LOL2	355.0	56.19	476.3	0.5	21.5	5.875	306.4	49.2	148.0	29.2	0.52	41.3
Battorn Chord (BC2) L2L4	646.0	102.46	826.5	0.5	21.5	5.875	531.6	65.5	148.0	37.5	0.67	53.3
Bottom Chord (BC1) L4L6	373.0	56.19	476.3	0.5	21.5	5.875	306.4	49.2	148.0	29.2	0.55	44.3
Top Chord U1U2	676.0	90.99	738.6	0.5	21.5	5.875	475.1	16.7	0.0	2.8	1.19	95.1
Top Chord U2U3	609.0	90.99	738.6	0.5	21.5	5.875	475.1	16.7	0.0	2.8	1.05	83.9
Top Chord U3U4	653.0	90.99	738.6	0.5	21.5	5.875	475.1	16.7	0.0	2.8	1.14	91.3
Iop Chord U4US	655.0	90.99	738.6	0.5	21.5	5.875	475.1	16.7	0.0	2.8	1.15	91.6
U1L2 Diag. (T) (fen.)	443.0	56.69	514.8	0.5	21.5	5.875	331.1	5.7	0.0	2.3	1.14	91.3
L2U3 Diag. (D) (comp.)	475.0	18.69	299.3	0.5	21.5	5.875	192.5	1.9	0.0	1.7	2.34	187.2
U3L4 Diag. (D) (comp.)	449.0	18.69	299.3	0.5	21.5	5.875	192.5	1.9	0.0	1.7	2.21	176.4
U4L. 5 Diag. (T) (ten.)	434.0	56.69	514.8	0.5	21.5	5.875	331.1	5.7	0.0	2.3	1.11	89.2
L3U3 Hanger (center)	271.0	19.50	290.8	0.5	39.0	5.875	214.0	3.0	0.0	2.74	1.15	91.7
Llu1	284.0	18.00	291.2	0.5	39.0	5.875	214.3	3.0	0.0	2.74	1.21	97.0
L2U2	ZERO FORCE MEMBER			0.5	39.0	5.875	0.0	3.0	0.0	2.74	\#\#\#\#	\#VALUEI
L4U4	ZERO FORCE MEMBER			0.5	39.0	5.875	0.0	3.0	0.0	2.74	\#\#\#\#	\#Value!
LSU5	271.0	18.00	291.2	0.5	39.0	5.875	214.3	3.0	0.0	2.74	1.15	92.2
End Post U5L6	778.0	91.53	775.9	0.5	21.5	5.875	499.1	9.5	0.0	2.89	1.35	107.9

MEMBER	CAPACITY (KIPS)	DL (KIPS)	LL [E80-AXLE-KPS)	DIST.	IMPACT \%	RE\%	LL+1 (K)PS)	WIND	LONGIT.	LATERAL	RF	E8O-RATING
End Post LOU1	1189.0	91.53	775.9	0.5	21.5	5.875	499.1	9.5	0.0	2.89	2.17	173.4
Bottom Chord (BC1) 1012	518.0	56.19	476.3	0.5	21.5	5.875	306.4	49.2	148.0	29.2	0.85	68.3
Bottom Chord (BC2) L2L4	940.0	102.46	826.5	0.5	21.5	5.875	531.6	65.5	148.0	37.5	1.08	86.1
Boitom Chord \{BCl\| L4L6	541.0	56.19	476.3	0.5	21.5	5.875	306.4	49.2	148.0	29.2	0.90	72.1
Top Chard U1U2	984.0	90.99	738.6	0.5	21.5	5.875	475.1	16.7	0.0	2.8	1.83	146.7
Top Chord U2U3	885.0	90.99	738.6	0.5	21.5	5.875	475.1	16.7	0.0	2.8	1.63	130.1
Top Chord U3U4	949.0	90.99	738.6	0.5	21.5	5.875	475.1	16.7	0.0	2.8	1.76	140.8
Top Chord U4U5	953.0	90.99	738.6	0.5	21.5	5.875	475.1	16.7	0.0	2.8	1.77	141.5
U1L2 Diag. (T) (ten.)	644.0	56.69	514.8	0.5	21.5	5.875	331.1	5.7	0.0	2.3	1.74	139.5
L2U3 Diag. (D) (comp.)	693.0	18.69	299.3	0.5	21.5	5.875	182.5	1.9	0.0	1.7	3.46	276.9
U3L4 Dlag. (D) (comp.)	653.0	18.69	299.3	0.5	21.5	5.875	192.5	1.9	0.0	1.7	3.26	260.5
U4L5 Diag. (T) (ten.)	631.0	56.69	514.8	0.5	21.5	5.875	331.1	5.7	0.0	2.3	1.71	136.4
L3U3 Hanger (center)	395.0	19.50	290.8	0.5	39.0	5.875	214.0	3.0	0.0	2.74	1.72	137.5
LIU1	413.0	18.00	291.2	0.5	39.0	5.875	214.3	3.0	0.0	2.74	1.81	144.5
L2U2	ZERO FORCE MEMBER			0.5	39.0	5.875	0.0	3.0	0.0	2.74	\#\#\#\#	\#Value!
L4U4	ZERO FORCE MEMBER			0.5	39.0	5.875	0.0	3.0	0.0	2.74	\#\#\#\#	\#VALUE!
LSU5	395.0	18.00	291.2	0.5	39.0	5.875	214.3	3.0	0.0	2.74	1.72	137.9
End Post U5L6	1131.0	91.53	775.9	0.5	21.5	5.875	499.1	9.5	0.0	2.89	2.05	164.2

SALINAS RIVER BRIDGE

MEMBER	CAPACITY (K)PS]	DL (KIPS)	LL (E8O-AXLE-KPS)	DIST.	IMPACT \%	RE \%	LL+ (KPPS)	WIND	LONGIT.	LATERAL	RF	E80-RATING
End Post LOU1	783.0	91.53	775.9	0.5	21.5	5.875	499.1	9.5	0.0	2.89	1.36	108.7
Botiom Chord (BCl) LOL2	369.0	56.19	476.3	0.5	21.5	5.875	306.4	49.2	148.0	29.2	0.55	43.6
Bottom Chord (8C2) L2L4	675.0	102.46	826.5	0.5	21.5	5.875	531.6	65.5	148.0	37.5	0.71	56.6
Bottom Chord (BC1) L4L6	369.0	56.19	476.3	0.5	21.5	5.875	306.4	49.2	148.0	29.2	0.55	43.6
Top Chord UIU2	694.0	90.99	738.6	0.5	21.5	5.875	475.1	16.7	0.0	2.8	1.23	98.1
fop Chord U2U3	650.0	90.99	738.6	0.5	21.5	5.875	475.1	16.7	0.0	2.8	1.13	90.8
Top Chord U3U4	669.0	90.99	738.6	0.5	21.5	5.875	475.1	16.7	0.0	2.8	1.17	94.0
Top Chord U4U5	651.0	90.99	738.6	0.5	21.5	5.875	475.1	16.7	0.0	2.8	1.14	90.9
U1L2 Diag. [T] [ten.)	453.0	56.69	514.8	0.5	21.5	5.875	331.1	5.7	0.0	2.3	1.17	93.7
L2U3 Diag. (D) [comp.)	468.0	18.69	299.3	0.5	21.5	5.875	192.5	1.9	0.0	1.7	2.30	184.3
U3L4 Diog. (D) (comp.)	459.0	18.69	299.3	0.5	21.5	5.875	192.5	1.9	0.0	1.7	2.26	180.6
U4L5 Diag. (T) (ten.)	450.0	56.69	514.8	0.5	21.5	5.875	331.1	5.7	0.0	2.3	1.16	93.0
L3U3 Hanger (center]	271.0	19.50	290.8	0.5	39.0	5.875	214.0	3.0	0.0	2.74	1.15	91.7
LIU1	268.0	18.00	291.2	0.5	39.0	5.875	214.3	3.0	0.0	2.74	1.14	91.1
12.12	ZERO FORCE MEMBER			0.5	39.0	5.875	0.0	3.0	0.0	2.74	\#\#\#\#	\#VALUEI
L4U4	ZERO FORCE MEMBER			0.5	39.0	5.875	0.0	3.0	0.0	2.74	拱\#\#\#\#	\#VALUE!
LSUS	268.0	18.00	291.2	0.5	39.0	5.875	214.3	3.0	0.0	2.74	1.14	91.1
End Post U5L6	774.0	91.53	775.9	0.5	21.5	5.875	499.1	9.5	0.0	2.89	1.34	107.3

maximum rating

MEMBER	CAPACITY (KIPS)	D1 (KPS)	LL [E80-AXLE-KIPS)	DIST.	IMPACT \%	RE\%	LL+ [KPPS]	WIND	LONGIT.	LATERAL	RF	E8O-RATING
End Post LOU1	1139.0	91.53	775.9	0.5	21.5	5.875	499.1	9.5	0.0	2.89	2.07	165.4
Bottom Chord (BC1) LOL2	535.0	56.19	476.3	0.5	21.5	5.875	306.4	49.2	148.0	29.2	0.89 .	71.1
Botiom Chord (BC2) L2L4	983.0	102.46	826.5	0.5	21.5	5.875	531.6	65.5	148.0	37.5	1.14	90.9
Bottom Chord (BC1) L4L6	535.0	56.19	476.3	0.5	21.5	5.875	306.4	49.2	148.0	29.2	0.89	71.1
Top Chord U1U2	1009.0	90.99	738.6	0.5	21.5	5.875	475.1	16.7	0.0	2.8	1.89	150.9
Top Chord U2U3	946.0	90.99	738.6	0.5	21.5	5.875	475.1	16.7	0.0	2.8	1.75	140.3
Top Chord U3U4	973.0	90.99	738.6	0.5	21.5	5.875	475.1	16.7	0.0	2.8	1.81	144.9
Top Chord U4U5	948.0	90.99	738.6	0.5	21.5	5.875	475.1	16.7	0.0	2.8	1.76	140.7
U1L2 Diag. [7] (ten,	658.0	56.69	514.8	0.5	21.5	5.875	331.1	5.7	0.0	2.3	1.79	142.9
L2U3 Diag. (D) (comp.)	680.0	18.69	299.3	0.5	21.5	5.875	192.5	1.9	0.0	1.7	3.39	271.6
U3L4 Diag. (D) (comp.)	668.0	18.69	299.3	0.5	21.5	5.875	192.5	1.9	0.0	1.7	3.33	266.6
U4L. 5 Diag. [I] (ten.)	655.0	56.69	514.8	0.5	21.5	5.875	331.1	5.7	0.0	2.3	1.78	142.2
L3U3 Hanger (center)	395.0	19.50	290.8	0.5	39.0	5.875	214.0	3.0	0.0	2.74	1.72	137.5
L1U1	390.0	18.00	291.2	0.5	39.0	5.875	214.3	3.0	0.0	2.74	1.70	136.0
L2U2	ZERO FORCE MEMBER			0.5	39.0	5.875	0.0	3.0	0.0	2.74	\#\#\#\#	\#VALUE!
L4U4	ZERO FORCE MEMBER			0.5	39.0	5.875	0.0	3.0	0.0	2.74	\#\#\#\#	\#VALUE!
LSU5	390.0	18.00	291.2	0.5	39.0	5.875	214.3	3.0	0.0	2.74	1.70	136.0
End Posi U5L6	1126.0	91.53	775.9	0.5	21.5	5.875	499.1	9.5	0.0	2.89	2.04	163.4

Appendix 5
SALINAS RIVER BRIDGE
AS-INSPECTED LOAD RATING - 30 FT. DEEP TRUSS
FLOOR SYSTEM - LOAD CASE A

MEMBER	CAPACITY (KSI)	DL (KSI)	LL (E80-KSI)	DIST.	IMPACT \%	RE \%	LL+I (KSI)	RF	E80-RATING
Stringer Panel 1 (Lt.) (moment)	16.5	0.656	10.55	1.0	39.0	14.275	16.8	0.95	75.6
Stringer Panel 1 (Rt.) (moment)	16.5	0.683	11	1.0	39.0	14.275	17.5	0.91	72.4
Stringer Panel 2 (Lt.) (moment)	16.5	0.656	10.55	1.0	39.0	14.275	16.8	0.95	75.6
Stringer Panel 2 (Rt.) (moment)	16.5	0.67	10.79	1.0	39.0	14.275	17.1	0.92	73.9
Stringer Panel 3 (Lt.) (moment)	16.5	0.656	10.55	1.0	39.0	14.275	16.8	0.95	75.6
Stringer Panel 3 (Rt.) (moment)	16.5	0.679	10.92	1.0	39.0	14.275	17.3	0.91	73.0
Stringer Panel 4 (Lt.) (moment)	16.5	0.656	10.55	1.0	39.0	14.275	16.8	0.95	75.6
Stringer Panel 4 (Rt.) (moment)	16.5	0.679	10.92	1.0	39.0	14.275	17.3	0.91	73.0
Stringer Panel 5 (Lt.) (moment)	16.5	0.656	10.55	1.0	39.0	14.275	16.8	0.95	75.6
Stringer Panel 5 (Rt.) (moment)	16.5	0.687	11.05	1.0	39.0	14.275	17.6	0.90	72.1
Stringer Panel 6 (Lt.) (moment)	16.5	0.656	10.55	1.0	39.0	14.275	16.8	0.95	75.6
Stringer Panel 6 (Rt.) (moment)	16.5	0.67	10.79	1.0	39.0	14.275	17.1	0.92	73.9
Floorbeam L1 (moment)	16.5	0.919	10.42	1.0	39.0	5.875	15.3	1.02	81.3
Floorbeam L2 (moment)	16.5	0.902	10.23	1.0	39.0	5.875	15.1	1.04	82.9
Floorbeam L3 (moment)	16.5	0.937	10.63	1.0	39.0	5.875	15.6	0.99	79.6
Floorbeam L4 (moment)	16.5	0.919	10.42	1.0	39.0	5.875	15.3	1.02	81.3
Floorbeam L5 (moment)	16.5	0.943	10.7	1.0	39.0	5.875	15.7	0.99	79.0
Stringer (shear)	10.5	0.322	5.92	1.0	39.0	14.275	9.4	1.08	86.6
Floorbeam (shear)	10.5	0.576	6.4	1.0	39.0	5.875	9.4	1.05	84.3

Appendix 5

MEMBER	CAPACITY (KSI)	DL (KSI)	LL (E8O-KSI)	DIST.	IMPACT \%	RE \%	LL+I (KSI)	RF	E8O-RATING
Stringer Panel 1 (Lt.) (moment)	24.0	0.656	10.55	1.0	39.0	14.275	16.8	1.39	111.4
Stringer Panel 1 (Rt.) (moment)	24.0	0.683	11	1.0	39.0	14.275	17.5	1.33	106.8
Stringer Panel 2 (Lt.) (moment)	24.0	0.656	10.55	1.0	39.0	14.275	16.8	1.39	111.4
Stringer Panel 2 (Rt.) (moment)	24.0	0.67	10.79	1.0	39.0	14.275	17.1	1.36	108.9
Stringer Panel 3 (Lt.) (moment)	24.0	0.656	10.55	1.0	39.0	14.275	16.8	1.39	111.4
Stringer Panel 3 (Rt.) (moment)	24.0	0.679	10.92	1.0	39.0	14.275	17.3	1.34	107.6
Stringer Panel 4 (Lt.) (moment)	24.0	0.656	10.55	1.0	39.0	14.275	16.8	1.39	111.4
Stringer Panel 4 (Rt.) (moment)	24.0	0.679	10.92	1.0	39.0	14.275	17.3	1.34	107.6
Stringer Panel 5 (Lt.) (moment)	24.0	0.656	10.55	1.0	39.0	14.275	16.8	1.39	111.4
Stringer Panel 5 (Rt.) (moment)	24.0	0.687	11.05	1.0	39.0	14.275	17.6	1.33	106.3
Stringer Panel 6 (Lt.) (moment)	24.0	0.656	10.55	1.0	39.0	14.275	16.8	1.39	111.4
Stringer Panel 6 (Rt.) (moment)	24.0	0.67	10.79	1.0	39.0	14.275	17.1	1.36	108.9
Floorbeam LI (moment)	24.0	0.919	10.42	1.0	39.0	14.275	16.6	1.39	111.6
Floorbeam L2 (moment)	24.0	0.902	10.23	1.0	39.0	14.275	16.2	1.42	113.7
Floorbeam L3 (moment)	24.0	0.937	10.63	1.0	39.0	14.275	16.9	1.37	109.3
Floorbeam L4 (moment)	24.0	0.919	10.42	1.0	39.0	14.275	16.6	1.39	111.6
Floorbeam L5 (moment)	24.0	0.943	10.7	1.0	39.0	5.875	15.7	1.46	117.1
Stringer (shear)	18.0	0.322	5.92	1.0	39.0	14.275	9.4	1.88	150.4
Floorbeam (shear)	18.0	0.576	6.4	1.0	39.0	5.875	9.4	1.85	148.0

Appendix 5
COMPARISON OF LOADING RESULTING FROM PASSENGER TRAIN TO E-BO LOADING
SALINAS-30 FOOT DEEP TRUSS

TRUSS MEMBERS MEMEER LO-U1 LO-L. $L 2-12$ $U 1-U 3$ $U 1-L 2$ $L 2-U 3$ HANGER	U (E-80-LOADING -KIPS) 745.9 476.3 826.5 738.6 544.8 299.3 290.8	LL (PASSENGER TRAIN - KIPS) 257.49 158 272.31 251.84 184.74 107.74 134.33	E-EQUIVALENT PASSENGER 26.55 26.54 26.36 27.29 28.71 28.80 36.95
FLOOR SYSTEM MOMENTS	LL (E-80-LOADING -FT-KIPS)	LL (PASSENGER TRAIN-FT-KIPS)	E-EQUUALENT PASSENGER
STRINGER FLOORBEAM	$\begin{aligned} & 531 \\ & 724 \end{aligned}$	$\begin{aligned} & 245.58 \\ & 335.54 \end{aligned}$	$\begin{aligned} & 37.00 \\ & 37.08 \end{aligned}$
SHEAR	LL (E-80-LOADING - KIPS)	LL (PASSENGER JRAIN - KIPS)	E-EQUIVALENT PASSENGER
STRINGER FLODRBEAM	$\begin{gathered} 108.8 \\ 145 \end{gathered}$	$\begin{gathered} 54 \\ 67.102 \end{gathered}$	$\begin{aligned} & 39.71 \\ & 37.02 \end{aligned}$

Appendix 5
COMPARISON OF LOADING RESULTING FROM PASSENGER TRAIN TO E-BO LOADING SALINAS-31 FOOT DEEP TRUSS

TRUSS MEMBERS MEMBER LO-U1 LO.L2 L2-L2' U1-U3 U1-L2 L2U3 HANGER	LL (E-80 -LOADING - KIPS) 766.62 460.85 799.53 715.06 508.6 296.01 290.8	LL (PASSENGER TRAIN - KIPS) 254.33 152.85 263.45 243.76 182.52 10.54 134.33	E-80 EQUIVALENT PASSENGER 26.54 26.55 28.36 27.27 28.71 28.79 36.95
$\begin{aligned} & \text { FLOOR SYSTEM } \\ & \text { MOMENTS } \end{aligned}$	$1 \perp$ (E-80-LOADING - FT-KiPS)	LL (PASSENGER TRAIN - FI-KIPS)	E-80 EQUIVALENT PASSENGER
STRINGER FLOORBEAM	$\begin{aligned} & 531 \\ & 724 \end{aligned}$	$\begin{aligned} & 245.58 \\ & 335.54 \end{aligned}$	$\begin{aligned} & 37.00 \\ & 37.08 \end{aligned}$
SHEAR	L (E-80-LOADING - KIPS)	L (PASSENGER TRAIN - KIPS)	E-BO EQUIVALENT PASSENGER
STRINGER FLOORBEAM	$\begin{gathered} 108.8 \\ 145 \end{gathered}$	$\begin{gathered} 54 \\ 67.102 \end{gathered}$	$\begin{aligned} & 39.71 \\ & 37.02 \end{aligned}$

APPENDIX 6

LOMA PRIETA REPORT

CONSUETAM:S

```
T F Keglet
```

P E. F

Mr. K. L. Wammel,
Engineer - Bridges
Southern Pacific Trans. Co.
One Market Plaza
Room l007
San Francisco, CA 94105
RE: SOUTHERN PACIFIC RAILROAD BRIDGES
OCTOBER 17,1989 EARTHQUAKE DAMAGE
Dear Mr. wammel:
For the records, the writer has written a short description of earthquake damage done to your structures mainly because of the significance of closeness of your bridges to the epicenter, the size of the earthquake and the lack of significant damage. The epicenter was officially located at Loma Prieta in the Santa Cruz mountains and was 7.1 on the Richter scale. The main line reportedly did not sustain structural damage. Only four structures were damaged, one having minor superstructure damage and three with substructure damage.

While highway bridges sustained major damage, the railroad bridges did not. There were several interesting observations about railroad bridge details that played a roll in their survival.

1. Pier cap stones acted as a buffer between superstructures and pier stems and shifted rather than allowing damage to occur.
2. Anchor bolts that held caused minor damage while deteriorated anchor bolts sheared off after minimal resistance and did not cause damage.
3. Segmental roller bearings although many were frozen from corrosion, survived because they did not have pintles, only shear slots.
4. Although girder spans shifted relative to bolster base bearings, the size of the bearings and pier tops were large enough that the movement of piers did not allow any spans to drop.
MODJESKI AND MASTERS
October 30, 1989
Mr. Ken L. Wammel,
Engineer - Bridges Page 2
5. At the Watsonville and Santa Cruz bridges there was an inward movement towards the channel while at Castroville there was a separation of land masses.
We appreciated the opportunity to have inspected these structures.
Very truly yours,
MODJESKI AND MASTERS
Consulting Engineers

DFS: gl
Attachments

This 1904 bridge consists of 5 - 140 ft. long thru truss spans over the Salinas River approximately 25 miles from the epicenter. The metalwork was not damaged but a shift occurred at pier 3 which caused a 6-9 inch lateral displacement of the spans which kinked the track.

The quake caused several large fissures in the ground and by observation of the superstructure it became apparent that there was a spread in the land mass.

The west abutment (Pier l) stayed stationary, Pier 2 shifted eastward about 5 inches, Pier 3 shifted to the left by 6-9 inches, and the remainder of the piers were undisturbed moving as a group. The scenario is confirmed by the following observations.

West Abutment - No gaps indicating movement between the concrete and ground.

- Concrete cracked at the right seat but held the fixed bearing of the lst span in place.

Pier 2 - Pier shifted to east about 5 inches.

- Span 1 expansion roller west and Span 2 fixed bearings remaindered unchanged in relation to the pier top but rollers became exposed from under Span 1.

Pier 3 - Pier shifted to the left 6-9 inches with soil heaval adjacent to the pier and gaps between the soil and pier to a depth of 8 ft . No superstructure shift on pier top.

Pier 4 - No pier shifts noted.
The track was scheduled to be shifted several inches to restore traffic. After a period of time the trusses will be realigned. If there is any pier movement then possible foundation reinforcement will be considered.

PHOTOGRAPH NO. 17 - View of the west abutment crack cause by the truss anchor bolt (Span l) holding the fixed bearing in place.

BRIDGE NO. 113.46 - CASTROVILLE, CA

PHOTOGRAPH NO. 18 - View of the left expansion roller nest exposed at Pier 2 (east end of Span l). pier 2 shifted to the east (right).

PHOTOGRAPH NO. 19 - View of gap between pier and ground indicating pier movement during the quake.

 STEEL BRIDSE FDMLDATICN. ER NO. 113.46 Selinas River

APPENDIX 7

RECOMMENDED REPAIRS

RECOMMENDED REPAIRS

Superstructure

1. Realign truss spans moved during Loma Prieta earthquake
2. Replace truss expansion bearings of Spans 1-5, including replacement of: bearing pedestal, segmental rollers, bearing plate above rollers, and anchor bolts.
3. Replace bearing pedestals of truss fixed bearings of Spans 3 \& 4 .
4. Replace deteriorated sections of top chord cover plates at the following locations:

Span 1, Panels 2-5, Left \& Right Trusses ($40 \%-90 \%$ section loss)
Span 2, Panel 4, Left Truss (50\% section loss)
Span 2, Panel 5, Right Truss (60% section loss)
Span 3, Panel 3, Left \& Right Trusses (50\% \& 70\% section loss)
Span 3, Panel 4, Left Truss (50% section loss)
Span 3, Panel 5, Left Truss (50% section loss)
Span 4, Panels 3-5, Left \& Right Trusses ($30 \%-50 \%$ section loss)
Span 5, Panel 2, Left Truss (40\% section loss)
Span 5, Panels 3-5, Left \& Right Trusses (30\%-75\% section loss)
5. Repair areas of section loss at the following truss members:

Span 1, U2R, Post (50% section loss at one side of outboard flange)
Span 1, L3L, Hanger ($25 \% \& 40 \%$ section loss of inboard flange)
Span 1, L3R, Hanger $(20 \% \& 50 \%$ section loss of inboard flange)
Span 1, L6L, End Post (70% section loss of cover plate)
Span 2, L1R, Hanger (25% section loss at one side of outboard flange)
Span 3, L1R, Hanger (30% section loss at both sides of inboard flange)
Span 4, L4L, Post (30% \& 15% section loss of outboard flange)
Span 4, L4L, Gusset Plate (75% section loss of inboard \& outboard plates)
Span 4, L6R, End Post (80% section loss of outboard pin plate \&
30% section loss of gusset plate at bearing pin)
Span 5, L4L, Diagonal L4L-U5L (30\% \& 20\% section loss of inboard flange)
6. Repair or replace the following truss bracing components:

Span 2, Panel 3, Top Lateral upper connection plate at U2L (100\% SL)
Span 2, Panel 4, Top Lateral upper connection plate at U3L ($90 \% \mathrm{SL}$)
Span 2, Panel 5, Top Lateral upper connection plate at U5L (95\% SL)
Span 3, Panel 2, Top Lateral upper connection plate at U1L (95\% SL)
Span 3, Panel 2, Top Lateral upper connection plate at U2L (95\% SL)
Span 3, Panel 3, Top Lateral upper connection plate at U2L (90\% SL)
Span 3, Panel 4, Top Lateral upper connection plate at U3L ($70 \% \mathrm{SL}$)
Span 3, Panel 4, Top Lateral upper angle near U3L ($70 \% \mathrm{SL}$)
Span 3, Panel 4, Top Lateral upper connection plate at U4L (90\% SL)
Span 3, Panel 5, Bottom Lateral connection plate at L4R (70\% SL)
Span 3, Panel 5, Top Lateral upper connection plate at U4L ($90 \% \mathrm{SL}$)
Span 3, Panel 5, Top Lateral upper connection plate at U5L ($100 \% \mathrm{SL}$)
Span 4, Panel 2, Top Lateral upper connection plate at U1L (100\% SL)
Span 4, Panel 3, Top Lateral lower angle at U3L (100% SL)
Span 4, Panel 4, Top Lateral lower angle at U3R ($70 \% \mathrm{SL}$)
Span 4, Panel 5, Top Lateral upper connection plate at U5L (100\% SL)
Span 4, Panel 5, Top Lateral upper connection plate at U5R (75% SL)
Span 5, Panel 2, Top Lateral upper connection plate at U1L (100\% SL)
Span 5, Panel 2, Top Lateral upper connection plate at U2L (95\% SL)
Span 5, Panel Point U2, Sway Bracing bottom angles ($100 \% \mathrm{SL}$)
Span 5, Panel 3, Top Lateral upper connection plate at U2L. (95\% SL)
Span 5, Panel 3, Top Lateral upper connection plate at U3L $(90 \%$ SL)
Span 5, Panel 4, Top Lateral upper connection plate at U3L (75\% SL)
Span 5, Panel 5, Top Lateral upper connection plate at U5L. (100\% SL)
Span 5, Panel 5, Top L.ateral lower connection plate at U5L (75\% SL)
7. Replace deteriorated lacing bars of the following truss members:

Span 1, Panel 2, Left Truss, Bottom Chord Span 1, Panel 3, Left Truss, Bottom Chord Span 1, Panel 3, Right Truss, Diagonal Span 1, Panel 4, Left Truss, Bottom Chord Span 1, Panel 4, Left Truss, Diagonal Span 1, Panel 4, Right Truss, Diagonal Span 1, Panel 5, Right Truss, Diagonal Span 1, Panel 6, Left Truss, Bottom Chord Span 2, Panel 3, Left Truss, Diagonal Span 3, Panel 1, Left Truss, End Post Span 3, Panel 1, Right Truss, End Post Span 4, Panel 1, Left Truss, End Post Span 4, Panel 1, Right Truss, End Post Span 5, Panel 1, Right Truss, End Post Span 5, Panel 3, Right Truss, Diagonal Span 5, Panel 4, Left Truss, Diagonal Span 5, Panel 4, Right Truss, Diagonal

8. Repair or replace the following floor system components:

Span 1, at LOR, End Post-to-Floorbeam connection plate ($70 \% \mathrm{SL}$)
Span 1, at Floorbeam 0, Left Stringer Bracket top flange angles (95% \& $70 \% \mathrm{SL}$)
Span 1, at Floorbeam 3, Left Floorbeam Bracket connection angles ($50 \% \mathrm{SL}$)
Span 1, at Floorbeam 3, Right Floorbeam Bracket connection angles ($50 \% \mathrm{SL}$)
Span 1, at Floorbeam 5, Left Floorbeam Bracket plate (40% SL)
Span 1, at Floorbeam 5, Left Floorbeam Bracket connection angles ($75 \% \mathrm{SL}$)
Span 1, at Floorbeam 5, Right Floorbeam Bracket plate ($30 \% \mathrm{SL}$)
Span 1, at Floorbeam 5, Right Floorbeam Bracket connection angles ($90 \% \mathrm{SL}$)
Span 1, Floorbeam 6, Floorbeam bottom flange angles (70% \& 40% SL)
Span 1, at L6L, End Post-to-Floorbeam connection plate ($70 \% \mathrm{SL}$)
Span 1, at L6R, End Post-to-Floorbeam connection plate ($90 \% \mathrm{SL}$)
Span 1, at Floorbeam 6, Left Stringer Bracket top flange angles (80% \& 70% SL)
Span 1, at Floorbeam 6, Right Stringer Bracket top flange (100% \& 80% SL)
Span 2, Panel 6, Left Stringer bottom flange ($30 \% \mathrm{SL}$)
Span 3, Panel 1, Left Stringer bottom flange ($20 \% \mathrm{SL}$)
Span 5, Panel 1, Right Stringer bottom flange ($30 \% \mathrm{SL}$)
Span 5, Floorbeam 3, Floorbeam top flange ($30 \% \mathrm{SL}$)
9. Rehabilitate stringer expansion bearings at Spans 2, 3 \& 4, including replacement of sole plates and shim plates, and replacement or re-surfacing bed plates.
10. Clean and overcoat all bridge members.

Substructure

11. Repair crack in Abutment No. 1 at right truss bearing.

APPENDIX C

Preliminary Geotechnical Recommendations for Monterey Branch Line

Shannon \& Wilson, Inc. December 18, 2001

Preliminary Geotechnical Recommendations for Monterey Branch Lane Castroville to Seaside Transit Authority of Monterey County, California

SHANNON\&WLSON.INC.

GEOTEGHNIGAL AND ENVIRONMENTAL GONSULTANTS

At Shamon \& Wilson, our mission is to be a progressive, well-
managed professional consulting firm in the fields of engineering
and applied earth sciences. Oll goal is to perform our senvices
with the highest degree of professionalism with che consideration
to the best interesrs of the public, our chents, and our emplovees.

Submitted To:
Mr. Richard D. Walker
STV Incorporated

Shannon \& Wilson, Inc. 400 N $34^{\text {th }}$ Street, Suite 100 Seattle, Washington 98103

December 18, 2001

Mr. Richard D. Walker
STV Incorporated
1055 West Seventh Street, Suite 3150
Los Angeles, CA 90017-2577

RE: PRELIMINARY GEOTECHNICAL RECOMMENDATIONS FOR MONTEREY BRANCH LINE, CASTROVILLE TO SEASIDE, TRANSIT AUTHORITY OF MONTEREY COUNTY, CALIFORNIA STV PROJECT 306-10201-15.3

Dear Mr. Walker:
The enclosed report presents our preliminary geotechnical recommendations for upgrading the existing Monterey Branch Line from Castroville to Seaside, California, for commuter rail use. Our recommendations address existing embankments, minor structures, Salinas River Bridge No. 113.46, track drainage considerations, and mitigation measures to reduce deposition of wind-blown sand on the tracks.

We appreciate the opportunity to be of service to you on this project and look forward to providing additional services as the project proceeds. If you have any questions, please call Stan Boyle at (206) 695-6863.

Sincerely,

SHANNON \& WILSON, INC.

SRB:CAR:DNM/srb
Enclosure: Preliminary Geotechnical Recommendations for Monterey Branch Line, Castroville to Seaside, Transit Authority of Monterey County, California
c: Donald Sergenfrei, Mojeski and Masters
21-1-09294-001.L2/wp/lkd

EXECUTIVE SUMMARY

The Transit Authority of Monterey County (TAMC) has proposed to initiate intercity passenger rail service from the Monterey, California, area to San Francisco, California. As part of the this project, TAMC proposes to run trains over existing and currently unused Union Pacific Railroad (UP) track between Castroville and Seaside, California (Figure 1). The line segment includes approximately 13 miles of embankment, five ballast-deck timber bridges, and a five-span, steel, through-truss bridge over the Salinas River. In addition to other considerations, embankment and track section reconstruction, structure upgrades, and drainage improvements may be necessary over some or all of this line segment. Shannon \& Wilson, as a subconsultant to STV, Inc., performed a preliminary engineering level geotechnical assessment along this line segment. Our work is described and our recommendations are presented in this report.

For the preliminary engineering phase of this project Shannon \& Wilson visited the project area and observed conditions along portions of the existing railroad on two occasions: March 8, 2000, and July 11 and 12 , 2001. We also completed four soil borings near Salinas River Bridge No. 113.46, reviewed regional geologic and liquefaction susceptibility data, and collected and reviewed subsurface and hydrologic data that had been prepared for three highway bridges that cross the Salinas River. No subsurface explorations were conducted to evaluate the existing embankments or track structure.

In our opinion, the railroad embankments of the Monterey Branch Line between Castroville and Seaside are generally stable and adequate for their intended use to support intercity train traffic. Some localized work to treat soft track locations, flatten slopes, and drain ballast pockets will probably be required to improve embankment stability and track performance before and after train traffic is reestablished. Surface drainage should be improved by raising the embankment, sloping embankment shoulders to drain, and grading surrounding land so that water flows away from the embankment. Ditches and culverts should be cleaned and upgraded where necessary to accommodate runoff. In our opinion, the existing ballast is fouled, of poor quality and low durability, consists of rounded particles, and is likely of inadequate thickness. It is probable that no subballast is present below the ballast. For preliminary engineering purposes, we recommend assuming 20 to 24 inches of existing soil and ballast beneath the ties would need to be removed and replaced with 8 to 12 inches of granular subballast and 12 inches of ballast.

Windblown sand appears to be regularly deposited on the track near Milepost (MP) 122. Because of the proximity of this site to the beach, pervasive winds, and local landforms, sand will likely need to be removed from the track at this location at irregular intervals. Sand fences, berms, land regrading, and vegetation could be used to reduce the quantity of sand deposited on the track and the frequency at which this sand must be removed.

We recommend that a structural engineer evaluate the existing timber bridges at MP 111.03, MP 111.93 , and MP 112.54 to determine if they need to be replaced. If replacement is deemed necessary, we recommend that subsurface explorations be completed during the final design stage of this project. Alternatives for replacing these bridges are location dependent and include, but are not limited to, replacement with single or multi-span bridges and replacement with embankments. Properly designed culverts should be installed through embankments constructed to replace these bridges. We recommend replacing the existing timber bridges at MP 112.80 and MP 113.04 with embankments.

Liquefaction, lateral spread, and sand boils have occurred at or near the Salinas River Bridge during past earthquakes. Movement of Pier 1 and permanent offset of Pier 2 were documented following the 1989 Loma Prieta earthquake. Because of the potential for earthquake-induced damage, the three highway bridges over the Salinas River near MP 113.46 have been seismically upgraded. Soils encountered in explorations that we conducted near Salinas River Bridge Piers 1 and 2 suggest that soil conditions at this site are similar to those at the nearby highway bridges. Based on this similarity in soil profile, in our opinion, piles installed to seismically retrofit the railroad bridge would need to be founded on bearing material at depths of 100 to 130 feet. We encountered gravel, cobbles, or larger rock at depths of 15 to 43 feet in the three borings we drilled near Pier 2. We were unable to advance the drill through these materials in two of the borings. Where these materials are present, they could interfere with and increase the difficulty and cost associated with installation of new piles to retrofit the existing foundations.

Seismic upgrading of the existing Salinas River Bridge No. 113.46 foundations using a system similar to that used on the nearby highway bridges would likely cost in excess of $\$ 3,000,000$. If Salinas River Bridge foundations are not replaced or seismically upgraded, we recommend that instruments be installed on the bridge to monitor for settlement at each pier and abutment. This system could activate a signal warning system to stop trains if settlement is detected. Strong motion detectors could also be installed to activate the signals and stop trains if a threshold level
of earthquake-induced ground movement is detected. The cost for settlement and strong motion monitoring instruments and signals would be on the order of $\$ 165,000$ to $\$ 200,000$.

TABLE OF CONTENTS

Page
EXECUTIVE SUMMARY i
1.0 INTRODUCTION 1
2.0 SITE AND PROJECT DESCRIPTION 1
2.1 General 1
2.2 Field Reconnaissance 2
2.2.1 Embankments and Track Section 2
2.2.2 MP 122 Sand Deposits on Track 3
2.2.3 Minor Bridges 4
2.2.3.1 MP 111.03 4
2.2.3.2 MP 111.93 4
2.2.3.3 MP 112.54 5
2.2.3.4 MP 112.80 5
2.2.3.5 MP 113.04 6
2.2.4 Salinas River Bridge No. 113.46, MP 113.46 6
3.0 FIELD EXPLORATIONS 8
4.0 LABORATORY TESTING 8
5.0 SUBSURFACE INFORMATION FOR NEARBY PROJECTS 8
6.0 GEOLOGY AND SUBSURFACE CONDITIONS 9
6.1 General Geology 9
6.1.1 Older Flood-Plain Deposits (Qof) 9
6.1.2 Channel-fill Deposits (Qcf) 9
6.1.3 Younger Flood-Plain Deposits (Qyf, Qyfa). 10
6.1.4 Older Coastal Dune Deposits [Younger Dune Deposits $\left(\mathrm{Qod}_{1}\right)$; Older Dune Deposits $\left(\mathrm{Qod}_{2}\right)$] 10
6.1.5 Fladrian Dune Deposits (Qfd) 10
6.2 Liquefaction Susceptibility 11
7.0 PRELIMINARY RECOMMENDATIONS 11
7.1 Embankments and Track Section 11
7.1.1 Embankment Stability 12
7.1.2 Track Section - Ballast and Subballast 13
7.2 Drainage 14
7.2.1 Surface Drainage 14
7.2.2 Subsurface Drainage 14
7.3 MP 122 Sand Deposits on Track 15
Page
7.4 Minor Bridges 16
7.4.1 MP 111.03 17
7.4.2 MP 111.93 17
7.4.3 MP 112.54 18
7.4.4 MP 112.80 18
7.4.5 MP 113.04 19
7.5 Salinas River Bridge No. 113.46 19
7.5.1 Foundation Conditions and Seismic Retrofit 19
7.5.2 Bridge Instrumentation and Signals 21
7.5.3 Hydrologic Considerations 22
7.5.4 Foundation Retrofit Costs 23
8.0 LIMITATIONS 24
9.0 REFERENCES 26

TABLE

Table No.
1 Bid Summary for Bridge Seismic Retrofit: Monte Road Bridge

LIST OF FIGURES

Figure No.

$1 \quad$ Vicinity Map
2 Geologic Map
3 Liquefaction Potential Map
4 Site and Exploration Plan: Salinas River Bridge No. 113.46
5. Seismic Hazard Map

LIST OF APPENDICES

Appendix

A Subsurface Exploration Program
B Laboratory Tests
C Supplemental Geotechnical Information for Highway Bridges Over Salinas River
D Vertical Movement Detector
E Important Information About Your Geotechnical Report

Preliminary Geotechnical Recommendations for Monterey Branch Line Castroville to Seaside
 Transit Authority of Monterey County, California

1.0 INTRODUCTION

The Transit Authority of Monterey County (TAMC) has proposed to initiate intercity passenger rail service from the Monterey, California, area to San Francisco, California. As part of the this project, TAMC proposes to run trains over existing and currently unused Union Pacific Railroad (UP) track between Castroville and Seaside, California (Figure 1). The line segment includes approximately 13 miles of embankment, five ballast-deck timber bridges, and a five-span, steel, through-truss bridge over the Salinas River. In addition to other considerations, embankment and track section reconstruction, structure upgrades, and drainage improvements may be necessary over some or all of this line segment.

Feasibility and engineering studies for the proposed reopening and possible upgrade of the Monterey subdivision is being evaluated for TAMC by a team of consultants headed by STV Incorporated (STV), Los Angeles, California. Shannon \& Wilson (SW) is part of this team. This report presents our preliminary geotechnical recommendations for the proposed project.

Our work was authorized by Mr. David L. Borger of STV on January 15, 2001. Notice to proceed was issued in June 2001.

2.0 SITE AND PROJECT DESCRIPTION

2.1 General

The subject line segment is referred to as the Monterey Subdivision or Monterey Branch Line. This line extends from Castroville to Seaside in Monterey County, California. The line formerly connected with mainline tracks that are currently operated by UP approximately 9/10ths of a mile north of the Highway 183 road crossing in Castroville. It is our understanding that the switch at this connection point (Milepost [MP] 110.15) has been removed (see Figure 2). South of Castroville, the track passes through cropland until just north of the Salinas River. South of the Salinas River, the railroad generally follows close to Highway 1 through the City of Marina,

Fort Ord Military Reservation, and City of Seaside (Seaside). The present project ends within the Seaside city limits. The tracks have been removed or are covered by vegetation, soil, asphalt, or other materials and structures in a number of locations south of Fort Ord and through Seaside and south of the current project limits through the City of Monterey. (Note: Throughout this report, geographic directions are given relative to the railroad, i.e., north $=$ railroad-north, west $=$ railroad-west, etc., and may or may not be the true geographic direction.)

It is our understanding that portions of this line were first put into service in the mid- to late 1800s. Four spans of the Salinas River Bridge were constructed about 1903 and the north abutment and fifth span were added about 1914. It is our understanding that the foundations and possibly the decks of the five existing minor bridges between the Salinas River and Castroville were likely re-constructed to their general present configuration in the 1920s and 1930s. The track has been out of service for at least 5 years.

2.2 Field Reconnaissance

We visited the project area and observed conditions along portions of the existing railroad on two occasions: March 8, 2000, and July 11 and 12, 2001. Our preliminary engineering phase observations and assessment of geotechnical aspects of the railroad embankment and structures are presented below. During our site visits, we visually observed readily accessible portions of existing embankments, structures, and adjacent areas. We did not perform detailed observations or subsurface explorations of embankment or structure conditions along the entire alignment during our visits. Nor did we make measurements of the embankments or structures or conduct a topographic survey of the alignment or adjacent areas. A survey of the railroad, including topography, has not been provided to us, but we recommend that a survey be accomplished for final engineering studies and design. Descriptions of our observations are presented below.

2.2.1 Embankments and Track Section

The majority of the track railroad-north of approximately MP 113.80 crosses Salinas River flood deposits. In general, this land has been graded and is currently used as cropland. With the exception of the area immediately south of the river on the east side of the track, the land adjacent to the track south of the Salinas River is generally not farmed. The majority of the Monterey Branch Line is constructed on embankments less than 6 feet high. Higher embankments were observed at bridge approach fills, through Fort Ord, and are also present at other locations. The track passes through cuts in a few locations. Along a substantial length of
the railroad, the embankment shoulder is located near the end of the ties and is not wide enough to support ballast at the end of the ties. In some cases, the ties extend a few inches beyond the top of the embankment.

Low embankments; shallow, unmaintained, and overgrown ditches; poor surface drainage; and areas where water may pond adjacent to the embankment were observed along the railroad. Plugged or damaged culverts were not observed, but are suspected to be present. These conditions may cause infiltration of water into the embankment, which could wet and weaken subgrade soils and foul ballast, and contribute to poor embankment and track performance and "soft track." Because the track is out of service and we have not been in contact with personnel familiar with the maintenance history of the Monterey Branch Line, historic soft track locations could not be identified during our site reconnaissance.

Much of the track ballast that we observed appeared fouled. Ballast breakdown, pushing of ballast into underlying soils, pumping of soils upward into the ballast, windblown soil, transport of soil in runoff water that flows into the track section, and other factors likely contributed to ballast fouling. The ballast also appeared to be of poor quality rock that, in our opinion, would likely not meet American Railway Engineers and Maintenance-of-Way Association (AREMA) standards.

Relatively large rock (more than 3 feet maximum dimension) was observed on the east side of the approach fills to the Salinas River bridge. This rock may have been placed during initial construction, to reconstruct or buttress the embankments, or to provide erosion protection.

2.2.2 MP 122 Sand Deposits on Track

Sand completely or partially covered the track for approximately 100 feet near MP 122, just north of the Highway 1 overpass at MP 122.17. The sand was as much as 6 feet deep over the track. In places, vegetation (ice plant) has grown on the sand that covers the track, indicating areas where sand has been in place for a number of years. At this location, an abandoned paved road parallels the track about 30 to 40 feet to the west. An approximately 8 - to 10 -foot-high sand deposit separates the track from this road and the road is mostly buried with sand in this area. West of the tracks and road are sand dunes. In our opinion, the sand on the track and road is wind deposited and derived from those dunes and from the beach immediately to the west. Two high points in the dune fields are located west of the road and north and south of the track section that is covered with sand. These high points have a maximum elevation in excess of 50 feet
above the rail. The surface of the dune field between these high points is much lower, about 15 feet in elevation above the rail west of the location where the tracks are covered with sand. In our opinion, wind that is funneled through this trough between the dune field high points blows at sufficient velocity to transport sand. Sand carried by this wind is deposited on the road and railroad. Vegetation (ice plant) has established itself on a large portion of the east surface of the dunes, i.e., on the track side of the dunes, in this area. However, little vegetation was observed near the low point of the dunes. In our opinion, this lack of vegetation is at least partially associated with frequent disturbance by people walking over the sand to the beach.

2.2.3 Minor Bridges

2.2.3.1 MP 111.03

The bridge at MP 111.03 is a multi-span, ballast deck, timber bridge supported on timber piles and bents. The bridge has concrete abutments. The bridge spans Tembladero Slough and has a total length of approximately 150 feet (Figures 2 and 3). The number 28 was observed stamped into some of the timber piles, which may indicate that those piles were installed in 1928.

Timber bents are located beneath the bridge structure within a few feet of each abutment. These bents may have been installed to reinforce the abutments or raise the bridge following abutment settlement. The southernmost end of the bridge (for three bents) appears to have settled. The south concrete abutment appears to have settled 6 to 8 inches relative to the adjacent timber bent and deck. The north abutment may also have settled, but not as much as the south abutment. The bottoms of the north and south abutments appear to be rotated toward the slough. This may indicate that these abutments have moved laterally.

2.2.3.2 MP 111.93

The bridge at MP 111.93 is located at the west end of Alisal Slough (Figures 2 and 3). This ballast deck, timber bridge is supported on timber piles and bents. The bridge spans the slough channel and has a total length of approximately 45 feet. The construction date for this bridge is not known and we did not observe (or look for) numbers stamped into timbers. The area under and around the bridge appears to be vegetated with wetland plants. Tires and other trash were observed in the area and ground surface depression around the bridge. Although the channel appears to extend to the east across adjacent agricultural fields, the channel ends approximately 30 feet west of the bridge. West of the bridge, the old channel (indicated on

Figures 2 and 3) is filled to the approximate level of the surrounding farmland. Water that may flow westward down the channel from areas east of the bridge appears to feed into a culvert located at the west end of the channel. The condition of this culvert and its outlet were not observed.

The bridge has concrete abutments with concrete wing walls. We observed timber piles that had been cut off near the ground surface between the existing timber bents. These piles may have supported an earlier structure. Cracks were observed in the north abutment. The bottom of this abutment appeared to have settled and moved laterally toward the channel.

2.2.3.3 MP 112.54

The bridge at MP 112.54 is a multi-span, ballast deck, timber bridge that is supported on timber piles and bents. The bridge spans a small ditch and has a total length of approximately 120 feet. The ditch may be the remains of a filled channel that the bridge originally spanned at this location (Figures 2 and 3). The ditch follows along the east side of the embankment north of the bridge. The extent and direction of the ditch west of the bridge was not noted. Water was observed in the ditch on July 12, 2001. The number 26 was observed stamped into some of the timber beams, which may indicate that those beams were installed in 1926.

The bridge has concrete abutments with concrete wing walls. We observed timber piles that had been cut off near the ground surface between existing timber bents. These piles may have supported an earlier structure. Cracks were observed in the south abutment. The bents supporting the bridge appeared to be vertical; which may indicate that significant lateral spread has not occurred at this location.

2.2.3.4 MP 112.80

The bridge at MP 112.80 is a multi-span, ballast deck, timber bridge that appears to be supported on concrete spread footings. The bridge has concrete abutments with concrete wing walls. The bridge spans a depression in the surrounding terrain and has a total length of approximately 235 feet. Relatively level and extensive cropland is present east of the railroad and west of Monte Road. An approximately 6 - to 8 -foot-long concrete box culvert, partially filled and with its ends mostly blocked by soil and vegetation, was observed below Monte Road at this location. The ground surface depression and the culvert under the road suggest that a channel or drainage ditch may once have passed under the railroad bridge and roadway at this
location, although no channel is indicated on geologic maps we reviewed for this area (Figures 2 and 3). The number 22 was observed stamped into some of the timber beams, which may indicate that those beams were installed in 1922. The number " 1909 " is cast into the south abutment concrete, indicating that the abutment was likely constructed in 1909.

We observed timber piles that had been cut off near the ground surface between existing footings. These piles may have supported an earlier structure. We observed timber "helper" bents between the concrete footings at two locations along the length of the bridge. The bridge sagged along its entire length, rising up toward each abutment. The sag may have occurred because the footings settled. This settlement may be associated with consolidation, soil displacement, earthquake-induced liquefaction, or other factors.

2.2.3.5 MP 113.04

The bridge at MP 113.04 is a multi-span, ballast deck, timber bridge that appears to be supported on concrete spread footings. The bridge has concrete abutments with concrete wing walls. The bridge spans a depression in the surrounding terrain and has a total length of approximately 90 feet. The ground surface depression may be the remains of a filled channel that the bridge originally spanned at this location, although no channel is indicated on geologic maps we reviewed for this area (Figures 2 and 3). The land east and west of the bridge appears to have been graded for farming. The number 26 was observed stamped into some of the timber beams, which may indicate that those beams were installed in 1926.

2.2.4 Salinas River Bridge No. 113.46, MP 113.46

The track crosses the Salinas River at MP 113.46 on a 700 -foot-long, five span, throughtruss, steel bridge (see Figures 2, 3, and 4). Concrete piers and abutments support the ends of each span. We observed the numbers "1903" and " 1914 " in steel plates on the southern four spans and northernmost span, respectively. These numbers likely indicate that these spans were constructed about 1903 and 1914, respectively.

For the purposes of this report, we have numbered the piers from 1 to 4 from north to south and numbered the north and south abutments Abutment 1 and 2, respectively, see Figure 4. Abutments 1 and 2 and Piers 1 and 2 are accessible on land. The east side of Pier 2 was only a few feet from the Salinas River at the time of our site visit. Piers 3 and 4 are located in the river. Abutment 1 is located approximately 320 feet away from the river measured along the railroad alignment. Abutment 2 is on the south river bank. The river bank and bridge abutment fill
adjacent to Abutment 2 appeared to be relatively steep and may be undercut. We observed timber piles and rock riprap near and around Abutment 2. These have been installed to provide erosion protection for Abutment 2 and abutment fill.

Drawings that were provided to us show that Abutment 1 is supported on timber piles (Modjeski and Masters, 2001b). The depth to which the piles are driven is not known. No drawings were made available to us for Abutment 2 or the pier foundations. However, in our opinion, it is likely that they are timber pile supported.

The ground near and around the Salinas River bridge is known to be susceptible to liquefaction. Liquefaction, sand boils, and lateral spread were documented following the 1906 San Francisco earthquake and the 1989 Loma Prieta earthquake (Dupré and Tinsley, 1980a, 1980b, 1998; Tinsley, 1998a, 1998b). During a post-Loma Prieta earthquake reconnaissance, Modjeski and Masters (2000) observed damage to Abutment 1, movement of Piers 1 and 2, ground cracking, and lateral spread.

Just west of the railroad, three highway bridges span the Salinas River. The Monte Road Bridge is located a couple hundred feet west of the railroad. It is our understanding that this bridge is owned by Monterey County. Separate northbound and southbound bridges for California Highway 1 are located a couple hundred feet west of the Monte Road Bridge. These two bridges are operated and maintained by the California Department of Transportation (CalTran).

We understand that the Highway 1 bridges were seismically upgraded a few years ago. Foundation upgrades involved installing 6-foot-diameter concrete-filled steel pipes and 8-footdiameter concrete-filled drilled shafts, on the east and west side of each pier or abutment. These new piles and shafts were connected with the existing bridge piers by extending a pile cap from the new piles to the existing piers. The new piles and shafts were installed to depths on the order of 100 to 130 feet (CalTran, 1997; Parish Consultants, 1997).

Construction activities for seismic upgrade of the Monte Road Bridge were underway during our July 2001 visit to the site. We observed foundation systems similar to those used to seismically upgrade the Highway 1 bridges being installed. The foundation upgrades consist of 6 -foot-diameter, concrete-filled steel pipes installed on the east and west side of each of the existing bridge piers and abutments. It is our understanding that these piles will be connected to the existing bridge piers by extending a concrete cap from the new piles to the existing piers.

The contractor personnel reported that the piles were being installed by first vibrating each steel pipe (casing) to a depth of approximately 50 feet and then driving the casings to the design depth (100 to 130 feet) using a diesel hammer. After the casings are driven, the soil inside each casing will be excavated and the casing filled with concrete (Dokken Engineering, 2000; Parikh Consultants, 1998).

3.0 FIELD EXPLORATIONS

Subsurface conditions near the Salinas River Bridge were explored by drilling four soil borings, ranging in depth from 26 to 121.5 feet. The borings were drilled near the west side of Piers 1 and 2, at the approximate locations shown on Figure 4. Three borings were accomplished near Pier 2. The second and third borings near this pier, borings MP 113.46-2b and MP 113.46-2c, were drilled because rock that stopped advance of the drill was encountered in borings MP $113.46-2 \mathrm{a}$ and MP 113.46-2b at relatively shallow depth. Possible explanations for the presence of this rock in an area where only alluvial deposits were anticipated are presented elsewhere in this report.

The drilling and soil sampling program is described in Appendix A.

4.0 LABORATORY TESTING

Laboratory tests were performed on selected soil samples obtained from the borings drilled for this project. The samples were tested to determine the basic index properties of the foundation soils. The laboratory testing was performed at the SW laboratory in Seattle, Washington, in general accordance with ASTM standard test procedures. Descriptions of the laboratory tests are presented in Appendix B. Test results are presented in Appendix B or on the boring logs in Appendix A.

5.0 SUBSURFACE INFORMATION FOR NEARBY PROJECTS

To supplement the subsurface information acquired from the borings and laboratory tests, we collected and reviewed subsurface information available from Monterey County and CalTran for the Monte Road Bridge and the Highway 1 bridges (Caltran, 1997; Dokken Engineering, 2000; Parikh Consultants, 1997, 1998). Geologic profiles and laboratory test results that we obtained for these bridges are presented in Appendix C.

SHANMONEWMLSON,INC.

6.0 GEOLOGY AND SUBSURFACE CONDITIONS

6.1 General Geology

Our understanding of the geology of the region is based primarily on a review of published United States Geological Survey (USGS) maps and documents, geotechnical reports prepared for highway bridges over the Salinas River, subsurface explorations performed for this project, and our observations. Geologic and liquefaction susceptibility maps for the portion of the line between Castroville and approximately MP 121.5 are presented in Figures 2 and 3. General descriptions of geologic units that occur along the Monterey Branch Line are presented below. These descriptions are based on a geologic map prepared by Dupré and Tinsley (1980a).

6.1.1 Older Flood-Plain Deposits (Qof)

From Castroville to approximately 3/10ths of a mile south of the Salinas River and within the historic flood plain of the Salinas River, the railroad predominantly crosses Older FloodPlain Deposits. This geologic unit consists of unlithified and normally consolidated relatively fine-grained, deposits of sand and silt, and commonly includes relatively thin, discontinuous layers of clay. These deposits are reportedly as much as 330 feet thick where they fill buried valleys. The depth to the water table is variable, but is generally 10 to 33 feet. These soils are moderately susceptible for liquefaction except where the depth to the water table is greater than 33 feet.

6.1.2 Channel-fill Deposits (Qcf)

Numerous partially or completely filled channels cross the historic Salinas River flood plain. The location of some of these channels are shown on Figure 2. Channel-fill deposits consist primarily of normally consolidated, highly plastic clay, silty clay, and silt overlying moderately well-sorted silt and sand. These materials are deposited in abandoned channels with both older and younger flood-plain deposits. The thickness of these deposits is reportedly generally less than 10 feet. Many of the channel areas have been artificially filled with material that is poorly compacted and prone to subsidence. Expansive soils are common. These areas are poorly drained, groundwater is generally within 10 feet of the surface, and the underlying channel deposits typically have a high susceptibility for liquefaction. Water flows or ponds in channels that have not been filled in.

6.1.3 Younger Flood-Plain Deposits (Qyf, Qyfa)

These deposits consist of unlithified, relatively fine-grained, heterogeneous deposits of sand and silt, and commonly include relatively thin, discontinuous layers of clay. Gravel content increases toward the Santa Cruz Mountains and is locally abundant within channel and lower point bar deposits. The soils have moderate permeability and porosity and a very high susceptibility for liquefaction. The thickness of the deposit is generally less than 20 feet. The depth to the water table is commonly less than 6 feet. Areas underlain by these deposits have a relatively high susceptibility to flooding except in areas where they are protected by artificial levies.

6.1.4 Older Coastal Dune Deposits [Younger Dune Deposits (Qod $_{1}$); Older Dune Deposits $\left(\right.$ Qod $\left.\left._{2}\right)\right]$

South of the Salinas River Bridge (MP 113.46) to Seaside, the railroad predominantly crosses coastal dune deposits. These deposits generally consist of weakly lithified; well-sorted fine- to medium-grained sand that was deposited in extensive coastal dune fields during at least two different periods. The thickness of these deposits is not reported by Dupre and Tinsley (1980) and likely varies from a few feet to greater than 50 feet. These soils are generally well-drained and have high porosity and permeability except at the surface. These materials have a low susceptibility for liquefaction except where the water table is within 10 feet of the surface, where the susceptibility for liquefaction may be moderate.

6.1.5 Fladrian Dune Deposits (Qfd)

Sand dune deposits follow the coastline south and north of the Salinas River. South of the river these deposits are designated Fladrian Dune Deposits. The railroad is constructed on or near (east of) these deposits near the southern end of Fort Ord and the northern limit of Seaside. These soils consist of unlithified well-sorted sand that is as much as 100 feet thick and is deposited in a belt of parabolic dunes. These dunes are more than 2,000 feet wide in places. The dunes are relatively stable in their current configuration, vegetative status, and climatic environment. Accelerated erosion could occur, and was observed, where the vegetation is disturbed or where vegetation is not established. These soils are generally well-drained and have high porosity and permeability. The liquefaction potential for these soils ranges from moderate to low, depending on the depth to the water table.

SHANNONEMALSON.INC.

6.2 Liquefaction Susceptibility

The liquefaction susceptibility of soils depends on the soil properties, groundwater depth, terrain, and other factors. In general, areas that have experienced liquefaction during past earthquakes have high susceptibility for liquefaction. A liquefaction susceptibility map for the northern part of the project is presented in Figure 3. According to the Dupré and Tinsley (1980a, 1980b) geologic and liquefaction susceptibility maps, channel-fill deposits and soils near and below the Salinas River have high susceptibility for liquefaction. Liquefaction and lateral spread of soils below and near the Salinas River Bridge were documented following the 1906 San Francisco and 1989 Loma Prieta earthquakes (Dupré \& Tinsley, 1980b; Tinsley, et al. 1998a, 1998b; Modjeski and Masters, 2000). Liquefaction and earthquake-induced ground movement may also have contributed to settlement and structural damage that we observed at other bridges along the railroad north of the Salinas River, however, this has not been verified.

The flood deposits and filled-channels north of approximately MP 113.80 have moderate to high liquefaction susceptibility. The liquefaction potential of these soils is increased where groundwater is near the ground surface. Earthquake-induced ground settlement, sand boils, and liquefaction occurred in these materials at numerous sites near the railroad as a result of the 1989 Loma Prieta earthquake (Tinsley et al. 1998a, 1998b). South of the Salinas River flood plain, the dune deposits that the railroad crosses generally have low susceptibility for liquefaction. Higher liquefaction susceptibility may be present where the embankment crosses or is located in lowlying areas where the groundwater is near the surface. No instances of earthquake-induced ground movement, spread, or settlement of railroad embankments on the Monterey Branch Line are reported by Tinsley et al., except near the Salinas River bridge. We are unaware of earthquake ground movement records that may have been developed by or for the former operators of the Monterey Branch Line during a post-Loma Prieta earthquake assessment of the railroad.

7.0 PRELIMINARY RECOMMENDATIONS

7.1 Embankments and Track Section

No subsurface explorations were conducted to evaluate the existing embankments or track section for this preliminary geotechnical engineering report. The following preliminary recommendations are based on discussions with other team members familiar with this line, our observations, and our experience.

7.1.1 Embankment Stability

Based on our observations of the railroad embankments, discussions with STV personnel, probable embankment material borrow source locations, and our experience, it is our opinion that the railroad embankments of the Monterey Branch Line between Castroville and Seaside are generally stable and adequate for their intended use to support Inter-city train traffic. However, we did not perform detailed observations or subsurface explorations of embankment or structure conditions along the entire alignment during these visits. Instances of past instability or areas that are susceptible to instability may be present. Soft track and locations of poor track performance are, in our opinion, most easily and reliably identified by observing embankment, track, and rail performance during rail operations. Other methods of assessing potential soft track locations, such as ground penetrating radar, may also be used, but completion of this type of work is outside our authorized work scope. If marginally stable or previously unstable locations are identified during track reconstruction or rail operations, we recommend that we be notified and given an opportunity to provide site-specific recommendations.

Embankments with relatively steep side slopes, poorly constructed embankments (e.g., poor compaction), and embankments constructed with or over fine-grained and poorly-drained soils are the most likely locations to experience instability. All of these conditions were observed or are suspected to occur along the alignment; however, evidence of past instability at these locations was not noted. Steep slopes that do occur may result from overly steep initial construction, widening of embankment shoulders, undercutting of the bottom of embankment slopes, and other causes. In general, embankment side slopes should be 2 horizontal to 1 vertical ($2 \mathrm{H}: 1 \mathrm{~V}$) or flatter. Steeper slopes may be acceptable for embankments consisting of and underlain by well-drained granular soils. Flatter slopes may be required for embankments constructed of or founded on other soils. In general, embankment slopes should be uniform from the shoulder to the toe of the slope and constructed at an inclination appropriate for the embankment and foundation soils.

- We recommend that embankments that are undercut be repaired and their toes protected from erosion. In our opinion, overbuilt embankment shoulders should be trimmed until they are approximately 12 feet from track centerline. Excavated material should not be deposited high on embankment slopes. It should be placed near the toe of the slope such that the slope is flattened or disposed of off site. Where this is not possible or practical, site-specific geotechnical recommendations should be developed. Stability of embankment locations that have experienced past instability should be improved by
flattening or buttressing slopes, improving surface and subsurface drainage (as appropriate), and draining water from ballast pockets (described elsewhere in this report).
- We recommend that where the shoulder is of insufficient width to retain ballast, as occurs at many locations along the track, the existing embankment should be widened to provide adequate shoulders to retain ballast.

We do not know the reason for large rock being present on the east side of the Salinas River Bridge approach fills. Consequently, we cannot provide recommendations for appropriate evaluation to assess whether the rock is serving its intended function. Three possible explanations for this rock are that (1) it was placed during construction or reconstruction of the embankment, (2) it may have been placed to protect the embankment during floods, and (3) it was placed to buttress the embankments. We recommend monitoring the performance of these embankments and postponing further assessment of them until the final design or construction phase of this project, or until after track defects begin to occur during railroad operations.

7.1.2 Track Section - Ballast and Subballast

In our opinion, the existing ballast is fouled, of poor quality and low durability, consists of rounded particles, and is likely of inadequate thickness. The presence of subballast material was not confirmed, and, based on our experience, it is probable that no subballast is present beneath the ballast for all or the majority of the line.

- For preliminary engineering, we recommend assuming 20 to 24 inches of existing soil and ballast beneath the ties should be removed and replaced with 8 to 12 inches of granular subballast and 12 inches of ballast. An evaluation of subgrade soil strength and the thickness and condition of existing ballast should be made before the required thicknesses of these materials is determined for final design.
- We recommend that the embankment subgrade conditions be evaluated during the final design phase through completion of a number of test pits along the project alignment. We recommend that an allowance for a minimum of one test pit per half mile of track be included in the final design budget. The actual number of test pits required may be greater or less and will depend on subsurface conditions and observations made during future site visits by design team members.

7.2 Drainage

7.2.1 Surface Drainage

An economical means of improving embankment stability and decreasing soft track related maintenance is to improve surface drainage so that runoff water is directed away from the embankment. Water should not be permitted to pond on shoulders or adjacent to embankments.

- We recommend that the embankment be raised as necessary so that it is well above the surrounding ground. We recommend that the top of subballast (approximately 24 inches below the bottom of ties) should be a minimum of 6 inches above adjacent ground.
- We recommend that surface drainage be improved along the railroad so that water flows away from the embankment and does not pond near it. The top of the embankment should be graded so that water will flow away from the track and so that it does not sit or pond on the shoulders.
- We recommend that ditches be cleaned, deepened, widened, and regraded, as appropriate, to convey water away from the track. Hydrologic evaluations may be appropriate in some locations to evaluate the adequacy of ditches. Ditch inverts should be a minimum of 6 inches below the bottom of subballast and a minimum of 3 feet below top of tie.
- We recommend that existing culverts be cleaned, repaired, and replaced as necessary so that water will flow downgrade and away from the embankment. Hydrologic evaluation should be performed to check existing culvert sizes and to size new and replacement culverts. We recommend that the embankments near culvert headwalls and ditches upstream and downstream of culverts be evaluated for past occurrences of erosion and potential to erode. Erosion protection should be provided where the potential for erosion is thought to exist.

7.2.2 Subsurface Drainage

Because much of the track has experienced about 100 years of train traffic and was likely originally poorly constructed (e.g., inadequate compaction, poor quality soils), we anticipate that ballast pockets are present in the embankments along much of the line. Ballast pockets are depressions that form in railroad embankments as a result of train loading, deformation of the embankment or foundation soils, and subsequent addition of ballast to raise or restore the track. Ballast pockets in the embankments may be only a few inches deep to many feet deep. Water trapped in ballast pockets is a major contributor to track settlement and failures, ballast fouling, and other "soft track" conditions.

- We recommend that trench drains be constructed across the embankment to drain ballast pockets that are identified during embankment and track reconstruction. Trench drains should also be constructed to drain ballast pockets in areas that are known or suspected "soft track" locations. Trench drains are gravel-filled trenches that are installed to intercept and drain groundwater. These drains would be installed during the construction phase of the project. For preliminary engineering and project budgeting purposes, we recommend assuming thirty, 8 - to 10 -foot-deep trench drains and six, 12 -foot-deep trench drains along the length of the project. The drains should be assumed to extend beneath both rails and daylight at the toe of one side of the embankment. We expect that most of these drains would be installed north of MP 130.80 and primarily in bridge approach fills and higher embankments. The actual number of trench drains required may be greater or less and will depend on subsurface conditions and observations made during future site visits by design team members and observations made during the construction phase of the project.

Excavation for construction of the trench drains will also provide subsurface information about the embankment and embankment soils and can be used to supplement information obtained through excavation of test pits (discussed previously).

Other types of subsurface drainage may also be appropriate in some locations, e.g., trench drains or pipe subdrains parallel to or away from the track. We recommend that site-specific evaluations and recommendations be developed when candidate locations are identified. We recommend that further assessment of the potential need for these alternative subsurface drainage systems be performed during the final design phase of this project after existing topography and approximate proposed embankment configuration are developed.

7.3 MP 122 Sand Deposits on Track

In our opinion, the track at this location could be cleared by excavating the sand that currently buries it. Excavation slopes on both sides of the track should be 1.75 H :1V or flatter. Because the sand dunes in this area are active and sand is frequently transported toward the track by onshore winds, keeping the track open will likely require relatively frequent maintenance. If frequent maintenance to remove sand is not acceptable, we recommend implementation of one of the following methods to reduce the frequency of maintenance and the volume of material that is deposited on the track:
a) Close up the gap between the high points in the beach dunes by filling it with sand and anchoring the sand in place with vegetation. This alternative should be relatively simple
to construct, but may change the dynamics of the wind-erosion-deposition environment and may ultimately result in sand deposition at a new location along the track.
b) Plow out the existing road to create a low-wind-velocity zone so that sand is deposited on the road instead of on the track. A sand fence installed in the gap on the dunes west of the road may be required to reduce wind velocities so that the sand is deposited on the road, before it reaches the track. We recommend that vegetation be planted on disturbed surfaces and exposed sand west of the track and around the sand fence.
c) Reshape the existing sand berm between the track and existing road or relocate the berm further west to construct a low wind velocity zone between the berm and the track. This would facilitate deposition of sand on the berm before it reaches the track. We recommend that vegetation be planted on the berm to help hold the sand in place.
d) This alternative is identical to the previous alternative except that a sand fence would be installed as far west as practical on the berm to reduce wind velocities and deposit most of the sand west of the track. We recommend that vegetation be planted on the sand on the berm and around the sand fence to help hold the sand in place.

We observed less evidence of sand migration in well vegetated areas. Since people walking across the dunes apparently disturb the vegetation, we recommend installing erosion resistant walkways such as stairs, pavers, and wood boardwalks. Ice plant or other appropriate vegetation should be planted on the sand to reduce the sand migration rate and help trap sand particles that might otherwise bounce along the ground surface. Geocells or other erosion control materials could be installed over the sand to hold it in place until vegetation is established. Permits may be required to perform construction work on the existing road and in the dunes west of the existing road.

7.4 Minor Bridges

During our July 12, 2001, site visit with Jay Craft of STV, we observed five existing timber bridges between Castroville and the Salinas River. We have not been provided plans for these bridges or their foundations. A review of these plans, if they exist, would be helpful in evaluating their condition and providing recommendations for repair, restoration, and replacement. This information, if available, should be reviewed prior to the final design phase and prior to performing soil explorations for final design. The preliminary engineering recommendations made below are based on our observations, opinions of probable construction methods provided by Jay Craft, interpretation of the regional geology, and our experience. These recommendations are preliminary. Subsurface explorations and engineering analyses

SHANMONEWILSON,INC.

should be performed and site-specific analyses and designs should be completed prior to implementation of these recommendations.

7.4.1 MP 111.03

We recommend that the existing bridge at MP 111.03 be evaluated by a structural engineer to determine if this bridge should be replaced. Based on discussions with STV, a replacement bridge would likely consist of a three- to five-span, pre-cast concrete ballast deck structure. Bents with multiple steel or pre-cast concrete piles are likely candidate foundations for this structure. Multiple large-diameter culverts may also be appropriate for replacing the existing bridge, if it is replaced.

For final design, if bridge replacement is recommended, we recommend drilling borings near the proposed replacement abutment locations and adjacent to the slough. Additional borings may be recommended near or at proposed bent locations, depending on the soil conditions encountered in the borings and on access. The borings should be advanced a minimum of 50 feet below the ground surface and a minimum of 10 feet into bearing material. Based on our review of geologic maps for this area, we anticipate that adequate end-bearing material would not be encountered and that bridge piles would be designed as friction piles. For these soil conditions, we recommend that at least one boring be advanced to a depth of 100 feet.

7.4.2 MP 111.93

We recommend that the existing bridge be evaluated by a structural engineer to determine if it should be replaced. Alternatives for replacing this bridge include:

1. Fill in the old channel. This may require installation of a culvert to connect with the existing culvert inlet located just west of the existing bridge. Fill placement would occur within what is probably a wetland. The significance of the potential wetland and issues associated with filling it should be determined. Prior to placing fill, wet, soft, and loose soil should be removed. Construction of the embankment fill may include installation of geosynthetic reinforcement, geotextile fabrics, drainage aggregates, and rock fill. If this alternative is selected, we recommend drilling a single boring to a depth of 30 to 40 feet near the center of the existing bridge.
2. Replace the existing bridge with a single span, pre-cast concrete, ballast-deck bridge supported on new pile-supported abutments. If this alternative is selected, we recommend that borings be drilled at the proposed abutment locations for the replacement bridge. The borings should be advanced a minimum of 50 feet below the ground surface and a minimum of 10 feet into bearing material. Based on our review of geologic maps
for this area, it is likely that adequate bearing material would not be encountered and that bridge piles would be designed as friction piles. For these soil conditions, we recommend that at least one boring be advanced to a depth of 100 feet.

7.4.3 MP 112.54

The existing bridge appears to be in relatively poor condition. We recommend that a structural engineer evaluate the condition of the existing bridge to determine if this bridge should be replaced. Alternatives for replacing this bridge include:

1. Fill in the old channel. This would require installation of a culvert beneath the fill. Fill placement would occur within what is probably a wetland. The significance of the potential wetland and issues associated with filling it should be determined. Prior to placing fill, wet, soft, and loose soil should be removed. Construction of the embankment fill may include installation of geosynthetic reinforcement, geotextile fabrics, drainage aggregates, and rock fill. Installation of the culvert at a skew to the embankment alignment may improve ditch channel hydraulics. If this alternative is selected, we recommend that a single boring to a depth of 30 to 40 feet be drilled near the center of the existing bridge.
2. Replace the existing bridge with a single span, pre-cast concrete, ballast-deck bridge supported on new pile-supported abutments. Realign the existing ditch so that it passes under the bridge at a skew to the embankment alignment. This may improve ditch channel hydraulics. If this alternative is selected, we recommend that borings be drilled at the proposed abutment locations for the replacement bridge. The borings should be advanced a minimum of 50 feet below the ground surface and a minimum of 10 feet into bearing material. Based on our review of geologic maps for this area, it is likely that adequate bearing material would not be encountered and that bridge piles would be designed as friction piles. For these soil conditions, we recommend that at least one boring be advanced to a depth of 100 feet.

7.4.4 MP 112.80

We recommend that this bridge be replaced with an embankment. The fields east and west of the railroad are higher than the ground beneath the bridge and there is nowhere for water to flow to; i.e., no channels, culverts, pipes, or other means to drain water away from the railroad were observed. We recommend that a single 30 -foot-deep boring be drilled at this location prior to final design of the embankment. Prior to placing fill, wet, soft, and loose soil should be removed. Construction of the embankment fill may include installation of geosynthetic reinforcement, geotextile fabrics, drainage aggregates, and rock fill.

7.4.5 MP 113.04

We recommend that this bridge be replaced with an embankment. The fields east and west of the railroad are higher than the ground beneath the bridge and there is nowhere for water to flow to; i.e., no channels, culverts, pipes, or other means to drain water away from the railroad were observed. We recommend that a single 30 -foot-deep boring be drilled at this location prior to final design of the embankment. Prior to placing fill, wet, soft, and loose soil should be removed. Construction of the embankment fill may include installation of geosynthetic reinforcement, geotextile fabrics, drainage aggregates, and rock fill.

7.5 Salinas River Bridge No. 113.46

7.5.1 Foundation Conditions and Seismic Retrofit

The condition of the foundations of the Salinas River Bridge was not evaluated as part of the preliminary engineering for this project. However, if the existing piers and abutments are timber pile-supported and the piles have been continuously submerged since they were installed, the piles may still be in adequate condition to continue supporting the piers and abutments. We note that although horizontal movement of piers was observed following the 1989 Loma Prieta earthquake, no settlement was reported (Modjeski and Masters, 2000). Thus, the vertical capacity of the piles may be sufficient to support the bridge and low volume rail traffic. Alternatively, the piles at these piers could have been damaged or stressed such that they are inadequate for static loads and would not survive another major earthquake and ground movement. An investigation of the existing piles may be appropriate, but would likely be difficult to accomplish and costly. Even if the foundation conditions is investigated, there would likely be significant uncertainty in intepreting the observations. The decision to further evaluate the existing foundations or to seismically upgrade the foundations or not should be made by TAMC.

In our opinion, if seismic upgrading of the Salinas River Bridge is pursued by TAMC, the foundations of the bridge should also be seismically upgraded. Liquefaction, ground settlement, and lateral spread occurred at or near the bridge during the 1906 and 1989 earthquakes. Lateral spread of the north bank and ground shaking during the 1989 earthquake caused Pier 1 to shift south about 5 inches and Pier 2 to shift east by 6 to 9 inches. The earthquake caused several large fissures in the north bank, which are indicative of southward spread of the ground toward the river (Modjeski and Masters, 2000). Numerous other instances of earthquake-induced
ground movement, liquefaction, and sand boils reportedly occurred near the site during the 1989 earthquake (Tinsley et al., 1998a, 1998b).

The nearby northbound and southbound Highway 1 bridges were recently seismically upgraded. Construction for seismically upgrading the Monte Road Bridge was ongoing during our July 2001 site visit. Seismic upgrading of these bridge foundations was generally accomplished by driving 4- to 6 -foot-diameter steel pipe piles to depths of more than 100 feet, filling those casings with concrete, and constructing concrete caps on the piles to connect them to the existing bridge foundations.

Borings drilled near Piers 1 and 2 were advanced to a maximum depth of 121.5 feet. In general, with the exception of rock encountered in borings MP 113.46-2a, -2 b , and -2 c , discussed below, the soil profiles encountered in these borings were similar to those reported for borings completed during subsurface explorations performed for the nearby Monte Road and Highway 1 bridges (see Appendix C). Based on this similarity in soil profile, in our opinion, for preliminary engineering purposes it is appropriate to assume that piles bearing at depths of 100 to 130 feet would likely also be appropriate for seismic retrofit of the Salinas River Bridge. Thus, the bearing depth for these piles would be similar to that used for seismic retrofit of the nearby highway bridges.

If seismic upgrading of the foundations is pursued, we recommend that, at a minimum, during the final design phase of the project, borings should be drilled adjacent to Piers 3 and 4 and Abutments 1 and 2 or near the proposed location of new piers. These borings are necessary to estimate embedment depths at each pile location, evaluate possible obstructions, and develop bid quantities. Borings adjacent to Piers 3 and 4 and Abutment 2 may require that work be performed from a barge or the bridge deck.

The selection of foundation type for seismically retrofitting the existing bridge foundation depends on the construction method and subsurface conditions. Our explorations near Pier 2 (i.e., borings MP 113.46-2a, MP 113.46-2b, and MP 113.46-2c) encountered what may be gravel, cobbles, and possibly larger rock at depths between about 15 to 43 feet. Because of poor sample recovery and difficulty drilling, we do not know the consistency or size of this material. Based on the site geology and interpretation of boring information available for boring MP 113.46-1 and the nearby highway bridges, it is our opinion that this rock does not naturally occur at this location. In our opinion, it is likely that this material was imported to develop access for construction or repair of the piers or bridge spans or for placement of riprap around
the piers, or the rock may be riprap placed to fill/repair scour holes or to protect the piers. Similar material may be present near other piers or along the bridge alignment.

In our opinion, it is unlikely that large-diameter steel pipe piles could be driven through the rock encountered near Pier 2 or at other locations where it occurs. If large diameter piles similar to those used to seismically retrofit the nearby highway bridges are selected for the bridge foundation upgrade, alternative means of installing these piles may be necessary. Alternatives include:

1. Excavating and removing the obstructions.
2. Pounding a spud through the obstructions to displace it so that a pipe casing could be installed.
3. Drilling through the obstructions using special bits so that the driven steel casing or drilled shaft pile can be installed.

Because of the special equipment and longer construction time required to install large-diameter foundation piles through potential obstructions, these alternatives may be relatively expensive to implement. Installing a number of smaller diameter piles at locations where rock is encountered may be more readily accomplished and more economical than installing large-diameter piles, although the practicality of doing so is uncertain. The number of smaller diameter piles needed would depend on the lateral capacity requirements and pile diameter. Installation of these piles may require that a spud be pounded through the obstructions to displace them or that this zone be pre-drilled. The piles could then be installed through the spudded or pre-drilled opening. If the obstruction consists of relatively large dimension rock, driving of piles is not recommended as they may be damaged or deflected during driving. Another alternative may be to construct new foundations and move the bridge onto these foundations.

7.5.2 Bridge Instrumentation and Signals

In our opinion, if the existing foundations are not investigated and found to be satisfactory for static (i.e., nonseismic) conditions under railroad loading and the bridge foundations are not seismically retrofitted, it would be appropriate to install instruments on the bridge to monitor bridge performance. We recommend that instruments be installed to monitor for settlement at each pier and abutment. A number of instruments could be used for this purpose. One appropriate system would incorporate the Vertical Movement Detector (VMD)
that has been successfully used on Burlington Northern Santa Fe Railway and Union Pacific Railroad lines to monitor for ground settlement. This system is described in Appendix D.

In addition to settlement monitoring instruments; we recommend that TAMC implement operational procedures that address train operations and facilities inspection following a seismic event. TAMC may consider contracting with an organization that would monitor for and provide warning of strong ground motions. An alternative would be to install a strong motion detector near or on the Salinas River Bridge that would detect earthquake-induced ground motions and activate signals if some threshold motion is exceeded.

Settlement and strong motion monitoring instruments should be connected to a signal warning system to stop trains before they cross the bridge if settlement or strong motion is detected. STV Consultants has informed us that they intend to propose limiting train speeds across the bridge to about 20 miles per hour (mph) if foundation upgrades are not performed or if limited bridge structure upgrades are performed. STV proposes installing the signals near either end of the bridge. We understand that there is sufficient sight distance for train operators to see signals installed near the bridge ends and to stop trains operating at 20 mph in response to these signals before the train reaches the bridge.

We recommend that settlement and strong motion monitoring instrumentation and the signal system be designed during the final design stage of this project. Details to be addressed include, but are not limited to, system components, installation of the instruments and vandal protective components, and signal and power requirements and systems. We have been advised by STV that signals, power, and battery backup for a signal system could be installed for about $\$ 100,000$. VMD instruments installed as described in Appendix D would cost about $\$ 40,000$ to $\$ 50,000$. Strong motion detectors and vandal protection equipment may cost another $\$ 25,000$ to $\$ 50,000$. The total for the instruments and signals would be on the order of $\$ 165,000$ to $\$ 200,000$.

7.5.3 Hydrologic Considerations

Depending on the selected seismic foundation upgrades, the upgraded piers may or may not increase the backwater depth of flood flows beneath the bridge. We recommend that foundation repairs or replacement be selected to limit further restriction of the channel from its existing condition. If new foundations are constructed and the bridge relocated to those
foundations, we recommend that for preliminary engineering purposes an allowance be included to remove the existing foundations to about elevation 0 feet.

Hydrologic studies have not been conducted for this preliminary engineering phase of the project. Based on information we obtained for the Highway 1 Bridge and the Monte Road Bridge seismic upgrade project, we expect that if the available river channel is not reduced from its current condition by the proposed foundation repairs or replacement, the design scour depth would likely be on the order of 30 feet (Braithwaite, 2001; Caltran, 1962, 1970). Copies of these reference documents are included in Appendix C. We recommend that this scour depth be assumed for the preliminary engineering phase of this project. We recommend that hydrologic and scour analyses for the Salinas River Bridge be implemented during the final design phase.

7.5.4 Foundation Retrofit Costs

We obtained a copy of the engineer's estimate and low-bid contractor's prices for the Monte Bridge Road seismic upgrade project from the construction manager for Monterey County. These prices are presented in Table 1. These prices may be useful for generating an order-of-magnitude preliminary construction cost estimates for seismically upgrading the existing Salinas River Bridge foundations. We recommend that (1) two piles per existing pier and similar pile lengths be assumed, (2) contingencies be added for piles potentially larger than the 6 -foot-diameter piles installed for Monte Road Bridge and for difficult pile installation at piers that may have rock or other obstructions, and (3) the prices be increased for inflation. Based on the Monte Road Bridge seismic retrofit cost data that we obtained from Monterey County Department of Public Works (Table 1), in our opinion, the cost to seismically retrofit the Salinas River Bridge foundations using concrete-filled steel piles would be on the order of $\$ 3,000,000$. Costs could increase significantly if obstructions are encountered during pile installation.

We recommend that an allowance be made for placing riprap erosion protection around Abutment 2. Scour protection and riprap placement around the piers and Abutment 1 may also be required. We do not have sufficient information to estimate riprap quantities or installation effort at this time. The need for scour protection and material quantities would be determined during the final design phase after topographic and bathymetric surveys and hydrologic evaluations are completed. In our opinion, about 1,000 to 2,000 cubic yards of riprap could be required. The cost to install this material would likely be on the order of $\$ 50,000$ to $\$ 200,000$,

SHANONEMHSOM, HC.

depending on material quantities, sources, and accessibility. These costs do not include permits required for this work.

8.0 LIMTTATIONS

This report was prepared for the exclusive use of STV and TAMC for specific application to the preliminary design phase for proposed upgrades to the Monterey Branch Line between Catroville and Seaside, California, as it relates to the geotechnical aspects discussed in the report. The data and report should be provided to other engineering and consulting firms involved in the preliminary engineering phase of this project for information based on factual data only and not as a warranty of subsurface conditions, such as those interpreted from the explorations or discussed elsewhere in this report.

The analyses, conclusions, and recommendations presented in this report were prepared in accordance with generally accepted professional geotechnical engineering principles and practice in this area at this time. No other warranty, either express or implied, is made. The analyses, conclusions, and recommendations contained in this report are based on site conditions as they existed during our site visits, and further assume that the explorations are representative of the subsurface conditions throughout the site; i.e., the subsurface conditions everywhere are not significantly different from those disclosed by the explorations. Additional explorations have been proposed and, in our opinion, should be accomplished during the final design phase of this project.

Unanticipated conditions are commonly encountered and cannot be fully determined by explorations and site observations. Such unexpected conditions frequently require that additional expenditures be made to achieve a properly constructed project. Therefore, some contingency fund is recommended to accommodate such potential extra costs. If subsurface conditions different from those described in this report are observed or appear to be present during construction, we should be advised at once so that we can review these conditions and reconsider our recommendations, where necessary.

If there is a substantial lapse of time between the submission of this report and the start of work at the site, or if conditions have changed because of natural forces or construction operations at or adjacent to the site, we recommend that this report be reviewed to determine the applicability of the conclusions and recommendations, considering the changed conditions and time lapse.

SHANNONEWLSON, INC.

Construction observation and quality control and assurance are important to the successful implementation of any construction project. We recommend that they be incorporated for the proposed track and structure upgrades. Shannon \& Wilson advocates that the "Observational Method" be used for the proposed construction. This method recognizes that limited information is known about the subsurface conditions and that subsurface conditions may vary. The method uses information learned from observations that are made during the work to modify the design or construction so that the desired objective is achieved. Shannon \& Wilson could provide construction observation services and provide the oversight that would be required for implementation of the observational method.

The scope of our services for this report did not include any environmental assessment or evaluation regarding the presence or absence of wetlands, endangered species, or hazardous or toxic materials in the soil, surface water, groundwater or air at the subject site. Shannon \& Wilson has prepared the attached "Important Information About Your Geotechnical Report" to assist you and others in understanding the use and limitations of our reports (Appendix E).

In providing opinions of probable construction cost, TAMC should understand that Shannon \& Wilson has no control over the cost or availability of labor, equipment, or materials, or over market conditions or the contractors' method of pricing, and that our opinions of probable construction costs are made on the basis of our professional judgment and experience. Shannon \& Wilson makes no warranty, express or implied, that the bids or the negotiated cost of the work will not vary from our opinion of probable construction cost.

SHANNON \& WILSON, INC.

[^2]

SHANNONGMLSON, INC.

9.0 REFERENCES

California Department of Transportation (1962), "Hydrography", Chapter IV excerpt from Preliminary Bridge Report (Doc 95), Salinas River Bridges Nos. 44-40 R/L, MON-68-PM17.7, pages 7 through 16.

California Department of Transportation (1970), "Hydrography", Chapter IV excerpt from Preliminary Bridge Report (Doc 68), Salinas River Bridges Nos. 44-216 R/L, 05-Mon-1-89.2, pages 8 through 12.

California Department of Transportation (1997), Plans for Earthquake Retrofit Project No. 818, Salinas River Bridge (Bridge No. 44-216 R/L, Post Mile 89.2), Sheets 1 through 13 of 13. [Includes Log of Test Borings]

Charlie, W.A., Doehriing, D.O., Brislawn, J.P., and Hassen, H. (1998), Direct measurement of liquefaction potential in soils of Monterey County, California, in Holzer, T.L. (1998), the Loma Prieta, California, earthquake of October 17, 1989 - Liquefaction: US Geological Survey Professional Paper 1551-B, pp. 181-222.

Dokken Engineering (2000), General Plan and Log of Test Borings for Earthquake Retrofit: Monte Road Bridge at Salinas River, Sheets 2, 3, 8 and 9 of 20, dated December 2000.

Dupré, W.R., and Tinsley, J.C. (1980a), Maps showing geology and liquefaction potential of Northern Monterey and Southern Santa Cruz Counties, California: Geologic Map, U.S. Geological Survey Map MF-1199.

Dupré, W.R., and Tinsley, J.C. (1980b), Maps showing geology and liquefaction potential of Northern Monterey and Southern Santa Cruz Counties, California: Liquefaction Potential Map, U.S. Geological Survey Map MF-1199.

Dupré, W.R., and Tinsley, J.C. (1998), Evaluation of liquefaction-hazard mapping in the Monterey Bay region, central California, Holzer, T.L. (1998), the Loma Prieta, California, earthquake of October 17, 1989 - Liquefaction: US Geological Survey Professional Paper 1551B, pp. 273-286.

Mejia, L.H. (1998), Liquefaction at Moss Landing, in Holzer, T.L. (1998), the Loma Prieta, California, earthquake of October 17, 1989 - Liquefaction: US Geological Survey Professional Paper 1551-B, pp. 129-150.

Modjeski and Masters, Inc. (2001a), Inspection and Evaluation Report Salinas River Bridge No. 113.46, prepared for Transit Authority of Monterey County, California, September 28.

Modjeski and Masters, Inc. (2001b), 1914 [Salinas River Bridge North] abutment plan with pile layout, facsimile to Stan Boyle, dated July 5, 2001, 3 sheets.

Modjeski and Masters, Inc. (2000), Salinas River Bridge No. 113.46: Loma Prieta [earthquake] inspection findings by D.F. Sorgenfrei (c. 1989), facsimile to Stan Boyle, dated February 10, 2000, 7 sheets.

Monterey County Department of Public Works (2001), Bridge Seismic Retrofit at Various Locations - Monte Road Bridge and Davis Road Bridge: Bid Summary, Project No. 01-220765, 1 sheet.

Mualchin, L. (1996), California Seismic Hazard Map - Based on maximum credible earthquakes, California Department of Transportation, Revision 1, July 1996.

Nelson, W.T. and Sommers, T.L. (1970), Letter to Mr. J.G. Standley regarding Foundation data, Geology, and Foundation Recommendations for Salinas River Bridge, Bridge No. 44-216 R/L, September 29, 1970, 3 pages.

Norman S. Braithwaite, Inc. (2001), RE: [Hydraulic Analyses] Monte Road over Salinas River, Monterey County, Letter to Ray Miller of Dokken Engineering (Rancho Cordova, CA), dated April 11, 2001, 2 pages.

Parikh Consultants, Inc. (1997), Geotechnical Engineering Investigation Report, Earthquake Retrofit Project No. 818, Final Revision, Salinas River Bridge (Bridge No. 44-216 R/L), Monterey County, California, prepared for Biggs Cardosa Associates, Inc. (San Jose, CA), September 1997, Parikh job No. 96121.15.

Parikh Consultants, Inc. (1998), Geotechnical Engineering Investigation, Seismic Retrofit Monte Road at Salinas River (County No. 135/Caltrans No. 44C-93), Monterey County, California, prepared for Dokken Engineering (Rancho Cordova, CA), October 1998, Parikh Job No. 97112.13.

STV, Incorporated (2001), Preliminary track charts for Monterey Intercity Subdivision - MP 110 to MP 125.

Tinsley, J.C. et al (1998a), Map showing locations of liquefaction and associated ground-failure effects related to the Loma Prieta Earthquake, California, of October 17, 1989 - Southern Part (Plate 2), included in Holzer, T.L. (1998), the Loma Prieta, California, earthquake of October 17, 1989 - Liquefaction: US Geological Survey Professional Paper 1551-B.

Tinsley, J.C. et al (1998b), Appendix: Maps and descriptions of liquefaction and associated effects, Holzer, T.L. (1998), the Loma Prieta, California, earthquake of October 17, 1989 Liquefaction: U.S. Geological Survey Professional Paper 1551-B, pp. 287-314.

TABLE 1
BID SUMMARY FOR BRIDGE SEISMIC RETROFIT: MONTE ROAD BRIDGE ${ }^{1,2}$

Kitm		Gnitiof	Estimated	Them Price		Temprice	Whtended
1	Partnering	LS	1	\$2,000	\$2,000	\$1	\$1
2	Resident Engineer's Office	LS	1	\$20,000	\$20,000	\$10,000	\$10,000
3	Construction Signs	LS	1	\$10,000	\$10,000	\$2,000	\$2,000
4	Traffic Control System	LS	1	\$150,000	\$150,000	\$6,000	\$6,000
5	Trimming	LS	1	\$3,000	\$3,000	\$4,500	\$4,500
6	Structure Excavation (Bridge)	CY	112	\$64.00	\$7,168	\$125.00	\$14,000
7	Structure Backfill (Bridge)	CY	62	\$66.00	\$4,092	\$140.00	\$8,680
8	Furnish 72" Cast-in-Steel-Shell Concrete Piling ${ }^{3}$	LF	1387	\$550.00	\$762,850	\$290.00	\$402,230
9	Drive 72" Cast-in-Steel-Shell Concrete Piling ${ }^{3}$	EA	12	\$65,000.00	\$780,000	\$80,000	\$960,000
10	Structure Concrete (Bridge)	CY	402	\$580.00	\$233,160	\$500.00	\$201,000
11	Bar Reinforcing Steel (Bridge)	LB	347,500	\$0.65	\$225,875	\$0.75	\$260,625
12	Structural Steel (Bridge)	LB	130,000	\$2.80	\$364,000	\$4.00	\$520,000
13	Clean and Paint Structural Steel	LS	1	\$41,000	\$41,000	\$30,000	\$30,000
14	Spot Blast Clean and Paint Undercoat	SF	1050	\$49.00	\$51,450	\$40	\$42,000
15	Work Area Monitoring	LS	1	\$10,000	\$10,000	\$12,000	\$12,000
16	Mobilization	LS	1	\$296,488.33	\$296,488	\$220,000	\$220,000
	Monte Bridge Subtotal				\$2,961,083		\$2,693,036

Notes:

1. Bid Summary from Monterey County Department of Public Works (2001).
2. See Appendix C for General Plan of Monte Bridge Earthquake Retrofit.
3. It is our understanding that bid items 8 and 9 include furnishing steel shell, driving steel shell, excavating material from within shell, concrete filling, and all other miscellaneous activities associated with installation of the piling.

0
5
10

Distance In Miles

NOTE

Map adapted from Delorme Street Atlas USA, Version 7.0, dated 1999.

Transit Authority of Monterey County Monterey Branch Line Monterey County, Califomia

VICINITY MAP

Transit Authority of Monterey County Monterey Branch Line Monterey County, Califomia

SITE AND EXPLORATION PLAN: SALINAS RIVER BRIDGE NO. 113.46

December 200 21-1-09294-001 SHANNON \& WILSON, INC FIG. 4

APPENDIX A

SUBSURFACE EXPLORATION PROGRAM

APPENDIX A

SUBSURFACE EXPLORATION PROGRAM

TABLE OF CONTENTS

LIST OF FIGURES

Figure No.
A-1 Soil Classification and Log Key (2 sheets)
A-2 Log of Boring MP 113.46-1 (2 sheets)
A-3 \quad Log of Boring MP 113.46-2a
A-4 Log of Boring MP 113.46-2b
A-5 Log of Boring MP 113.46-2c (3 sheets)

APPENDIX A

SUBSURFACE EXPLORATION PROGRAM

Subsurface conditions at the site were explored by drilling four soil borings with a Holemaster Failing 250 track-mounted drill rig. The explorations were performed by Pitcher Drilling Company of Santa Clara, California, under subcontract to Shannon \& Wilson, and were completed on July 11 and 12 , 2001. The borings were performed using mud-rotary techniques with a $47 / 8$-inch-diameter tricone bit. During mud-rotary drilling, drilling mud consisting of a bentonite slurry, is pumped out of a mud tank at the ground surface, down the drill rods, out through the bit, up the annulus of the hole between the drill rods and borehole, and back into the mud tank. The circulation of drilling mud removes the cuttings generated during the drilling process from the hole and carries them to the surface where they are allowed to settle out in the mud tank. The drilling mud also keeps the hole from caving or collapsing during sampling. Samples are obtained by removing the drill rods and drill bit from the borehole, removing the drill bit from the drill rods, attaching a sampler to the drill rods, and lowering the sampler to the bottom of the hole.

A total of four borings were accomplished, ranging in depth from 26 to 121.5 feet. The borings were drilled near the west side of Piers 1 and 2, at the approximate locations shown on Figure 4. When planning the preliminary engineering phase explorations for this project we proposed to complete three borings near Salinas River Bridge No. 113.46 to depths of about 100 feet. The proposed borings were to be located near Piers 1,2 and 4. The boring proposed near Pier 4 was eliminated from the preliminary engineering phase explorations because (1) drilling for that boring would have to be performed from a barge or from the bridge deck and would have cost more than was budgeted for this work (the bridge deck would need upgrading to provide access), (2) explorations completed near Piers 1 and 2 appeared to confirm that the soil profile at the Salinas River Bridge was similar to that encountered in the explorations that were performed for the nearby highway bridges, (3) we obtained a significant amount of subsurface data for the nearby highway bridges that should be generally applicable to our site, and (4) additional explorations were required near Pier 2 because gravel, cobbles, or larger rock were encountered in borings drilled near that pier, thus using up some of the money that was budgeted for drilling near Pier 4. Two of the three borings drilled near Pier 2 could not advance through the gravels, cobbles, or rock that they encountered. In our opinion, the explorations that we completed and
the information obtained for the nearby highway bridges are sufficient for preliminary engineering purposes.

Boring locations were determined by measuring with a steel or cloth tape from existing site features. The ground surface elevation was estimated based on information found in reports prepared for seismic upgrade of the Monte Road Bridge and the Highway 1 bridges (Parikh Consultants, 1997, 1998). A Shannon \& Wilson geologist was on site to observe the borings. Soil samples were visually classified in the field and returned to our lab for testing and further classification. Boring logs are presented in this appendix.

Standard Penetration Tests (SPTs) were performed in borings MP 113.46-1, MP 113.46-2a, and MP 113.46-2c. In borings MP 113.46-1 and MP 113.46-2a, SPTs were performed at 5-foot intervals at depths less than 40 feet and at 10 -foot intervals thereafter. No sampling was performed in boring MP 113.46-2b or in the upper 50 feet of boring MP 113.46-2c. SPTs were performed at 10 foot intervals at depths of 50 feet and greater in boring MP 113.46-2c. The SPT tests were performed in general accordance with the American Society for Testing and Materials (ASTM) Designation D 1586, Standard Method for Penetration Test and Split-Barrel Sampling of Soils. The SPT consists of driving a 2 -inch outside-diameter (O.D.) split-spoon sampler a total distance of 18 inches into the bottom of the boring with a 140 -pound hammer falling 30 inches. The number of blows required to cause the last 12 inches of penetration is termed the Standard Penetration Resistance (N-value) and is shown on the boring logs. A rope wrapped around a cat-head was used to raise the hammer prior to each blow.

Shannon \& Wilson, Inc. (S\&W), uses a soil classification system modified from the Unified Soil Classification System (USCS). Elements of the USCS and other definitions are provided on this and the following page. Soil descriptions are based on visual-manual procedures (ASTM D 2488-93) unless otherwise noted.

S\&W CLASSIFICATION OF SOIL CONSTITUENTS

- MAJOR constituents compose more than 40 percent, by weight, of the soil. Major consituents are capitalized (i.e., SAND).
- Minor constituents compose 12 to 50 percent of the soil and precede the major constituents (i.e., silty SAND). Minor constituents preceded by "slightly" compose 5 to 12 percent of the soil (i.e., slightly silty SAND).
- Trace constituents compose 0 to 5 percent of the soil (i.e., slightly silty SAND, trace of gravel).

MOISTURE CONTENT DEFINITIONS

Dry	Absence of moisture, dusty, dry to the touch
Moist	Damp but no visible water
Wet	Visible free water, from below water table

ABBREVIATIONS

ATD	At Time of Drilling
Elev.	Elevation
ft	feet
FeO	Iron Oxide
HSA	Hollow Stem Auger
ID	Inside Diameter
in	inches
lbs	pounds
Mon.	Monument cover
N	Blows for last two 6-inch increments
NA	Not applicable or not available
NP	Non plastic
OD	Outside diameter
OVA	Organic vapor analyzer
PID	Photo-ionization detector
ppm	parts per million
PVC	Polyvinyl Chloride
SS	Split spoon sampler
SPT	Standard penetration test
USC	Unified soil classification
WLI	Water level indicator

GRAIN SIZE DEFINITION

DESCRIPTION	SIEVE NUMBER AND/OR SIZE
FINES	< \#200 (0.8 mm)
SAND* - Fine - Medium - Coarse	\#200 to \#40 (0.8 to 0.4 mm) \#40 to \#10 (0.4 to 2 mm) \#10 to \#4 (2 to 5 mm)
GRAVEL* - Fine - Coarse	\#4 to $3 / 4$ inch (5 to 19 mm) $3 / 4$ to 3 inches (19 to 76 mm)
COBBLES	3 to 12 inches (76 to 305 mm)
BOULDERS	> 12 inches (305 mm)

* Unless otherwise noted, sands and gravels, when present, range from fine to coarse in grain size.

RELATIVE DENSITY / CONSISTENCY

COARSE-GRAINED SOILS		FINE-GRAINED SOILS	
N, SPT,	RELATIVE	N, SPT,	RELATIVE
BLOWS/FT.	DENSITY	BLOWS/FT.	CONSISTENCY
$0-4$	Very loose	Under 2	Very soft
$4-10$	Loose	$2-4$	Soft
$10-30$	Medium dense	$4-8$	Medium stiff
$30-50$	Dense	$8-15$	Stiff
Over 50	Very dense	$15-30$	Very stiff
		Over 30	Hard

WELL AND OTHER SYMBOLS

	Cement/Concrete		Asphalt or Cap
B	Bentonite Grout	给会	Slough
	Bentonite Seal		Ash
[$\because 1 ;$	Silica Sand	SN	Bedrock
\cdots	PVC Screen		
1	Vibrating Wire		

Transit Authority of Monterey County Monterey Branch Line Monterey County, California		
SOIL CLASSIFICATION AND LOG KEY		
August 2001	21-1-09294-001	

UNIFIED SOIL CLASSIFICATION SYSTEM (USCS) (From ASTM D 2487-98 \& 2488-93)				
MAJOR DIVISIONS			$\begin{array}{\|c\|} \hline \text { GROU } \\ \hline \end{array}$	TYPICAL DESCRIPTION
COARSE- GRAINED SOILS (more than 50\% retained on No. 200 sieve)	Gravels (more than 50\% of coarse fraction retained on No. 4 sieve)	Clean Gravels (less than 5\% fines)	GW	Weil-graded gravels, gravels, graveilsand mixtures, itttle or'no fines
			GP	Poorly graded gravels, gravel-sand mixtures, little or no fines
		Gravels withFines(more than 12%fines)	GM	Silty gravels, gravel-sand-silt mixtures
			GC	Clayey gravels, gravel-sand-clay mixtures
	Sands (50\% or more of coarse fraction passes the No. 4 sieve)	Clean Sands (less than 5\% fines)	SW	Well-graded sands, gravelly sands, little or no fines
			SP	Poorly graded sand, gravelly sands, little or no fines
		Sands withFines(more thanfines)	SM	Silty sands, sand-silt mixtures
			SC	Clayey sands, sand-clay mixtures
FINE-GRAINED SOILS (50% or more passes the No. 200 sieve)	Silts and Clays (liquid limit less than 50)	Inorganic	ML	Inorganic silts of low to medium plasticity, rock flour, sandy silts, gravelly silts, or clayey silts with slight plasticity
			CL	Inorganic clays of low to medium piasticity, gravelly clays, sandy clays, silty clays, lean clays
		Organic	OL	Organic silts and organic sitty clays of low plasticity
	Silts and Clays (liquid limit 50 or more)	Inorganic	MH	Inorganic silts, micaceous or diatomaceous, fine sands or silty soils, elastic silt
			CH	Inorganic clays or medium to high plasticity, sandy fat clay, or gravelly fat clay
		Organic	OH	Organic clays of medium to high plasticity, organic silts
HIGHLYORGANIC SOILS	Primarily organic matter, dark in color, and organic odor		PT	Peat, humus, swamp soils with high organic content (see ASTM D 442.7)

NOTES

1. Dual symbols (symbols separated by a hyphen, i.e., SP-SM, slightly silty fine SAND) are used for soils with between 5% and 12% fines or when the liquid limit and plasticity index values plot in the CL-ML area of the plasticity chart.
2. Borderline symbols (symbols separated by a slash, i.e., CLMML, silty CLAY/clayey SILT; GW/SW, sandy GRAVEL/gravelly SAND) indicate that the soil may fall into one of two possible basic groups.

Transit Authority of Monterey County Monterey Branch Line
Monterey County, California

SOIL CLASSIFICATION AND LOG KEY

LOG OF BORING MP113.46-2c

1. The stratification lines represent the approximate boundaries between soil types, and the transition may be gradual.
2. The discussion in the text of this report is necessary for a proper understanding of the nature of the subsurface materials.
3. Groundwater level, if indicated above, is for the date specified and may vary.
4. Refer to KEY for explanation of "Symbols" and definitions.
5. USCS designation is based on visual-manual classification and selected laboratory index testing.

21-1-09294-001
SHANNON \& WILSON, INC. Geotechnical and Environmental Consultants

FIG. A-5 Sheet 2 of 3

SHANAOMGMMSON, WNC.

APPENDIX B

LABORATORY TESTS

APPENDIX B

LABORATORY TESTS

TABLE OF CONTENTS

Page
B. 1 VISUAL CLASSIFICATION. B-1
B. 2 MOISTURE CONTENT DETERMINATION. B-1
B. 3 GRAIN-SIZE ANALYSIS B-1

FIGURE

Figure No.

B-1 Grain Size Distribution

SHANNONEWILSON,INC.

APPENDIX B

LABORATORY TESTS

B. 1 VISUAL CLASSIFICATION

All of the soil samples recovered from the borings were visually reclassified in our laboratory using a system based on American Society for Testing and Materials (ASTM) Designation D 2487, Standard Test Method for Classification of Soil for Engineering Purposes and/or ASTM Designation D 2488, Standard Recommended Practice for Description of Soils (Visual-Manual Procedure). This visual classification method allows for convenient and consistent comparison of soils from widespread geographic areas.

The individual sample classifications have been incorporated into the boring logs presented in Appendix A.

B. 2 MOISTURE CONTENT DETERMINATION

The moisture content of all soil samples recovered from the field explorations was determined in general accordance with ASTM Designation D 216, Standard Method of Laboratory Determination of Water (Moisture) Content of Soil, Rock, and Soil-Aggregate Mixtures. Comparison of natural water content of a soil with its index properties can be useful in characterizing soil unit weight, consistency, compressibility, and strength.

Moisture contents are plotted on the boring logs presented in Appendix A.

B. 3 GRAIN-SIZE ANALYSIS

Grain-size analyses were performed on selected samples of granular soil in general accordance with ASTM Designation D 422, Standard Method for Particle-Size Analysis of Soils. Only sieve analyses were performed for our work, i.e., hydrometer analyses to determine the grain-size distribution of particles smaller than the U.S. Standard Number 200 sieve were not performed.

Grain-size distribution is used to assist in classifying soils and evaluating their liquefaction potential, and to provide correlation with soil properties, including permeability and capillarity. Results of the grain-size analyses are plotted on a grain-size distribution curve presented in Appendix B, Figure B-1. Along with each grain-size distribution is a tabulated summary

SHANNONEWILSON, INC.

containing the sample distribution, percentage of fines passing the No. 200 sieve, and natural moisture content.

APPENDIX C
 SUPPLEMENTAL GEOTECHNICAL INFORMATION FOR HIGHWAY BRIDGES OVER SALINAS RIVER

APPENDIX C

TABLE OF CONTENTS

1. California Department of Transportation (1997), Plans for Earthquake Retrofit Project No. 818, Salinas River Bridge (Bridge No. 44-216 R/L, Post Mile 89.2), Sheets 1 through 13 of 13. [Includes Log of Test Borings]
2. Grain Size Distribution Curves (Plates No. B-2A, B-2B, and B-2C) and Chloride and Sulfate Tests for Highway 1 Salinas River Bridge Seismic Upgrades, from Parikh Consultants (1997), 4 sheets.
3. Dokken Engineering (2000), General Plan and Log of Test Borings for Earthquake Retrofit: Monte Road Bridge at Salinas River, Sheets 2, 3, 8 and 9 of 20, dated December 2000.
4. Plasticity Chart (Plate No. B-2), Grain Size Distribution Curves (Plate No. B-3B), and Chloride and Sulfate Tests for Monte Road Salinas River Bridge Seismic Upgrade, from Parikh Consultants (1998), 3 sheets.
5. Norman S. Braithwaite, Inc. (2001), RE: [Hydraulic Analyses] Monte Road over Salinas River, Monterey County, Letter to Ray Miller of Dokken Engineering (Rancho Cordova, CA), dated April 11, 2001, 2 pages.
6. California Department of Transportation (1970), "Hydrography", Chapter IV excerpt from Preliminary Bridge Report (Doc 68), Salinas River Bridges Nos. 44-216 R/L, 05-Mon-189.2 , pages 8 through 12.
7. California Department of Transportation (1962), "Hydrography", Chapter IV excerpt from Preliminary Bridge Report (Doc 95), Salinas River Bridges Nos. 44-40 R/L, MON-68PM17.7, pages 7 through 16.

PILE DATA: 26° OIA GAST-IN-DRULLED-HOLE CONCRETE PILE

$\frac{N o t e i}{L}$ ' R ' designotes left \& right pile, respectively, looking up station

$\frac{\text { SECTION A }}{1 / 2^{\prime \prime}=1.0^{\circ}(8)}$

$\frac{\text { Notes: }}{1 .} \frac{\text { Butt weld to be mode first. }}{}$
2. Butt weld to be made in flat or horiz position 3. Lop bor to be centered on splice
5. Lop bar to be equal in size to hoop bar

VEE GROOVE MELOEO SPLICE OPTON

individual hoops, mad
Inoividul hoops, mode coninuas
penetrotion weld sholl be used
BUTT WELDEO CONTNUQUS HOOP OPTON

$\frac{\text { LIMITS OF PAYMENT }}{\text { FOR EXCAVATION }}$ No scole $\&$ BACKFILL

Boring. Sheets were used

[^3]

$\begin{array}{\|l\|} \hline \text { Desear } \\ \hline \text { DEtTALS } \\ \hline \end{array}$	

PREPARED FOR THE
EARTHQUAKE RETROFIT PROJECT No. 8

वヨNIVคヨy NǊアyヨd

वヨNIVคヨy \perp NヨJUヨd

GRAIN SIZE DISTRIBUTION CURVES

$\square \exists N I \forall \perp \exists \mathcal{L N \exists コ Y \exists d ~}$

PARIKH CONSULTANTS, INC. geotechnical consultants materials engineering

October 3, 1996/ld

b No.: 96121.15
ite Received: October 2, 1996
imple Identification:
Water Soluble Chloride*
mg. $/ \mathrm{Kg}$. Found
Water Soluble Sulfate** mg, Kg. Found
96121.15255720later Soluble Chloride, mg CUKg Soil: Requirement-500 max. Calif. Test Method 422
Nater Soluble Sulfate, $\mathrm{mg} \mathrm{SO}_{4} / \mathrm{Kg}$ Soil: Requirement-2000 max. Calif. Test Method 417

ispectfully submitted,

maCon Testing Laboratories, Inc.

uis Davis
lemistry Laboratory

PLASTICITY CHART

Boring Number	Sample Number	Depth (feet)	$\begin{array}{\|c\|} \text { Test } \\ \text { Symbol! } \\ \hline \end{array}$	Moisture Content (\%)	LL	PL	PI	Description
M-1	14	101.0	-	67	72	28	44	GRAY CLAY WITH ORGANICS
M-2	11	71.0	I	31	NP	NP	NP	NON-PLASTIC
M-2	13	91.0	Δ	42	52	26	26!	GRAY CLAY WITH ORGANICS
M-3	12	81.0	$\star \quad 1$	34	NP	NP	NP	NON-PLASTIC
M-4	4	26.0	\bigcirc -	51	90	30	60	GRAY CLAY WITH ORGANICS
M-4	7	41.0	0 -	30	44	24	20	LEAN CLAY
M-4	9	61.0	0 !	68	85	32	53	GRAY CLAY WITH ORGANICS
M-5	10	78.0	\triangle	39	40	22	18	LEAN CLAY
M-6	7	40.0	Q	73	\|108	37	71	GRAY CLAY WITH ORGANICS
			I					-
			!					
			!				-	
		!			I		!	
	!	;	I		-		!	

PARIKH CONSULTANTS, INC. GEOTECHNICAL CONSULTANTS

AnaCon Testing Laboratories, Inc.

415 Fairchild Drive
Telephone: (650) 335-1233
Mountain View, California 94043 Facsimile: (650) 335-1076
June 18, $1998 / 1 d$
Parikh Consultants, Inc. ATL No.: 0036.01
481 Valley Way Lab No.: 37385.1. 6
Milpitas. California 95035
Service: CHLORIDE \& SULFATE TESTS
Job No.: 97112.14 - (Monte Road Composite M1 + M2 + M3 + M4)
Date Received:
Water Soluble Sulfate**
Sample Identification: Found Found
97112.14 (Monte Road) 315 418
Water Soluble Chloride, mg Cl/Kg Soil: Requirement - 500 max. Calif. Test Method 422
"Water Soluble Sulfate, $\mathrm{mg} \mathrm{SO}_{4} / \mathrm{Kg}$ Soil: Requirement -2000 max. Calif. Test Method 417
Respecttully submitted,
AnaCon Testing Laboratories, Inc.
$\rightarrow$$C-$
ouis Davis
Themistry Laboratory

NORMAN S. BRAITHWAITE, INCORPORATED 1050 WEST StREET REDDING, CA 96001 PH: 530.245.0864 FAX: 530.245.0867
 4.530. 245.0867

$009+12$
April 11, 2001

Ray Miller
Dokken Engineering
3054 Gold Canal Drive
Rancho Cordova, CA 95670-6116

Re: Monte Road over Salinas River, Monterey County.

Dear Ray:

Hydraulic analysis related to the proposed seismic retrofit measures at Monte Road over the Salinas River has been completed. Results and conclusions of the analysis are described below.

Introduction:
The Monte Road Bridge over the Salinas River was identified as being deficient under the Seismic Retrofit (SR) program. The selected SR strategy selected for this bridge consists of placement of new 6-foot diameter CISS piles and cap beams straddling existing pier walls. Hydraulic analysis is required to identify impacts of this strategy on flood risk and to estimate the depth of potential scour for the new piers.

Hydraulic Impacts:
Since the proposed piers are larger in diameter than the existing piers, assuming fixed channel geometry, there will be a slight reduction of conveyance area. This reduction is approximately 40 -square feet under the 100 -year flood water surface elevation. Still assuming fixed channel geometry, this represents a reduction of less than l-percent of the existing effective conveyance area under the 100 -year flood water surface elevation. The Salinas River channel, however, does not maintain a fixed channel geometry. The river banks and bed are very highly erodible and capable of responding rapidly to hydraulic requirements. Flood water surface elevations at Monte Road are more related to conditions of tide, sediment transport and loss of flow from the channel than to the specific channel geometry at the bridge. Given the ability of the Salinas River channel to

The Salinas River channel, however, does not maintain a fixed channel geometry. The river banks and bed are very highly erodible and capable of responding rapidly to hydraulic requirements. Flood water surface elevations at Davis Road are related to conditions of sediment transport and substantial overbank conveyance than to the specific channel geometry at the bridge. Given these factors the proposed SR measures are not expected to have a quantifiable impact to the water surface elevation during the most probable 100 year flood and therefore not expected to increase the risk of damage to structures during the most probable 100-year flood.

Potential Scour:

 Assuming an effective pier width of 2.0 -meters to account for accumulation of debris the
potential local pism seotr estinatcuing the CGU equation presented in FinN inEC-18
is 2.4 -meters. Given a current bottom of channel elevation of 4.0 -meters NGVD and a
potential channel deepening of 1.5 -meters, total estimated potential scour at the piers is to
an elevation of 0.5 -meters NGVD. Both the abutments of the bridge and piers should be
 Assuming an effective pier width of 2.0 -meters to account for accumulation of debris the
potential loca: pior seotr estinatcuing the CSU equation presented in FinN inEC-18
is 2.4 -meters. Given a current bottom of channel elevation of 4.0 -meters NGVD and a
potential channel deepening of 1.5 -meters, total estimated potential scour at the piers is to
an elevation of 0.5 -meters NGVD. Both the abutments of the bridge and piers should be designed considering this potential scour.

Norman S. Braithwaite, P.E.
Civil Engineer

$$
\begin{gathered}
21-1-00,204-001 \\
\text { RCD } 7 / 19 / 0 H \\
\text { monterey comity } 2 R
\end{gathered}
$$

05-40n-1-89.2
Salinas River Bridges Non. $44-216 \mathrm{k} / \mathrm{L}$

IV. HYDROGRAPHY

General

A comprehensive hydraulic study for the Salinas River is included with the September, 1962 Preliminary Report for the Salinas River Bridges Nos. 44-40 r and I on Road 05-Mon-68-17.7 (old V-mon-117-A). For additional data refer to the above report.

Basin

The Salinas River basin above Route 1 consists of about 4250 sq mi of level valley, rolling foothills, and steep mountain slopes ranging from about sea level to pears at about EI 5000. The valley area is extensively cultivated, the foothills support a moderate grass cover, and the upper rocky slopes support a moderate growth of brush and trees. Due to the large basin area and long stream length, the Salinas River basin drains many different climatic, topographic, and land use areas.

The Salinas River discharges into Monterey Bay about 2 miles downstream from Route 1 and is considered navigable from Monterey Bay to about 3 miles upstream from Route 1. Stage and Velocity at Route 1 are affected by tidal action as well as by basin munoff. Of the major upstream regulatory devices, those which might affect basin muoff include Nacimiento and San Antonio Reservoirs, The Nacimiento Dam is Iocated near the mouth of the Nacimiento River and began water storage in 1956. The San Antonio Dam is located near the mouth of the San Antonio River and began water storage in 1965. Both of these reservoirs plus other reservoirs within the basin are primarily for water development and not for flood control. Therefore, for this report, it will be assumed that none of the reservoirs within the basin will materially affect discharges with frequencies in excess of once in ten years.

Discharge

A stream gaging station with a 4160 sq mi basin has been located about 11 miles upstream from Route 1 since 1929. In additioneto the recorded discharges, a historical record of estimated discharges from 1900 to 1929 has been compiled. Together this data represents nearly 70 frears of records and is considered adequate to be used to estimate a $30-y r$ design discharge of about $80,000 \mathrm{sec}-\mathrm{ft}$ at Route 1.

The greatest discharge at the gage occurred in 1914 of 85,000 sec-ft (estimated) and the second greatest was in 1969 of $82,600 \mathrm{sec}-\mathrm{ft}$ (estimated). There are no major tributaries to the Salinas River between the gage and Route 1.

Stage

During the December, 1969 field investigation, a painted high water maris (February 1969) was found at about El 12 on the existing Bridge No. 44-72. It is anticipated that this stage can also be considered the $30-\mathrm{yr}$ design discharge stage at this site.

The 1941 report for Bridge No. 44-72 gives the following approximate peak stages:

$$
\begin{array}{ll}
1914 & \text { El } 13.5 \\
1941 & \text { El } 11.0 \\
1938 & \text { El } 10.0
\end{array}
$$

It is noted that the stage - discharge relationship will be variable due mainly to tidal action.

Discounting the effect of stream flow and the sand spit at the mouth, the tidal relationship at the site is estimated to be about as follows:

Velocity

Based on the existing waterway area below the 1969
painted stage and a discharge of about 80,000 sec-ft, it is anticipated that an average velocity of less than 15 fps will occur within the main channel and an average velocity of about 5 fps will occur within the overflow area.

Stream Bed

The existing channel consists of a sandy stream bed with relatively stable, silty banks and overflow area. Considerable streall bed scour can be anticipated adjacent to piers during periods of heavy stream flow. Pier footings within or immediately adjacent to the main channel should be at or below El -20.

Deft

A heavy volume of large drift can be expected during periods of peak discharge. Span lengths approximately equal to the existing structure should be provided within the main channel. 50-ft span lengths within the overflow area should be adequate. Well piers and R / L pier connections are suggested within the high velocity main channel, to eliminate a drift trap. Pile bents should be satisfactory within the overflow area.

Required Waterway

The existing Bridge No. 44-72 (built 1943)
PRELIM ER DOC 68
provides an effective waterway area of about 6,000 sq ft below in 12, of this total area, about 800 sq it is relatively inefficient, shallow, low-velocity, overflow area. However, the total effective area appears adequate to pass the $30-\mathrm{yp}$ design discharge without problems and it is suggested that the proposed strutLures provide an equivalent waterway area. Based on the "L. $0^{\text {" }}$ line profile and a skew of 22°, the suggested waterwayarea can be provided by open end type structures beginning at sta 810410 and ending at Sta $816+45$. This length of 635 it is 150 ft less then the existing bridge. However, the reduced length le within the overflow area and is also partially compensated by less skew.

Bank Protection

It does not appear that bank protection will be required. However, District should determine and handle any required bank protection.

$$
\begin{gathered}
\text { SALINAS RUE BRIDGES } 44-40 \mathrm{R} / \mathrm{L} \text { ? noN-68-PM } 17.7 \\
\text { SEPTEMBER } 1962 \\
\text { PRELIM BR DOC } 95 \\
\text { (PRELIMINARY BRIDGE REPORT) } \\
\text { "EXCEPT" }
\end{gathered}
$$

IV. HYDROGRAPHY

Basin: The Salinas River basin consists of about $4,230 \mathrm{sq} \mathrm{mf}$ of level valley, rolling foothills, and steep mountain slopes ranging from about El 5000 to about El 25. The valley area is extensively cultivated, the foothills support a moderate grass cover, and the upper slopes support a moderate growth of brush and trees. Due to the large basin area and long stream length, the Salinas River basin drains many different climatic, topograplete, and land use areas.

The Salinas River discharges into Monterey Bay about 15 miles downstream from the site and tides affect stage and velocities - f peak discharges at the site.

There are several regulating devices located. within this basin. However the only one which might be considered to affect flow at the site is the Nacimiento Reservoir, located about 90 miles upstream and near the mouth of the Nacimiento River, a major tributary. Other major tributaries include the San Antonio RIver, Estrella River, San Lorenzo Creek, and Arroyo Seco. Additional hydraulic studies on the Salinas River which have been made in the past and which might supplement the following data Include:

Salinas River, King City to Soledad, August 3, 1949, by RR Rowe and 5 Hamlin.

Preliminary Report for Salinas River Bridge No, 44-72 on Road V-Mon-56-I, July, 1941 by W. H. Jacobson.

Preliminary Report for Salinas River Bridge No. 44-02 on Road $V-$ Mon $-2-D$, dated 1936.

District Memorandum dated February 27, 1962 by R. R. Pederson.

Memorandum dated April 24, 1962 by T. C. Royce.
Discharge: A stream gaging station has been located adjacent to the site since 1929. This station is located at the existing Route 117 Bridge No. $44-22$ about 0.4 mile downstream from the proposed crossing.

In addition to the gaging station records, a historical record of estimated discharges from 1900 to 1929 has been compiled. Together this data represents 60 years of records and can be considered adequate to be used in determining a design discharge. A summation of this data follows:

PRELIM BR DOC 95

11,000	1905		est. Q
10,900	1946	117	est. Q
9,000	1928	185	
8,900	1953		
8,400	1929		
8,050	1934		est Q.
7,500	1908		
5,550	1949	158	
5,300	1950	177	

In addition to the above list there are 20 more discharges ranging from a low of 50 sec-ft to a high of 5000 sec-ft with known stages ranging from 70 to 135 . Also, the report on the Salinas River, King City to Solddad, August 3, 1949, by R. R. Rowe and C. F. Hamlin gives the following information: "of all floods which have occurred on the Salinas River in the past 100 years, that of 1862 was the greatest. Its estimated stage is said to correspond to 31 feet on the present gage at Spreckels, or 5 feet higher than any other known stage at that station. Other large floods" (prior to 1900) "occurred in 1868, 1881, 1890." *Based on Water Supply Paper No. 51. Gage reading of about 3.5 was bottom of channel and gage was located at a bridge about 3.75 miles south of Salinas.

It should also be noted that only one major peak discharge has occurred since the Nacimiento Reservoir has been in operation (November, 1956) and therefore no reasonable estimate of the effect of this reservoir on peak flows at the site can be made. For this report, it is assumed that the Nacimiento Reservoir does not affect discharges with frequencies in excess of once in ten years.

Based on the above data and considering that only one of the four greatest peak discharges is an actual recorded discharge and that the second greatest is based on an observed high stage, it is

PRELIM BR DOC 95

believed that a design discharge of about 75,000 sec -ft with an estimated frequency of once in thirty years should be used. Stage: As can be seen from the relation between staff gage readings and peak discharges (see preceding "Discharge" section), high stages vary considerably and are relatively independent of discharge: This variation can not be explained by any one factor, but is probably due to a combination of factors, Of these, it is believed that the three most important; or common, factors affecting stage are as follows: Natural growth within and adjacent to the channel which quite likely follows a pattern based on frequency of large annual discharges and man-made changes within overflow areas. Tidal affect which can change highwater slope and therefore affect velocities of peak discharges. Streambed characteristics including the sandy stream bed material, the wide shallow overflow areas, and the tendency to shift or meander, deposit or scour within the wide, shallow, unconfined channel.

During the May, 1962 field investigation at this site, stream slope was found to be about 0.75 foot per 1000 feet based on low water surface and recent drift. Also the unconfined channel was found to be between 250 and 300 feet wide and about 12 feet below the overflow areas. Both overflow areas varied between 200 and 500 feet wide and supported a very dense growth of brush, vines, and trees. The channel supported a moderate to sparse growth of brush and tules.

From the condition of the channel at the present time it is believed that peak discharges occurring under existing conditions

PRELIM BR DOC 95

would result in high stages. Therefore the rezationship of the 1952 and 1956 discharge to stage is believed to most nearly represent the near future relationship. However it should be noted that the 1940 to 1949 period would be more representative of conditions where a series of reasonably large discharges followed an extreme discharge.

For this report, it is assumed that the 1958 discharge-stage relationship represents existing average conditions and that the 1952 relationship represents the worst possible combination of factors.
During the 1962 field. investigation, a drect tie between survey datum (USC \&GS-MSL-1961 adjustment) and the stafeg gage at Bridge No. 44-22 was made. This tie indicated that the datum of the staff gage is 19.9 feet above mean sea level. Since Water Supply Papers indicate that the datum of the gage is 22.64 feet above mean sea level (1912 adjustment) verification of datum is being obtained from the USGS. However, a 1950 recorded highwater found in Bridge Book No. 398 and compared with the maximum November, 1950 stage from the Water Supply Paper supports the 19.9-foot datum relationship. Therefore, for this report, add 19.9 feet to staff gage stage readings to obtain survey datum elevations adin adion, add about 1.5 feet to these elevations to obtein comparable stage elevations at the proposed structure site.

At existing Bridge No. 44-22 in 1958, the peat discharge of 35,600 sec-ft reached E1 43. Assuming spans 3 and 4 ful1y effective and spans 1, 2, and 5 only 50% effective due to dense growth, this discharge is estimated to have an average velocity of about 6 fps under the two min spans and an/average velocity

PRELIM BR DOC 95

of about 2 fps under the other three spans.
Using the above stage, discharge, and velocities as a base and adjusting velocities and areas due to scour and stage, the following table of discharge-stage relationships are estimated at the existing Bridge No, 44-22.

Adjusting the above stage (for the estimated design discherge) upstream to the site, it is estimated that design highwater will peak at about E1 50.5. However, R1 51 at the upstream structure will probably be a reasonable estimate following construction. Minor flow occurs all year with normal low water at about El 27 between May and October.

Velocity: As noted in the preceding section (Stage) estimated velocities will vary from about 2 fps within the overflow areas to about 8 to 9 fps within the main channel. It is anticipated that maximum velocities of 10 fps can be used for design purposes. Streambed; As noted previousiy, the main channel consists of loose sand and is relatively free of growth whereas the overflow areas support a very dense growth. Extensive scour can be expected within the main channel as well as lateral erosion and undercutting of averflow areas.

Between the proposed site and existing Bridge No. $44-22$, the main

PRELIM BR DOC 95

evidence of recent movement.
Between a bend about 1000 feet upstream and the proposed site, the mann channel is reasonably straight but gradually decreases In width as it approaches the site. Upstream from this bend, the main channel is considerably wider and overflow areas correspondingly more narrow than at the site. At the bend, which is a long gradual turn to the left, impinging currents on the outside or right bank restrict the overflow area to a very narrow strip.

At the site, the effect of the bend results in a stable, well protected right bank overflow area and a less stable left bank overflow area. Immediately upstream from the site, a wide, loose, sand bar has been deposited adjacent to the left overflow area. Downstream from the site, the left overflow area becomes more stable and better protected by natural growth. Drift: During the 1962 field investigation, only a small volume Of Light drift and no drift larger than 20 feet in length was observed adjacent to the site. However, due to the heavy growth of large trees within the channel and the known ability of the streambed to shift, drift up to about 80 feet can be expected to pass the site during peak stages. Since this drift will be trees with large stub branches and heavy root systems, a minimum of 3 feet and preferably 5 feet of vertical clearance above
design stage should be provided for driftway,
Required Waterway: As noted in a preceding section (Stage), the existing Route 117 structure is estimated to have required about 9000 sq ft of fully effective waterway area plus about 4000 sq ft of very inefficient overflow area to pass the design

PRELIM BR DOC 95

discharge below E1 49. At the proposed site, this equivalent waterway area should be provided below E1 50.5.

However, due to the extreme skew and slightly different channel at the proposed site it is believed that less overflow area would not affect peak discharge capacity to any great extent, possibly resulting only in a small additional head through the structures, a small increase in velocities, and some additional scour within the main channel. But it should be noted that sufficient overflow area should be provided to adequately protect approach fills from high velocities and prevent extensive undercutting of overflow areas. In addition, the District may wish to use structures in place of fill within some of the overflow area if economics indicate this is more advisable.

At the proposed site the existing well protected, low-velocity, overflow area on the left bank ends at about Sta $762+50$. Following construction, it is believed that this low velocity area will end between sta $761+50$ and 762 . With respect to the right bank, the low velocity overflow area now begins at about sta 767 . Following construction, it is believed that this low velocity area will begin at about Sta $767+50$. To provide adequate protection, at least one span should be located within these low velocity overflow areas. However full 80-foot nomal spans and 5-foot vertical clearance need not be provided within these areas.

Since it is anticipated that the major possibility of overflow areas undercutting exists along the left bank, it is believed that the proposed structure location is should be picked to provide a greater overflow area opening within this left bank overflow area. rather than centered about the anticinated main channel

PRELIM BR DOC 95

centerline.
For design considerations, the following conditions are anticipated to be the controlling factors governing structure locations, waterway area, etc.
a. Structure length should not be less than 875 feet and beginning of bridge should not be located ahead of sta 760 .
b. Minimum thickness wall piers should be used to reduce turbulence, tend to channel high velocity flow, and to pass drift with less probability of drift pileup. Piers of right and left structures should be connected."
c. 80ミfoot minimum clearnomal spans should be used between Stas 761 and $767+50$. Outside of these limits, 60-foot spans are satisfactory.
d. 5-foot minimum vertical clearances above El 50 should be Provided between stas $762+50$ and 766 . Outside of these limits, 4-foot minimum clearance above El. 50 is satisfactory.
e. 45° left skew is suggested, however it should be noted that location and direction of high velocity currents will not necessarily be the same at various discharges and stages.
f. Scour is anticipated to at least, El 23 with respect to usable waterway. However, scour action will extend well below El 20. The Engineering Geology Section will furnish estimated scour depth for safe footing locations following field investigation. Major scour is anticipated to occur between Sta 763 and 766 . Minor scour is anticipated outside of above limits and between Stas $761+50$ and $767+50$.
g. The design highwater stage is estimated to be at about El 50.5 at the site. However, it is anticipated that the proposed structures may develop a head during peak discharges.

Therefore it is believed that E1 51 at or adjacent to the upstream structure may more nearly be considered the design stage. It is noted that the discharge-stage relationship undoubtedly will vary considerably from year to year and that the above stage should be considered only a reasonable estimate based on average existing conditions.

Bank Protection: Based on the belief that the end spans of the proposed structures will be located within the overflow areas Where average velocities are estimated to be under 3 fps , no bank protection is believed necessary under existing conditions. However, District may anticipate that fill will require light protection from turbulence and eddies adjacent to ends of structures due to type of fill material, clearing operations, or other factors and should handle all dank protection requiremints.
In the future, conditions may require training devices or other channel stabilization work. Also, local or governmental interests may attempt channel improvement or stabilization. However, no conditions or proposals are known at this time which might require State participation.
APPENDIX D VERTICAL MOVEMENT DETECTOR

APPENDIX D

VERTICAL MOVEMENT DETECTOR

Shannon \& Wilson has developed a liquid-level vertical-movement-detector (VMD). The VMD is intended for use on transportation corridors to trigger an alarm when a prescribed threshold value of vertical movement is exceeded. More than 85 of these detectors are currently installed at 4 locations on the Burlington Northern Santa Railway (BNSF) system in Washington and Missouri. These installations have been in use for up to 5 years to monitor for track settlement in landslide prone areas. Eight detectors were also used on a temporary basis to monitor a landslide that Union Pacific Railroad (UP) tracks cross near Santa Barbara, California and six detectors are proposed to be installed at another UP location near Santa Barbara, California. A VMD based system is well suited to monitoring the Salinas River Bridge piers and abutments for settlement because it is (1) developed specifically for detecting vertical movements, (2) robust and relatively maintenance free, (3) simple to use and install, and (4) proven in railroad applications.

The VMD consists of a series of float switches connected by wiring to form a circuit. The switches are installed inside small fluid chambers that are connected to each other and a reservoir by liquid filled tubing. The reservoir provides the reference level for the system. When the device is installed, the liquid level in the reservoir seeks a common level across the system and the fluid chambers are adjusted up or down as needed to put the liquid level at the same relative position. Vertical movement, up or down, at one or more of the fluid chambers causes the liquid level in the chamber to fall or rise, respectively. A float switch in the chamber is set to activate when the liquid level changes a preset amount, generally one to two inches. Activation of the float switch opens the circuit much like what occurs when a slide fence wire is broken or when a pull-plug switch is activated. (Slide fence wires and pull-plug switches are commonly used on railroad warning systems.) When the circuit is broken, it closes a magnetic switch that in turn activates an alarm circuit.

If a VMD system is used, we recommend that two VMD float chambers be installed on the bridge structure over each abutment and pier. One float chamber would be located on the east side of the bridge and one on the west side. Because the bridge length exceeds the maximum length over which a single level line can accurately be operated, a reservoir would need to be installed near each end of the bridge. The reservoirs, float chambers, tubing, and wire should be installed in protective housings and pipes to reduce the potential for vandalism.

In addition to installing VMDs on the bridge, signal controllers and signals would need to be installed and connected to the alarm circuit to warn approaching trains. The VMD system would include (1) VMDs and associated tubing and fluid chambers, (2) protective piping and enclosures, (3) power system, (4) signals, (5) backup batteries, and (6) labor and equipment to install, calibrate, and test the system components. Shannon \& Wilson could purchase and install VMDs in contractor mounted piping and enclosures and provide electrical leads for others to connect power and signal control systems. Signal work to connect with VMD instrument instrumentation should be performed by qualified personnel; Shannon \& Wilson is not qualified to perform signal work.

The above-described liquid-level instruments are proposed to monitor for pier settlement, whether the settlement is triggered by a seismic event, foundation failure, or occurs for some other reason. Based on our experience with installation of VMD systems, the probable cost for the VMD instruments and their installation by Shannon \& Wilson personnel would be about $\$ 40,000$ to $\$ 50,000$. These costs do not include vandal protective components or mounting of these components on the bridge, signal and power systems, or other instruments (e.g., strong motion detectors).

APPENDIX E

IMPORTANT INFORMATION ABOUT YOUR GEOTECHNICAL REPORT

SHANNON \& WILSON, INC.

Important Information About Your Geotechnical/Environmental Report

CONSULTING SERVICES ARE PERFORMED FOR SPECIFIC PURPOSES AND FOR SPECIFIC CLIENTS.

Consultants prepare reports to meet the specific needs of specific individuals. A report prepared for a civil engineer may not be adequate for a construction contractor or even another civil engineer. Unless indicated otherwise, your consultant prepared your report expressly for you and expressly for the purposes you indicated. No one other than you should apply this report for its intended purpose without first conferring with the consultant. No party should apply this report for any purpose other than that originally contemplated without first conferring with the consultant.

THE CONSULTANT'S REPORT IS BASED ON PROJECT-SPECIFIC FACTORS.

A geotechnical/environmental report is based on a subsurface exploration plan designed to consider a unique set of project-specific factors. Depending on the project, these may include: the general nature of the structure and property involved; its size and configuration; its historical use and practice; the location of the structure on the site and its orientation; other improvements such as access roads, parking lots, and underground utilities; and the additional risk created by scope-of-service limitations imposed by the client. To help avoid costly problems, ask the consultant to evaluate how any factors that change subsequent to the date of the report may affect the recommendations. Unless your consultant indicates otherwise, your report should not be used: (1) when the nature of the proposed project is changed (for example, if an office building will be erected instead of a parking garage, or if a refrigerated warehouse will be built instead of an unrefrigerated one, or chemicals are discovered on or near the site); (2) when the size, elevation, or configuration of the proposed project is altered; (3) when the location or orientation of the proposed project is modified; (4) when there is a change of ownership; or (5) for application to an adjacent site. Consultants cannot accept responsibility for problems that may occur if they are not consulted after factors which were considered in the development of the report have changed.

SUBSURFACE CONDITIONS CAN CHANGE.

Subsurface conditions may be affected as a result of natural processes or human activity. Because a geotechnical/environmental report is based on conditions that existed at the time of subsurface exploration, construction decisions should not be based on a report whose adequacy may have been affected by time. Ask the consultant to advise if additional tests are desirable before construction starts; for example, groundwater conditions commonly vary seasonally.

Construction operations at or adjacent to the site and natural events such as floods, earthquakes, or groundwater fluctuations may also affect subsurface conditions and, thus, the continuing adequacy of a geotechnical/environmental report. The consultant should be kept apprised of any such events, and should be consulted to determine if additional tests are necessary.

MOST RECOMMENDATIONS ARE PROFESSIONAL JUDGMENTS.

Site exploration and testing identifies actual surface and subsurface conditions only at those points where samples are taken. The data were extrapolated by your consultant, who then applied judgment to render an opinion about overall subsurface conditions. The actual interface between materials may be far more gradual or abrupt than your report indicates. Actual conditions in areas not sampled may differ from those predicted in your report. While nothing can be done to prevent such situations, you and your consultant can work together to help reduce their impacts. Retaining your consultant to observe subsurface construction operations can be particularly beneficial in this respect.

A REPORT'S CONCLUSIONS ARE PRELIMINARY.

The conclusions contained in your consultant's report are preliminary because they must be based on the assumption that conditions revealed through selective exploratory sampling are indicative of actual conditions throughout a site. Actual subsurface conditions can be discerned only during earthwork; therefore, you should retain your consultant to observe actual conditions and to provide conclusions. Only the consultant who prepared the report is fully familiar with the background information needed to determine whether or not the report's
recommendations based on those conclusions are valid and whether or not the contractor is abiding by applicable recommendations. The consultant who developed your report cannot assume responsibility or liability for the adequacy of the report's recommendations if another party is retained to observe construction.

THE CONSULTANT'S REPORT IS SUBJECT TO MISINTERPRETATION.

Costly problems can occur when other design professionals develop their plans based on misinterpretation of a geotechnical/environmental report. To help avoid these problems, the consultant should be retained to work with other project design professionals to explain relevant geotechnical, geological, hydrogeological, and environmental findings, and to review the adequacy of their plans and specifications relative to these issues.

BORING LOGS AND/OR MONITORING WELL DATA SHOULD NOT BE SEPARATED FROM THE REPORT.

Final boring logs developed by the consultant are based upon interpretation of field logs (assembled by site personnel), field test results, and laboratory and/or office evaluation of field samples and data. Only final boring logs and data are customarily included in geotechnical/environmental reports. These final logs should not, under any circumstances, be redrawn for inclusion in architectural or other design drawings, because drafters may commit errors or omissions in the transfer process.

To reduce the likelihood of boring log or monitoring well misinterpretation, contractors should be given ready access to the complete geotechnical engineering/environmental report prepared or authorized for their use. If access is provided only to the report prepared for you, you should advise contractors of the report's limitations, assuming that a contractor was not one of the specific persons for whom the report was prepared, and that developing construction cost estimates was not one of the specific purposes for which it was prepared. While a contractor may gain important knowledge from a report prepared for another party, the contractor should discuss the report with your consultant and perform the additional or alternative work believed necessary to obtain the data specifically appropriate for construction cost estimating purposes. Some clients hold the mistaken impression that simply disclaiming responsibility for the accuracy of subsurface information always insulates them from attendant liability. Providing the best available information to contractors helps prevent costly construction problems and the adversarial attitudes that aggravate them to a disproportionate scale.

READ RESPONSIBILITY CLAUSES CLOSELY.

Because geotechnical/environmental engineering is based extensively on judgment and opinion, it is far less exact than other design disciplines. This situation has resulted in wholly unwarranted claims being lodged against consultants. To help prevent this problem, consultants have developed a number of clauses for use in their contracts, reports and other documents. These responsibility clauses are not exculpatory clauses designed to transfer the consultant's liabilities to other parties; rather, they are definitive clauses that identify where the consultant's responsibilities begin and end. Their use helps all parties involved recognize their individual responsibilities and take appropriate action. Some of these definitive clauses are likely to appear in your report, and you are encouraged to read them closely. Your consultant will be pleased to give full and frank answers to your questions.

The preceding paragraphs are based on information provided by the ASFE/Association of Engineering Firms Practicing in the Geosciences, Silver Spring, Maryland

APPENDIX D

Excerpts Related to Monterey Branch Line Bridge Structures

Monterey Intercity Passenger Rail Project

Subnitted to the
Transportation Agency for Monterey County

Final Report
March 2003

Prepared by
STV Incorporated
100 Spear Street, Suite 505, San Francisco, CA 94105
Comact: Bruce Bernhard, (415) 777-9206

Table of Contents

ELEMENT FROM SCOPE OF WORK

Advanced Planning, previously called Preliminary Engineering in contract Page
Design Criteria 1
Base Mapping and Surveys 4
Geotechnical Investigation and Engineering 5
Drainage and Hydraulic Engineering. 6
Bridge Type Selection Study for Salinas River Br. 7
Other Existing Structures 14
Track Alignment and Profile 18
Grade Crossing Roadway Work and Warning Devices 28
Station Platform and Facility Layouts 41
Specs and Drawings for Track Upgrade 42

- Ballast 43
- Paving 48
- Chain Link Fencing 52
- Cast In Place Concrete 57
- Pre Stressed Concrete 63
- Concrete Ties 66
- Concrete Crossings 91
- Rail 95
- Timbers 98
- Crossing Warning Systems 103
Plans, Profiles, Typical Sections and Details for Construction 118
Quantity Takeoff and Cost Estimate 119
Design Report-Special Provisions 122
Overall ROW Survey 123
Environmental Clearance
Notice of Exemption and Overview of Enrirommental Impacts and Permits and Approvals 125
Noise Impact Assessment 134
Haz Mat Report- Phase : 145
Biological Impact Assessment. 158

ELEMENT FROM SCOPE OF WORK

Page
Recreational Resources Assessment 160
Air Quality Assessment 161
Water Quality Assessment 162
Traffic Impact Statement 163
Cumulative Impacts 164
Statement Regarding Unusual Circumstances 165
Justification for "Automatic" Categorical Exemption 166
Justification for "Demonstrable" Exemption Undet 771.117(d) 169
Economic Assessment
Cost Analysis 172
Operating Costs 173
Time Frame for Second Round Trip 174
Other Alternatives 175
Bus Service Assessment 176
Local Market (Ridership) Analysis 177
Major Investnent Study/Alternatives Analysis 178
Operating Plan Development Material
Otber Tasks
Response to Comments

MPR Monterey Branch Drainage and Hydraulic Engineering

After investigation of requirements for subsurface explorations involving the Salinas River Railroad Bridge it was determined that due to existing and current information available from the Caltrans Bridge construction immediately downstrean of the Salinas River Railroad Bridge further infonnation was not needed in completing the current Intercity Rail Project. This determination was made and reviewed with TAMC consistent with the following reasons.

1. It was determined that the Salinas River Railroad Bridge could be rehabilitated and not replaced as originally thought by TAMC.
2. The existing Salinas River Bridge is nearly 15 ' higher than any of the higbway structures it precedes in the river channel.
3. The existing river embankments are roughly 20 ' bigh on either side of the river creating a defined channel. This was learned to be a determining factor in the downstream Caltrans bridge design.
4. The hydrau lic bridge studies used for the downstream Caltrans bridge actually used the Salinas River Bridge to define the channel and based that design on the width of the Salinas River Bridge.
5. The Caltrans bridge design further defined the river channel based on their design, which was based on the Salinas River Bridge width. Therefore the bridges are defining the channel.

Subject to the above information TAMC, early on in the project, agreed that STV should not pursue any further drainage and hydraulic engineering efforts during this project, Information as relates to the above items has been included the Geotechnical Report already provided to TAMC as a project deliverable (see page 5).

MIPR Monterey Branch Bridge Type Selection Study for Salinas River Bridge

The inspection and evaluation report for the Salinas River Bridge is provided separately. It recommends rehabilitation rather than replacement of this structure. The following assessment of the envirommental status of the bridge indicates filing with Caltrans and TAMC simultaneously of an Historic Property Survey Report and Determination of Effect based on the recommendation to rehabilitate the bridge will occur by December 20, 2002.

MIPR Monterey Branch Salinas River Bridge Environmental Assessment

The contract scope of work provides: "The consultant shall determine the historical significance of the (Salinas River) bridge. If the bridge is deemed to be of historic significance, the consultant shall identify the requirements of the State Wistoric Preservation Officer and the federal Advisory Council on Historic Preservation in order for the project to proceed. The consultant shall provide detailed information on the steps required to secure clearance of the potentially historically-significant bridge and recommend a preferted altemative. The analysis shall include archeological studies, if required. Upon approval from TAMC, the consultation shall prepare preliminary designs for the bridge superstructure and foundations;"

MFA.s position is that the bridge is not historic because it is a Warren Truss, which is a very conmmon bridge type. Common bridge types are typically not found eligible for the National Register of Historic Places. The provision of federal grade crossing funds makes the project subject to Section 106 of the National Historic Preservation Act.

MFA has drafted the following Historic Property Survey Report (HPSR) and Determination of Effect for submittal to Caltrans District 5 (and subsequently to FHWA and the State Historic Preservation Officer). The Determination of Effect indicates that the proposed project will not have an adverse effect on the historic designation of the bridge since the proposed rehabilitation work will be in compliance with the Secretary of Interior's Standards:

The Secretary of the Interior's Standards for the Treatment of Historic Properties, U.S. Department of Interior, 1995. section: Standards for Relabilitation:

1. A property will be used as it was historically or be given a new use that requires minimal change to its distinctive materials, features, spaces, and spatial relationships.
2. The historic character of a property will be retained and preserved. The removal of distinctive materials or alteration of features, spaces, and spatial relationships that characterize a property will be avoided.
3. Each property will be recognized as a physical record of its time, place, and use. Changes that create a false sense of historical development, such as adding conjectural features or elements from other historic properties, will not be un dertaken.
4. Changes to a propenty that have acquired historic significance in their own right will be retained and preserved.
5. Distinctive materials, features, finishes, and construction techniques or examples of craftsmanship that characterize a property will be preserved.
6. Deteriorated historic features will be repaired rather than replaced. Where the severity of deterioration requires replacement of a distinctive feature, the new feature will match the old in design, color, texture, and, where possible, materials. Replacement of missing features will be substantiated by documentary and physical evidence.
7. Chemical or physical treatments, if appropriate, will be undertaken using the gentlest means possible. Treatments that cause damage to historic materials will not be used.
8. Archeological resources will be protected and preserved in place. If such resources must be disturbed, mitigation measures will be undertaken.
9. New additions, exterior alterations, or related new construction will not destroy historic materials, features, and spatial relationships that characterize the property. The new work will be differentiated from the old and will be compatible with the historic materials, features, size, scale and proportion, and massing to protect the integrity of the property and its environment.
10. New additions and adjacent or related new construction will be undertaken in a such a manner that, if removed in the future, the essential form and integrity of the historic property and its environment would be unimpaired.

To: Steve Brooks

From: Jessica B. Feldman
Subject: Salinas River Bridge Evaluation (Bridge No. 113.46) - Monterey Branch Line Job \# 303

Date: Decernber 17, 2002

Steve:

Pursuant to our discussion last week, please find attached to this memo an original copy of the California State Department of Parks and Recreation 523 form (DPR-523), which evaluates the significance and integrity of the Salinas River Bridge on the Monterey Branch Line.

Project Description:

The Transportation Agency of Monterey County (TAMC) is proposing to rehabilitate and reactivate the railroad line linking Castroville and Fort Ord in Monterey County, to accommodate passenger service for commuter and tourists along this increasingly important route. If FTA and FHWA are cooperating lead agencies, compliance with Section 106 of the National Historic Preservation Act as well as CEQA would be required. The tracks will be lifted and the existing wooden railroad ties will be replaced with concrete ties. The rehabilitation of the tracks will include the restoration of the Salinas River Bridge. The truss bridge at the Salinas River crossing will undergo renovation, including rust removal and repainting. In addition, a new platform will be constructed at the Fort Ord terminus of the line, with parking accommodated in existing parking lots adjacent to the line in Fort Ord. Ali work, inclucing construction of the new platiorm, will be conducted within the existing right-of-way (ROW) and existing staging areas.

hesources I Identified:

The Salinas River Bridge was erected for the Southern Pacific Railroad by the Phoenix Bridge Company in 1903. The original four southern spans were constructed in accordance with common standard plans for steel through Warren trusses, as published by the railroad. This single track railroad bridge was a vital feature of the Monterey Branch Line, a spur of the Southern Pacific Railrcad, which ran between Castroville (north) and Monterey (south), connecting those communities to San Francisco and points south and east.

In the winter of 1913-1914, the Salinas River experienced severe flooding, which appears to have eroded the northern shore of the river at the bridge. This necessitated the construction of a fifth span, which was completed by the American Bridge Company in 1914. The fifth (or northern) span was built to the same specification as the earlier four spans. Each span is approximately 140 feet long. The original ccncrete northern abutment was cut and carved to resemble the other piers, while a new northem abutment was constructed.

The bridge was damaged during the 1989 Loma Prieta earthquake, causing some of the piers to be cisplaced and some of the spans were therefore shifted out of alignment. According to information in the Modjeski and Masters, Inc. report, "Salinas River Bridge Inspection and Evaluation" (2002), no known repairs were made at that time, as the bridge was not in service.

In September 2002, MFA Senior Architectural Historian Carson Anderson requested a records search from the Northwest Information Center in Rohnert Park, CA for the proposed project area'. According to their response on September 18, 2002, the proposed project area contains no record Native American cultural resources, three recorded historic sites, and one recorded historic linear feature. The Information Center identified this project area as potentially sensitive for historic cultural resources and as having a moderate to high possibility for the identification of Native American resources as well.

Conclusions:

The Salinas River Bridge has no known association with important persons or events and is therefore not eligible for the National Register of Historic Places under Criterion A or B. Furthermore, the Salinas River Bridge is an example of a common standard plan used by the Southern Pacific Railroad for Warren through truss spans, and is identical to numerous bridges built for the railroad company throughout the country. With respect to the design or the bridge, it does not represent a distinctive type, period, or method of construction, or the work of a master. It is therefore not eligible for the National Register of Historic Places under Criterion C.

If FTA and FHWA conduct Section 106 compliance with the California State Historic Preservation Officer they should request concurrence with the finding of No Historic Properties Affected.

[^4]State of Calitornia -- The Resources Agency
DEPARTMENT OF PARKS AND RECREATION
PRIMARY RECORD

Primary $\#$
HR \#
Trinomial
NRHP status code 6 Y 2 Pending SHPO concur
\qquad Date

Page - 1 of 2

- Resource Name or t: Salinas River Bridee near Neoonsel

P1. Other Identifier: Bridge No. 113.46

- P2. Location: \square Not for Publication Qunrestricted
a. County Monterey

- P3a. Description: (Describe sesource and its major elements. Include design, materials, conplition, aterations, sizo, setting, and boundaries.) The Salinas River Bridge is a single-track railroad bridge that crosses the river near Neponset. The bridge consists of tive steel Warren through truss spans atop concrele piers and abutments. The original four spans measures 140 feet long and each has six panels. The spans have a 17 fool distance between truss lines and 30 foot vert ically between truss chord center, providing a 15.25 foot horizontal clearance and 23 foot vertical clearance above the base of rail. The 1914 span appears to be identical in length with a 15 foot horizontal clearance and 24 foot verticul clearance.

- Resource Name or \#: Salinas River Bridge near Neponset

Ei. Historic Name:Salinas River Bridge near Neponset
52. Common NameBridge No, 11346
33. Orighal Use: Railroad Bridge B4. Present Use: Rajilroad Bridge

- 35. Archltectural Siyle:
- 35. Constructian History: (Consuruction dale, alterations, and date oi alterations.)

The original four spans (2-5) were constructed in 1903 and a fifth (1; was added in 1914 following a flood that washed away the embankment on the northern (San Francisco) end.

- 日7. Moved? No DYes DUnknown Date: \qquad Original Location:
r 38. Related Features:

S9a Archlect: Southern Pacific Railroad
b. Euilder: Phoenix Bridge Co/American Bridge Co

- 310. Significance: Theme Transportacion
\qquad
Slgnificance: Theme Transportation_P_Propeny Type Railroad Bridge
Period of Significance 1903,1214 Araa Monterev County
\qquad Applicable Criteria N/A
(Discuss impartance in lerms of nistorical or architectural coniext as delined by theme, perlod, and geographic scope. Algo adoress integrity.)
The Salinas River Bridge was originally constructed in 1903 by the Phoenix Bridge Company for Southern Pacific Pailroad, using common standard plans published by the railroad. The bridge consisted of four Warren steel through liuss spans. During the severe flooding of the Salinas River in the winter of 1913-14, the shoreline on the north side of the river was eroded, thereby necessitating the construction of a fifth span. The original north abutment was resized to match the exiscing concrete piers and a new abutment was constructed. The American Bridge Company rected the fifth span in 1914. The Union Pacific Railroad (which merged with the Southern Pacific Railroad in the i998) has not run rains along this alignment since that year. There are no known imporiant persons or events issociaced with this structure; therefore it is not eligible for the National Register of Historic Places under Criterion A of B. The design of all five spans follow directly from the Southern Pacific Railroad common standard plans, ioentical to numerous bridges constructed for the railroad throughout the country. Therefore, it does not represent a distinctive type, period or method of construction or the work of a master and is not eligible for the National Register of Historic Places under Criterion C.

MIPR Monterey Branch Other Existing Structures

This section identifies all other existing structures and contains recommendations for rehabilitating or replacing them as appropriate. Typical bridge cross-sections and details are included separately.

Bridge 111.05

Bridge 111.05 is a 150 -foot long pile trestle, ballast deck Timber Bridge spanning Tembladero Slough and is on a 1 -degree curve. Piles, stringers, and deck are all 1909 timber. It is on driven timber pile depth unknown. It has about $14^{\prime \prime}$ of ballast on the $3^{\prime \prime}$ timber deck. The stringers are $8^{\prime \prime} \times 17^{\prime \prime}$ and the caps are $14.5^{\prime \prime} \times 17.75^{\prime \prime} \times 16 \mathrm{ft}$. The bents have five timber piles each. The abutments are acting as a headwall only as there is a diخven bent directly adjacent to each abutment. The haudrail is mostly missing. The abutments are concrete and have moved longitudinally towards the center of the bridge. This movement has caused horizontal cracks in the headwall portion of the abutment. This movement appears to have been caused by surcharge of either ground movement behind the abutment or live load surcharge.

Many of the pile have large vertical splits. Pile 3, bent 6 has been spliced using 3" $\times 12$ " timbers bolted to the upper and lower member of the splice. . Pile 3 , bent 7 has been spliced using $3^{\prime \prime} \times 12^{\prime \prime}$ timbers bolted to the upper and lower member of the splice. Pile 1 and 2 , bent 9 have been posted. These inadequately repaired pilings reduce the ability of the bridge to resist lateral forces caused by large water flows, drift build up and live loads.

This bridge would probably be adequate for passenger only traffic for 3 to 4 years, at which time replacement under traffic would be required. It is recommended that this bridge be replaced with pre-cast concrete spans on a foundation to be determined by soil investigations. Using standard public Agency Bridge plans for this type of bridge and assuming that a pile depth of not more than 100 ft would be required for concrete piles, the replacement cost for this bridge would be between $\$ 400,000$ and $\$ 600,000$. If the bridge is replaced after service is started, thus requiring work hours around a passenger schedule this cost can be expected to be 40% to 60% higher.

Bridge 111.93
Bridge 111.93 is a 45 ft . long pile trestle, ballast deck Timber over a low area that holds water and is in tangent track. Piles, stringers, and deck are ail 1926 timber. It is on driven timber pile, depth unlnown. It has about $16^{\prime \prime}$ of ballast on the $3^{\prime \prime}$ timber deck. The stringers are $7.75^{\prime \prime} \times 16.75^{\prime \prime}$ and the caps are $13.5^{\prime \prime} \times 13.5 " \times 16 \mathrm{ft}$. The bents have five timber piles each. The abutments are acting as a headwall only as there is a driven bent directly adjacenat to each abument. The handrail has been removed.

The center two bents appear to be sinking. There is a vertical fracture in the west abutment. There is standing water and vegetation under and around the bridge.

This bridge would probably be adequate for passenger only traffic for one or two years, at which time replacement under traffic would be required. It is recommended that this bridge be replaced with pre-cast concrete spans on a foundation to be determined by soil investigations. Using standard public Agency Bridge plans for this type of bridge and assuming that a pile depth of not more than 100 ft would be required for concrete piles, the replacement cost for this bridge would be between $\$ 250130,000$ and $\$ 250150,000$. If the bridge is replaced after service is started, thus requiring work hours around a passenger schedule this cost can be expected to be 40% to 60% higher.

Bridge 112.54

Bridge 112.54 is a 45 ft . long pile trestle, ballast deck Timber over a low area that holds water and is in tangent track: Piles, stringers, and deck are all 1926 timber. It is on driven timber pile depth unknown. It has about 12 " of ballast on the 3 " timber deck. The stringers are $7.75^{\prime \prime} \times 16.5^{\prime \prime}$ and the caps are $13.5^{\prime \prime} \times 13.5^{\prime \prime} \times 16 \mathrm{ft}$. The bents have five timber piles each. The handrail is in disrepair.

This bridge is Ok for traffic for 8 to 10 years. The handrail will need to be repaired and it is recommended that the bridge retreated to exteuded the life. Handrail costs should be about $\$ 5000$ to $\$ 6000$. Retreating costs will be dependent upon waiting until a bridge repair crew is in the area to avoid mobilization costs for only one bridge.

Bridge 112.80

Bridge 112.80 is a 225 ft .long timber bridge on concrete piers and abutnents. The detail for Southern Pacific bridges built in this time frame would indicate that the concrete piers are on spread footing about 8 ft deep. Stringers and deck are all 1926 timber. It has about $18^{\prime \prime}$ of ballast on the $3^{\prime \prime}$ timber deck. The stringers are $8^{\prime \prime} \times 16^{\prime \prime}$ and the caps are $13.5^{\prime \prime} \times 13.5^{\prime \prime} \times 16 \mathrm{ft}$. The handrail is missing.

Piers 4, 7 and 10 are sinking. There have been jacking/helper bents placed at this location, but it appears that there is still settlement. Visual observation of the surrounding area indicates the bridge is no longer needed. There is no standing water, a small tree that will have to be removed even if the bridge stays to comply with Federal railway Administration rules.

It is recommended that the bridge, from the caps up, be removed and the area be filled as soon as a project is started. This will allow for natural settlement of the surrounding ground caused by additional overburden weight to occur before the permanent roadbed for the railroad is constructed.

Bridge 113.04

Bridge 113.04 is a 90 ft. long timber bridge on concrete piers and abutments. Tbe detail for Southern Pacific bridges built in this time frame would indicate that the concrete piers are on
spread footing about 8 ft deep. Stringers and deck are all 1926 timber. It has about $13^{\prime \prime}$ of ballast on the $3^{\prime \prime}$ timber deck. The stringers are $8^{\prime \prime} \times 16^{\prime \prime}$ and the caps are $17^{\prime \prime} \times 8^{\prime \prime} \times 16 \mathrm{ft}$. The haudrail is in disrepair.

The bridge is no longer needed for drainage in the area. It could be removed or kept in service with only repair to the handrail. The dry vegetation around the bridge must be removed if it is kept in service. This bridge can be expected to perform as designed for 10 or more years.

Bridge \#113.46 Salinas River Bridge

See page 7.

Drainage Structures

The two types of the drainage structures along the Monterey Branchline vary from comugated metal pipe (CMP) to cast iron pipe (CIP). In general, the drainage structures are in good condition and appear to be recently put into place. Table one below gives a complete listing of the entire existing drainage within the study.

Table 1 Existing Drainage Structures

MP	Type of Structure	Diameter (in)
110.76	Cast Iron Pipe	12
111.01	Cast Iron Pipe	16
116.49	Corrugated Metal Pipe	36
117.29	Corrugated Metal Pipe	12
117.47	Corrugated Metal Pipe	18
117.67	Corrugated Metal Pipe	6
118.83	Manholes (Pipe Unknown)	
120.98	Corrugated Metal Pipe	18

Utilities

Based on research of existing atlas maps and "as-built" documents, there are numerous utility lines that cross under or are parallel to the existing track alignment. Most of the electrical facilities are overhead. Agency and utility companies researched and provided documents are:
i) Pacific Gas \& Eiectric
2) County of Monterey Public Works Department
3) City of Marina
4) Marina Coast Water District
5) Castroville County Water District

MIPR Monterey Branch Conceptual Cost Estimate

Below are the key assumptions used in preparation of the following cost estimates:

- No changes are to be made to the existing track alignment or profile.
- No curve modifications.
- ERA Class 4 standards are basis for track rehabilitation.
- Maximum operating speed to be 60 MPH .
- Length of project is 8.3 Track Miles and excludes 2 miles of track to remain at Fort Ord. Total track miles for rehabilitation is 6.3 Track Miles.
- Existing track (rail, ties, OTM) to be salvaged and removed from the property except for approximately 2 miles of 119 rail and ties near Fort Ord. This 2 -mile track section meets FRA Class 4 Standards.
- All rehabilitation and/or construction assumed to be prior to start of operation by an outside contractor.
- Existing ballast and subgrade to be spread/leveled in place to create new roadbed surface.
- Track structure to be replaced using new 115\# CWR and Fast Clip Concrete Ties.
- No track construction or rehabilitation beyond the limits of Monterey Bay Station and any trains that will layover will do so at station.
- Mainline turnout ($\mathbf{H} 20$) at Castroville to the UPRR mainline to be installed by the UPRR and includes a consideration for signal control.
- At-grade road crossings to be replaced with precast concrete crossing panels.
- At-grade road crossings not to be modified for length or location.
- At-grade road crossings through the City of Marina to have an Automated Horn System.
- Until further determination for location and specifications for a sound-wall in the City of Marina we have included a lump-sum cost only.
- Bridge replacement to be precast concrete with standard bridge design.
- Salinas River Bridge estimate includes structural repair, water blasting and overcoating as recommended in the Modjeski and Masters Report
- Monterey Bay Station cost estimate taken from earlier submittal to TAMC and includes the platform, station access, fencing, basic utilities, minimum storage, and parking.
- No consideration has been included for the cost of insurance, permitting, relocation, property acquisition, or agency costs.
- No consideration has been included for the purchase of equipment.
- No consideration has been included for environmental or hazmat mitigation.

Wionterey intercity Rail，Infrastructure Rehabilitation and Construction

Conceptual Cost Estimate					
Work Description	Quantity	Unit	UnitPrice		Total Price
Monterey Branchline Rehabiitation					
Mobilization and Demobilization	\cdots	．	4，		¢
Mobilization	1	LS	376，502	\＄	376，502
Demobilization	1	LS	282，376	\＄	－ 282,376
		Administrative subtotal		\＄	658，878
Site Work	，	，1／3．	\because		＋．．．3
Miscellaneous Removal and disposal	1	LS	10，000	5	10，000
Cut	0	CY	20	\＄	－
Fill	0	CY	20	\＄	－
Ballast	36，000	CY	25	\＄	900，000
Sub－Ballast（6＂）	31，000	CY	21	\＄	651,000
				\＄	1，561，000
Railroad Work	¢	Site Work suototal		．．$\%$ ．	
New 115 RE CWR on Main Track	85，000	LF	17	\＄	1，445，000
New Fast Clip Concrete Ties Complete	17，160	EA	75	\＄	1，287，000
Disposal of Existing Rail，Ties，and OTM	42.500	TF	3	\＄	127，500
Labor and Equipment	42，250	TF	50	S	2，112，500
Construct Concrete Grade Crossing	454	TF	300	\＄	136，200
Crossing Warning Systems	1	LS	1，511，743	\＄	1，511，743
Line and Surface Track	55，440	TF	15	\＄	831，600
Install No． 20 Turnout，UPRR Mainline	1	EA	250，000	\＄	250，000
Signage	1	LS	150，000	\＄	150，000
		Railiroad subtotal		$\$$	7，851，543
Structural Work	\cdots	2			
Replace Bridge，MP 111．05，Tembladero Slough	150	TF	3，000	\＄	450，000
Replace Bridge，MP 111.93	45	TF	3，000	\＄	135，000
Repair Handrail，Bridge，MP 112．54	45	TF	135	\＄	6，075
Remove Bridge，MP 112.8	225	TF	100	等	22，500
Remove Bridge，MP 113．04	90	TF	100	\＄	9，000
Renabilitate Bridge，MP 113．46，Salinas River，and Seismic Retrofit	1	LS	1，500，000	\＄	1，500，000
		Sfructural subtotal		\＄	2，122，575
Drainage ：	\％		$\square \cdots$		
Restore Right of Way Ditches	42，500	TF．	20	\＄	850，000
Repair Drainage Structures	8	EA	3，000	\＄	24，000
		Drainage subtotal		\＄	874，000
Station Monterey Bay Station，Platform，Parking，and Site Work		\therefore	\％$\quad \therefore$		＇．＂
	1	LS	\＄3，506，648	\＄	3，506，648
				5	－
		Station subtotal		S	3，506，648
Eandscaping	－		$\because \quad, \quad 3$		
City of Marina，property treatment	1	LS	250，000	\＄	250，000
City of Marina，sound wall	1	LS	500，000	\＄	500，000
		Landscaping subtotal		\＄	750，000
Civil	\cdots	．	析边：		
Final Design			10\％	$\$$	1，732，464
Construction Management			7\％	\＄	1，212，725
			Civil subtotal	$\$$	2，945，189
Sub－Total				\＄	20，269，833
Continguency Total Conceptual Cost Estimate： note；－actural structural cost should be determined during final design． －estimate does not include permitting，relocation，or agency costs．	I		25\％	－	5，057，458
					25，337，292

4. Comment: On Page 3 of 3, why use wood ties under the concrete panels? U.P. standards show concrete ties under these panels. [Robert MacDonald, TAMC]

Response: The use of wood ties under the concrete panels provides more options for procurement and construction to TAMC. You will find that only a limited number of vendors provide a crossing system using concrete for both ties and crossing surface. Concrete surfaces on concrete ties tend to cause abrasion between the two surfaces and deterioration can result. However, the total concrete system is becoming more popular and could be used if TAMC so chooses.

Base Miapping and Surveys, page 4

1. Comment: The aerial photographs have a ground line profile plotted above the photograph. For railroad work. one uses the "top-of-rail" elevation not the ground line. The photographs are too dark, and many of the notes are not readable. A number of physical features are not identified. The photos will be returned marked with requested corrections. [Robert MacDonald, TAMC]

Response: We agree that "top-of-rail" is the preferred point of elevation for railroad work, however, the aerial photography used provides only ground contour data and should be adequate for advanced planning. The ground line as referred to on the plans has been changed to read "top-of-tie" to clarify the issue. During final design "top-of-rail" elevations should then be used.

STV is providing two original prints plus electronic files of the aerial photographs with this final submittal. The plotted files are much easier to read and normally much less dark in contrast than copies which you may have been viewing. The enclosed prints incorporate the requested corrections.
2. Comment: Base mapping and survey not reviewed as they were not in report (provided separately previously). [Mike Chan, S\&C]

Response: Base mapping was reviewed by Robert MacDonald for TAMC: A survey was not included as it was earlier agreed that the aerial photography, would replace any field survey effort.

Geotechnical Investigation and Engineering, page 5

1. Comment: Geotechnical recommendations not reviewed as they were not in report (provided separately previously). [Mike Chan, $\mathrm{S} \& \mathrm{C}$]

Response: Geotechnical recommendations were prepared by our sub-consult ant Shanimon ard Wilson and provided in a separate submittal.
2. Comment: According to the scope, "consultant shall perform all subsurface explorations required for the Salinas River Bridge and other construction as
required." The geotechnical report discusses bridges at MP 111.03 (Tembladero Sough), MP 111.93, MP 112.54, MP 112.80, MP 113.04 and MP 113.46 (Salinas River Bridge). However, subsurface explorations were only done on the Salinas River Bridge. STV is recommending replacement of bridges at MP 111.05 (geotechnical report uses MP 111.03 for this bridge) and MP 111.93. Subsurface soil investigations are needed for both of these bridge replacements.

STV is recommending some of these bridges be replaced with embankments. Soil borings will be needed at these locations as well.

The scope of work also states, "A separate foundation report for the Salinas River Bridge shall be prepared," Page 19 of the geotechnical report states, "...foundations of the Salinas River Bridge was not evaluated as part of the prelininary engineering for this project." A foundation report is needed in order for TAMC to make a decision regarding the strategy for rehabilitation.

For any of these recommended bridge replacements (whether replacing the structure or removing the structure and installing embankments), environmental studies will need to be performed. Since the majority of these bridges were not included in the project description for the preliminary envirommental studies (PES) form, a field review is needed to determine the environmental impacts of these changes. [Reinie Jones, Caltrans]

Response: STV agrees with the above statements; however it was not necessary to prepare the foundation report for the Salinas River Bridge or investigate subsoil conditions at the other bridge sites to prepare the PE cost estimate. These investigations should be conducted as an element of final design. As indicated above, environmental studies of the other bridge sites will need to be undertaken in a subsequent phase of the project.

Drainage and Hydraulic Engineering, page 6

1. Comment: TAMC staff discussed the possibility that we would not need further information, subject to review and concurrence by Caltrans. [Walt Allen, TAMC]

Response: Drainage and Hydraulic Engineering will be required during final design, but was not necessary during the advanced planning phase as noted in this section.

Bridge Type Selection Study for Salinas River Br., pages 7-13

1. Comment: The documents provided to date regarding the Section 106 study for the Monterey Branch Line include three pages that describe the potential significance of the Salinas River Bridge and a statement that promises an Historic Property Survey Report (HPSR) and Determination of Effect for the Salinas River Bridge to be completed by December 20, 2002.

In a discussion this week with Jessica Feldman of Myra Frank, it appears that they intend to complete that study of only the Salinas River Bridge. I informed her that the HPSR for the project should include studies of all of the cultural resources in the project area in addition to the bridge. The following documents are required:

Historic Property Survey Report, which is a summary document to which the following documents are appended:

Area of Potential Effect (APE) Map - The APE map will include both an archaeological and an architectural APE. This map depicts the area that will be impacted by the project, including staging and construction access areas. The map should be plotted on an aerial photographic or other base at a scale of approximately $1^{\prime \prime}=100$ or $l^{\prime \prime}=200^{\prime}$. The map should depict existing and proposed right-of-way, as well as the locations of any cultural resources identified. Roads should be clearly labeled. The APE map will be approved by Caltrans and FHWA prior to completion of the HPSR.

Consultation with interested parties - Native American groups, the Native American Heritage Commission, historical interest groups/societies/museums, and other consulting parties should be contacted. The consultation record should be included in the HPSR.

Archaeological Survey Report (ASR) or Negative Archaeological Survey Report (NASR)- This report documents a record search at the Northwest Information Center as well as a field survey of the archaeological APE.

Wistorical Resources Evaluation Report (HRER) - This document evaluates all built-environment resources within the APE, including all bridges, structures, the railroad, and buildings.

The preparation of the Section 106 Study should follow the guidelines of the Caltrans Draft Environmental Handbook Volume 2, Cultural Resources (July 2001), that is available on the internet. [Kelda Wilson, Caltrans]

Response: Further consultation with the Caltrans Environmental Branch indicates no further studies are required to document the environmental clearance in the form of a statulory exemption (NEPA) and categorical exclusion (CEQ.A) for the acquisition of the Monterey Branch line from the Union Pacific Railroad
2. Comment: The documentation on cultural resources states that "because the proposed rehabilitation of the Salinas River Bridge would meet Secretary of Interior Standards, impacts to the bridge should not be adverse." There is no documentation of what "Secretary of Interior standards" is being referred to. The documentation also states that "formal consultation" with the State Historic Preservation Officer (SHPO) is required. Such formal consultation is only necessary when a project will have an adverse effect on a historic property. The documentation also concludes that no permits or approvals are required.... what about the "formal consultation" with SHPO? [Gary Ruggerone, Caltrans]

Response: The applicable standards are now documented in the report. The cortsultation occurs between TAMC and SHPO. The reports necessary to facilitate the consultation are included in the report.

Other Existing Structures, pages 14-17

1. Comment: There are now six bridges identified along the branch line that may be rehabilitated and/or replaced as part of the Monterey Branch Line Project. [Reinie Jones, Caltrans]

Response: At the on-set of this project the only structure that TAMC identified in the RFP for replacement was the Salinas River Bridge. Through STV's efforts it has been determined that the Salinas River Bridge can be rehabilitated, saving considerable cost to the project. However, during the course of STV's advanced pianning effort it was determined that additional structural work would be required at other identified railroad bridge locations as noted in this report. These other locations are timber structures and much less complicated to deal with than the Salinas River Bridge. STV has provided recommendations for repair and replacement at these locations, including cost estimates, so that during final design more complete engineering can be accomplished along with the necessary geotechnical exploration.
2. Comment: The drawings for concrete bridges would have to be reviewed by licensed engineer with railroad bridge knowledge. A note on the drawing makes reference to ATSF 2944A. The ATSF Railroad has been the BNSF for a number of years. What is the actual date of these plans? Do they meet the current AREMA standard for concrete bridges? Most of the text reference in the "Draft Report" referenced Union Pacific Railroad standards. [Robert MacDonald, TAMC]

Response: The reference to ATSF has been corrected; however, for advanced planning these plans are adequate and typical for use on Class I mainline and passenger rail systems. During final design exact plans and specifications must be defined by the designer and reviewed by a licensed engineer prior to procurement and construction.
3. Comment: This section (page 4 of 4) refers to attached drawings C-01 to C-13 which are not included. I did have and reviewed a set of plans for the various street crossings that consist of sheets $\mathrm{C}-01$ to $\mathrm{C}-23$. Perhaps these are the sheets being referred to as being attached. [Mike Chan, $\mathrm{S} \& \mathrm{C}$]

Response: You would be correct in your assumption. The reference of C-01 to C-13 is corrected in the final report to read C-01 to C-23.
4. Comment: According to the scope, "...consultant shall inspect and analyze existing timber structures and develop plans and details suitable for replacement and upgrade..." STV.did not include any engineering analysis on the existing timber structures. I also did not see any plans and details suitable for replacement. [Reinie Iones, Caltrans]

Response: STV inspected the bridges and made recommendations for repair or replacement. Where replacement was recommended STV provided typical sections that were used for estimating purposes. The final design consultant will be responsible for providing additional detail and specifications for procurement and construction purposes when the final project scope is determined by TAMC based on the advanced planning report provided under STV's contract.
5. Comment: Agree with the recommendation that the bridges needing renewai should be rebuilt prior to the laying of the new roadbed and track. Field inspections show that several of the bridges can be replaced by pipes. What size? [Robert MacDonald, TAMC]

Response: Size should be determined during final design after more studies are conducted.

Track Alignment and Profile, pages 18-27

I. Comment: Track charts are upside-down. [Walt Allen, TAMC]

Response: The charts are omitted from the final report as noted in response 4 below.
2. Comment: This section provides two altematives for rail replacement, three for tie replacement, and two for tumouts, but there is no recommended altemative given for rail, ties, and tumouts. Either a recommended altemative should be specified orland cost estimates for alternatives should also be provided for comparison. [Mike Chan, S\&C]

Response: The recommendation is shown on page 2. STV did evaluate different alternatives along with cost estimation as described in Design Criteria section.
3. Comment: Take exception to the comment: "Although some minor curve reductions may be possible they do not serve to increase or improve operations." I had su ggested
construction. The Design Criteria section only refers to AREMA Engineering Standards. A few typical sections indicative of the right of way would be desirable. Also, this section states that bridge footings will not be changed, and all bridge rehabilitation work would occur from the bridge deck, therefore no hydrology impacts are expected. Is this the case for bridges that are to be replaced? Additionally, the cost estimate includes costs to seismically retrofit the Salinas River Bridge. This may include additional footings or expansion of existing footings. [Mike Chan, $\mathrm{S} \mathrm{\& C}$]

Response: STV did not feel that for advanced planming typical sections of the right of way were necessary and therefore did not include any.

Capital improvements to the Salinas River Bridge were the only structural work identified at the on-set of this project. However, now that STV has identified and recommended additional structural work at other bridge locations there most likely will be additional engineering required for final design at these locations.

Mojeski and Masters are recognized bridge experts in the rail industry and served as our sub-consultant on this project for the evaluation of the Salinas River Bridge. Previously they performed similar services on this bridge for the Southern Pacific and currently for the Union Pacific railroads and have a thorough Enowledge of this structure. I can only conclude that if they felt additional footings or expansion of the existing footings were required they would have so advised in their report for this project.
2. Comment: Unless I'ramissing something, I couldn't find profiles, typical sections and details for all required construction. [Reinie Jones, Caltrans]

Response: STV provided typical specifications which reference AREMA standard plans which provides preferred sections and construction details. Advanced planning should not include all details required for construction, rather, that level of specificity should be accomplished during final design.

Quantity Takeoff and Cost Estimate, pages 120-122

1. Comment: Show back-up for cost development. [Walt Allen, TAMC]

Response: Normally back-up data at the conceptual estimating level is not required and is the reason it was not provided. STV did use recent similar project cost data for cost calculation from Metrolink projects that have been awarded for construction in the Los Angeles area.
2. Comment: The Monterey Bay Station cost estimate uses a contingency of 20% vs 25% for the conceptual cost estimate. From a program standpoint, unless there are specific reasons for it, a consistent percentage should be used for both estimates. The existing ballast and subgrade are assumed to be left on the property to be reused.

APPENDIX E

Updated Inspection and Re-Evaluation Report Salinas River Bridge No. 113.46

Parsons Transportation Group
May 3, 2010

SALINAS RIVER BRIDGE

UPDATED INSPECTION AND RE-EVALUATION REPORT

SALINAS RIVER BRIDGE NO. 113.46

Monterey Branch Line
Castroville to Seaside, CA
May 2010

Prepared for

Transportation Agency
for Monterey County

Prepared By
Parsons Transportation Group

TABLE OF CONTENTS

Executive Summary 1
Inspection of Bridge 113.46 3
General Physical Conditions 3
Evaluation - Load Carrying Capacity 16
Extent of Repairs and Cost 18
Recommendations 20Appendix 1 - Inspection Charts
Appendix 2 - Member Losses
Appendix 3 - Load Ratings
Appendix 4 - Recommended Repairs

SALINAS RIVER BRIDGE UPDATED INSPECTION AND RE-EVALUATION REPORT

EXECUTIVE SUMMARY

This Report covers the updated inspection and re-evaluation of Bridge No. 113.46 crossing the Salinas River near Neponset, CA.

A detailed inspection and evaluation was performed by Modjeski and Masters, Inc. in September of 2001 and can be referenced in Appendix B of the Bridge Strategy Report. Parsons Transportation Group performed an additional inspection and re-evaluation of this bridge in February of 2010. The purpose of the updated inspection and re-evaluation was to document additional bridge deterioration and increased member section loss that occurred after the 2001 inspection and determine the current costs of rehabilitation and repair of the bridge sufficient for a minimum 30-year life. This inspection and reevaluation report should be used as a supplement to the 2001 Modjeski and Masters inspection and evaluation report.

Parsons used the same inspection process and format used in the 2001 Modjeski and Masters, Inc. evaluation report to record and update increased metalwork losses required for the rating of the bridge, and to determine the updated live load carrying capacity of the bridge. New repair recommendations are included in this re-evaluation report.

The Salinas River Bridge No. 113.64 was re-inspected and found to have significant increased corrosion and section loss on Span 1 and a fair amount of increased section loss on Spans 2-5. Many of the truss members of Span 1, including bottom chords and diagonals, have severe deterioration occurring along the flanges and will require a significant amount of repair work. All upper truss bracing members of Spans 2-5 have significant damage and need replacement.

The bridge rating provided in the 2001 Modjeski and Masters, Inc. report was revised based on the updated section loss estimates to determine a minimum member rating. The minimum Normal Rated capacity for the bridge is Cooper E- 28.4 controlled by a truss bottom chord on Span 1 with significant loss of metal work in the member flanges. All other truss members rate at E-33.4 or greater. The controlling Normal Rated capacity for the floor system is Cooper E-69.2. The 2001 Modjeski and Masters, Inc. report determined that an equivalent Cooper E rating required for a common commuter type train is E-26.6 for truss bottom chords and E-37.0 for the floor system. Parsons has calculated that lower values of E-22.3 for truss bottom chords and E-32.0 for the floor system are required for the currently proposed compliant DMU equipment (Colorado Railcar). We have also determined that Cooper E-14.9 for truss bottom chords and E24.1 for the floor system are required for non-compliant DMU equipment (Stadler GTW or Siemens AG).

SALINAS RIVER BRIDGE UPDATED INSPECTION AND RE-EVALUATION REPORT

Seismic rehabilitation and recommendations are not covered in this updated inspection and re-evaluation report.

Even though the rated capacity of all primary truss members exceed the equivalent Coopers E-Rating required to carry common commuter or DMU rail traffic, repairs to the Salinas River Bridge will be required to extend the bridge to a 30 -year minimum life, and to restore proper function of the deteriorated bracing systems. Some of these repairs include: realigning the trusses, replacement of truss bearings, replacement of bracing members and their connections, replacement of chord cover plates, repairing flanges of Span 1 bottom chords and diagonals, patch plating where there are significant losses in primary members, replacing the timber deck, and the cleaning and preservation of the metalwork. Structural repair costs were updated and are included in Appendix F of the Bridge Strategy Report.

SALINAS RIVER BRIDGE UPDATED INSPECTION AND RE-EVALUATION REPORT

INSPECTION OF BRIDGE 113.46

The Salinas River Bridge was visually re-inspected during the period of February 1-5, 2010 by Dale Bartholomew, Ram Mothe, and Nathan Stout of Parsons Transportation Group. The purpose of this detailed inspection was to re-evaluate and update the physical condition of each structural component with respect to the Modjeski and Masters, Inc. inspection performed in July of 2001. Each truss and floor system member was inspected to estimate the updated section loss as needed to determine the current load rating and the extent of repair work required to adequately repair the bridge sufficient for a minimum 30-year lifespan.

This re-evaluation report uses the same pier, abutment, and span numbering system and designations as defined in the 2001 Modjeski and Masters, Inc. inspection report.

To develop the 2010 load rating of the bridge as mentioned above, the updated amount of section loss of each portion (top flange, bottom flange, web, etc.) of each major bridge component was visually estimated, and where significant, locations of isolated areas of section loss were measured and referenced from the end or center of the member, as needed for analysis.

GENERAL PHYSICAL CONDITIONS

The Salinas River Bridge is in overall marginal condition due to deterioration of the superstructure metalwork caused by corrosion and failure of the protective paint system. The condition of the paint system is very poor as shown in Photograph Nos. 1-4, and in general the condition of the paint system is usually worse in locations that are typically exposed to direct sunlight and wind, such as the top surfaces of top chords, end posts, floorbeam flanges, etc.

PARSONS

SALINAS RIVER BRIDGE
 UPDATED INSPECTION AND RE-EVALUATION REPORT

Photograph No. 1 - View of paint loss on various members beginning at Span 5 and looking North.

Photograph No. 2 - View of paint loss at Panel Point L4L of Span 5.

PARSONS

SALINAS RIVER BRIDGE
 UPDATED INSPECTION AND RE-EVALUATION REPORT

Photograph No. 3 -View of paint loss on various truss members of Span 1 looking North.

Photograph No. 4 - View of paint deterioration of Diagonal U3-L4
of the right truss of Span 4.

SALINAS RIVER BRIDGE UPDATED INSPECTION AND RE-EVALUATION REPORT

The following sections of the updated inspection and re-evaluation report will describe portions of the Salinas River Bridge which have notable increases in deterioration occurring after the 2001 Modjeski and Masters, Inc. inspection report was completed. This inspection and re-evaluation report should be used as a supplement to the above mentioned inspection and evaluation report. This report will not repeat the same information found in the 2001 Modjeski and Masters, Inc. report but add to the information documented and provided in Appendix B of this Bridge Strategy Report.

All specific defects noted during the updated inspection, including updated estimated amounts of section loss for each truss member and floor system component, are listed in the data tables of Appendix 2 of this report. The numbering system and directional designations used to locate the defects are shown on the inspection charts of Appendix 1.

A. SUPERSTRUCTURE

The superstructure of the Salinas River Bridge is in marginal condition and has incurred a fair amount of increased deterioration in many of the truss elements, floor system, and much of the bracing system since 2001. Much of the increased deterioration and section loss can be attributed to trees growing through Spans $1 \& 2$ and providing a corrosive environment for these truss elements. At the time of the updated inspection, the majority of these trees had been removed or trimmed but in most cases the damage prior to removal was severe. The following is a brief summary of areas and elements that show notable increased deterioration after 2001 (for a complete list of defects noted see Appendix 2 - Member Losses).

Truss Members

The condition of truss members throughout the bridge varies from good to very poor. Many truss top cover plates have had a fair amount of increased corrosion leaving cover plates with large areas of deterioration and holes. Span 1 truss members, particularly the bottom chord (see Photograph No. 5) and diagonals (see Photograph No. 6) are in very poor condition with heavy increased corrosion and section loss on most of the member flanges. Increased corrosion was found on the majority of truss lacing bars on all spans and in many cases produce 100% section loss (see Photograph Nos. 7-8).

In addition to increased deterioration conditions noted at the top and bottom chords, small isolated areas of corrosion with increased section loss were noted at several vertical and diagonal truss members (see Photograph No. 9) and gusset plates of all spans (see Photograph No. 10).

PARSONS

SALINAS RIVER BRIDGE

UPDATED INSPECTION AND RE-EVALUATION REPORT

Photograph No. 5 - View shows corrosion and section loss of flanges of bottom chord in Panel 4 of Span 1, right side.

Photograph No. 6 - View shows corrosion and section loss
on flanges of diagonal U1-L2 in Panel 2 of Span 1, right side.

PARSONS

SALINAS RIVER BRIDGE
 UPDATED INSPECTION AND RE-EVALUATION REPORT

Photograph No. 7 (right) - View shows corrosion and section loss of truss lacing bars of a post and diagonals of the right truss of Span 1.

Photograph No. 8 - View shows corrosion and section loss of lacing bars on both truss diagonals of Span 2, Panel 3.

PARSONS

SALINAS RIVER BRIDGE

UPDATED INSPECTION AND RE-EVALUATION REPORT

Photograph No. 9 - View shows corrosion and section loss of inboard flanges of diagonal L4-U5 of the left truss of Span 4.

Photograph No. 10 - View shows corrosion and section loss
of inboard and outboard gusset plates at Span 4, Panel Point L2L.

SALINAS RIVER BRIDGE UPDATED INSPECTION AND RE-EVALUATION REPORT

Truss Bracing

The condition of both the top and bottom lateral truss bracing of the Salinas River Bridge has had a moderate amount of increased corrosion and section loss (10% to 20% increase). As noted in the 2001 Modjeski and Masters, Inc. inspection report, much of the Span 2-5 top bracing members, including the portal bracing, lateral bracing, bracing struts, and sway bracing as well as the connection plates have severe deterioration and section loss. This deterioration has increased since the 2001 inspection (see Photograph Nos. 11-13). In addition, a significant amount of increased deterioration has occurred in the bottom lateral brace system, primarily in the lateral gusset plates (see Photograph Nos. 14-15).

Truss Bearings

As discussed in the 2001 Modjeski and Masters, Inc. inspection report, the truss bearings are in poor condition. The 2010 re-inspection verified the poor condition of these bearings and noted a fair amount of increased deterioration.

Photograph No. 11 - View shows section loss in top lateral brace connection plate at Panel Point L3L of Span 5.

PARSONS

SALINAS RIVER BRIDGE

UPDATED INSPECTION AND RE-EVALUATION REPORT

Photograph No. 12 - View shows section loss in top sway and strut brace at Panel Point L2L of Span 5.

Photograph No. 13 - View shows section loss in top lateral
brace \& top sway brace at Panel Point L3L of Span 4.

SALINAS RIVER BRIDGE

UPDATED INSPECTION AND RE-EVALUATION REPORT

Photograph No. 14 - View shows section loss in bottom lateral brace \& gusset plate at Panel Point L3L of Span 1.

Photograph No. 15 - View shows section loss in bottom lateral brace gusset plate at Panel Point L4R of Span 3.

SALINAS RIVER BRIDGE UPDATED INSPECTION AND RE-EVALUATION REPORT

Floor System

The floor system of the Salinas River Bridge has a fair amount of increased deterioration and section loss occurring after the completion of the 2001 Modjeski and Masters, Inc. inspection report (5% to 10% increase). As discussed in the 2001 Modjeski and Masters, Inc. inspection report, most of the floor system deterioration is found in Span 1. The majority of the increased deterioration in Span 1 occurs in secondary members such as connection plates and floorbeam brackets (see Photograph No. 16-17), as well as stringer lateral members and stringer lateral gusset plates. An increase of deterioration and section loss was found in the stringer strut and stringer strut gusset plates of Spans 2-5, (see Photograph No. 18).

Photograph No. 16 - View of the end post-to-floorbeam connection plate of span 1 at L0L.

PARSONS

SALINAS RIVER BRIDGE

UPDATED INSPECTION AND RE-EVALUATION REPORT

Photograph No. 17 - View shows the right floorbeam bracket of Floorbeam 5 of Span 1

Photograph No. 18 - View shows corrosion and section loss in stringer strut \& strut gusset plate at Panel Point L6R of Span 4

SALINAS RIVER BRIDGE UPDATED INSPECTION AND RE-EVALUATION REPORT

Stringer Bearings

The Parsons' 2010 re-inspection of the Salinas River Bridge verified the conditions noted in the 2001 Modjeski and Masters, Inc. inspection report and documented only minor increased deterioration in the stringer bearings of Span 2-5.

Timber Deck

The Parsons' 2010 re-inspection of the Salinas River Bridge found the deterioration of timber ties had also increased and that the ties were in fair to poor condition. Even the ties noted as fair will have a remaining life of not more than 2-5 years and should not be depended on to support rail equipment. Ties located on Span 5 and portions of Span 4 were found to be soft and in poor condition.

B. SUBSTRUCTURE

The Parsons' 2010 re-inspection of the Salinas River Bridge did not find any pertinent additional deterioration of the piers and abutments over that covered in the 2001 Modjeski and Masters, Inc. inspection report.

SALINAS RIVER BRIDGE UPDATED INSPECTION AND RE-EVALUATION REPORT

EVALUATION - LOAD CARRYING CAPACITY

A detailed inspection and load carrying evaluation was performed and provided in the 2001 Modjeski and Masters, Inc. Inspection and Evaluation report and can be referenced in Appendix B of the Bridge Strategy Report. Parsons Transportation Group performed an additional inspection and re-evaluation of this bridge in February of 2010. The Parsons’ 2010 detailed inspection and re-evaluation report should be used as a supplement to the 2001 Modjeski and Masters, Inc. Inspection and Evaluation report. The purpose of the updated inspection and re-evaluation was to document additional bridge deterioration and member section loss that occurred after the 2001 inspection. The Parsons' 2010 report uses the same inspection process and format used in the 2001 Modjeski and Masters, Inc. evaluation report to record and update increased metalwork losses required for the rating of the bridge, and to determine the updated as-is condition of the bridge for the revised rating values.

SALINAS RIVER BRIDGE
 UPDATED INSPECTION AND RE-EVALUATION REPORT

AS-BUILT CONDITION (Minimum Rating Value)

The following As-Built Condition Rating values are calculated using the same capacity and load values used in the 2001 Modjeski and Masters, Inc. As-Built Load Rating tables with the Impact and Rocking Effect (RE) loads modified to match the current AREMA load calculation procedure. All values shown in gray in the AsBuilt Load Rating tables found in Appendix 3 of this updated report are duplicated from the 2001 Modjeski and Masters, Inc. As Built Load Rating tables.

| Trusses | Normal Rating
 Maximum Rating | E-44.6 | E-75.7 | Bottom Chords | Spans 2-5 |
| :--- | :--- | :--- | :--- | :--- | :--- | Load Case B

AS-INSPECTED CONDITION (Minimum Rating Value)

Given that detailed shop drawings for the existing bridge were not made available, the following as-inspected condition ratings were calculated by Parsons by extrapolating from the as-built condition rating values and the 2001 As-Inspected Condition Rating values as presented in the 2001 Modjeski and Masters, Inc. Inspection and Evaluation Report.

Trusses Normal Rating E-28.4 Bottom Chord, Right Truss, L4L6, Span 1
Maximum Rating E-52.1 Load Case B
Floor System Normal Rating E-69.2 Floorbeam moment, Span 5, Load Case A Maximum Rating E-102.9 Floorbeam moment, Span 5, Load Case A

NOTE: Although the Cooper E ratings shown represent the minimum ratings, there are a number of other bridge members with similar low ratings.

REQUIRED EQUIVALENT COOPER E RATING FOR TYPICAL COMMUTER TRAIN

The following equivalent Cooper E Rating for Typical Commuter Train information is duplicated from the 2001 Modjeski and Masters, Inc. Inspection and Evaluation report found in Appendix B of the Bridge Strategy Report. The DMU equipment equivalent Cooper E Rating was calculated by Parsons.

		Typical Commuter Train	Compliant DMU	Non-Compliant DMU
Truss	Bottom Chords	E-26.6	E-22.3	E-14.9
	Top Chords	E-28.7 Stringers	Eloorbeams	E-37.0

SALINAS RIVER BRIDGE UPDATED INSPECTION AND RE-EVALUATION REPORT

EXTENT OF REPAIRS AND COST

Prior to opening the Salinas River Bridge for intercity passenger rail service, various structural repairs should be completed as outlined in Appendix 4 and as summarized herein. Prior to final design of those repairs, all bridge members should be cleaned of accumulated dirt, debris, and loose corrosion product sufficient for a follow-up inspection for detailing repairs.

Due to the extent of increased damage from the active corrosion, a variety of type and increased amount of structural repairs will be needed. As in the 2001 Modjeski and Masters, Inc. Inspection and Evaluation Report, for primary members with significant metalwork losses in local areas, the repairs will be performed by installing bolted splices or patch plates over zones of section loss sufficient to restore the capacity of the member. The top chord, top cover plates, have increased deep pitting, thin sections, increased number of holes and deteriorated rivet heads. The replacement of nearly all sections of the cover plate, in kind, is the most economical repair method. Rivets that have head losses, but the steel plies remain in full clamping contact, can remain in service. Conversely, at the increased number of locations where there is separation of plies or prying action, the pack rust must be removed and deteriorated rivets should be replaced with bolts on a one-for-one basis.

Where there has been significant increase in flange deterioration, particularly in Span 1 with severe pot holing in the top surface as shown in Photograph No. 5 and 6, even though the member rating may be adequate, the channel flanges must be cut off and replaced with new flange angles bolted to the web of the existing members before replacement lacing or other new material can be attached. A smooth sound surface must be provided at member connections to properly seal the connection and prevent rapid deterioration of the existing or new material. These additional repairs are required to obtain a minimum 30 year life.

For lacing and bracing members where there has been an increasing number of missing pieces, including light angles, it will be cost effective to replace the whole member in kind. The same applies for minor member connection plates that have extensive losses. Because of the large increase in deterioration in these members, 100% replacement of the top lateral and sway bracing in Span 2-5 is now proposed. The replacement of all lacing bars in many truss members including; bottom chords, diagonals, posts, and end posts, will be required. The replacement of many bottom lateral gusset plates from all spans will also be required.

Repair costs have been developed and are listed in Appendix F for the various types and increased amount of structural repairs based on previous similar bridge rehabilitation

SALINAS RIVER BRIDGE UPDATED INSPECTION AND RE-EVALUATION REPORT
project costs, the following quantities required for these repairs, current material and labor costs, and from general construction experience.

SUMMARY OF STRUCTURAL REPAIR QUANTITIES

1. $158,500 \mathrm{lb}$ structural steel
2. 18,500 new bolts installed
3. 10,500 rivets broken/removed
4. 3,700 field drilled holes
5. $1,900 \mathrm{ft}$ field cut/removal of member flange steel
6. 69,000 board feet of timber tie
7. 3,850 board feet of timber tie spacers

The preservation of the bridge metalwork can be accomplished by two means as described in the 2001 Modjeski and Masters, Inc. Inspection and Evaluation report.

With the repair of the significant metalwork losses in the bridge, and with cleaning and protective coating of the bridge and timber deck replacement on a regular maintenance cycle basis, the bridge should structurally be sufficient for another 30 or more years of service. To extend the life of any existing bridge beyond $15-20$ years, to 30 years or indefinitely, replacement of open timber decks and cleaning, minor steel repairs and protective coating must be budgeted and planned for on a 15 year cycle.

SALINAS RIVER BRIDGE UPDATED INSPECTION AND RE-EVALUATION REPORT

RECOMMENDATIONS

Prior to opening the Salinas River Bridge for commuter rail traffic, structural repairs and the preservation of the bridge metalwork must be performed. The specific defects are shown in the member loss tables in Appendix 2 and all recommended repairs are shown in Appendix 4 of this updated inspection and re-evaluation report. A few items included in the 2001 Modjeski and Masters, Inc. Inspection and Evaluation report for repairs, were not confirmed during the Parsons' 2010 inspection and re-evaluation. These items have been lined out in the repair listing of Appendix 4.

Repair costs associated with the recommended repairs are shown in Appendix F of the Bridge Strategy Report.

APPENDIX 1

INSPECTION CHARTS

Salinas River Bridge
Updated Inspection Report
SALINAS RIVER BRIDGE

ELEVATION VIEW

SALINAS RIVER BRIDGE

North to San Francisco
South to Monterey

Left Slde

Rlght Side
PLAN - BOTTOM CHORD \& FLOOR SYSTEM

TRUSS NUMBERING DIAGRAM

APPENDIX 2

MEMBER LOSSES

Salinas River Bridge
Updated Inspection Report

LEGEND

BC	- Bottom Chord
BF	- Bottom Flange
Brg	- Bearing
btm	- bottom
btw	- between
Exp	- Expansion
FI	- Flange
Flbm	- Floorbeam
horiz	- horizontal
Inbd	- Inboard
L	- angle
Lt	- Left
Mty	- Monterey
Outbd	- Outboard
Rt	- Right
SF	- San Francisco
SL	- Section Loss
Str	- Stringer
TC	- Top Chord
TF	- Top Flange

Salinas River Bridge Updated Inspection Report

TABLE 1
 TRUSS MEMBERS

SPAN	PANEL OR PANEL PT.	COMPONENT	$\begin{array}{\|c\|} \hline 2001 \\ \text { SECTION } \\ \text { LOSS } \end{array}$	2001 COMMENT	$\begin{gathered} 2010 \\ \text { SECTION } \\ \text { LOSS } \end{gathered}$	2010 COMMENT
1	1	End Post (Lt)				
		Cover Plate	10\%		30\%	Many holes through
		Outbd TF			\checkmark	
		Outbd BF			10\%	2 or 3 spots, 3 rivet heads gone
		Outbd Web			\checkmark	
		Inbd TF			\checkmark	
		Inbd BF			\checkmark	
		Inbd Web			\checkmark	
		Bottom Lacing				$\begin{aligned} & 50 \% \text { SL of } 5 \text { top lacing } \\ & \text { bars } \end{aligned}$
1	1	End Post (Rt)				
		Cover Plate	15\%		20\%	Mostly at top
		Outbd TF			\checkmark	
		Outbd BF			5\%	Top
		Outbd Web			\checkmark	
		Inbd TF			\checkmark	
		Inbd BF			\checkmark	
		Inbd Web			5\%	
		Bottom Lacing				10\% SL of 3-4 top bars
1	1	Bottom Chord (Lt)				
		Outbd TF	20\%		\checkmark	
		Outbd BF	10\%		\checkmark	
		Outbd Web			\checkmark	
		Inbd TF	20\%		\checkmark	
		Inbd BF	5\%		\checkmark	
		Inbd Web			\checkmark	
		Top Lacing				$\begin{aligned} & 50 \% \text { SL average, } 100 \% \text { of } \\ & 4 \end{aligned}$
		Bottom Lacing				20\% SL average
1	1	Bottom Chord (Rt)				
		Outbd TF	50\%	located 16" from center of bearing pin LOR	\checkmark	
			40\%	typical between L0 and L1	\checkmark	
		Outbd BF	90\%	located 16 from center of brg pin at LOR	\checkmark	
		Outbd Web			10\%	2 spots
		Inbd TF	40\%	located 16" from center of bearing pin at LOR	\checkmark	
			40\%	typical between L0 and L1	50\%	
		Inbd BF			\checkmark	

For abbreviations, see Legend on First page of Appendix 2.
For guide to numbering system and directional

Salinas River Bridge Updated Inspection Report

TABLE 1
TRUSS MEMBERS

SPAN	PANEL OR PANEL PT.	COMPONENT	$\begin{array}{\|c\|} \hline 2001 \\ \text { SECTION } \\ \text { LOSS } \\ \hline \end{array}$	2001 COMMENT	$\begin{gathered} 2010 \\ \text { SECTION } \\ \text { LOSS } \end{gathered}$	2010 COMMENT
		Inbd Web			10\%	
		Top Lacing				$\begin{aligned} & 50 \% \text { SL of 2-3, 30\% SL of } \\ & 50 \% \end{aligned}$
		Bottom Lacing				20\% SL of 20\%
1	L1L-U1L	Hanger (Lt)				
		Outbd FI (SF side)	20\%	along top of bottom chord	30\%	
		Outbd Fl (Mty side)	20\%	along top of bottom chord	30\%	
		Inbd FI (SF side)			\checkmark	
		Inbd FI (Mty side)			\checkmark	
		Web			\checkmark	
1	L1R-U1R	Hanger (Rt)				
		Outbd FI (SF side)	10\%	along top of bottom chord	\checkmark	
		Outbd FI (Mty side)	10\%	along top of bottom chord	\checkmark	
		Inbd FI (SF side)			\checkmark	
		Inbd FI (Mty side)			5\%	Top of knee brace
		Web			5\%	Top of knee brace
1	2	Bottom Chord (Lt)		100% SL at 90% of top lacing bars		100% SL at 100% of top lacing bars (Lt side)
		Outbd TF	50\%		\checkmark	
		Outbd BF	10\%		\checkmark	
		Outbd Web	5\%		\checkmark	
		Inbd TF	50\%		\checkmark	
		Inbd BF	10\%		\checkmark	Average
		Inbd Web	5\%		\checkmark	
1	2	Bottom Chord (Rt)				
		Outbd TF	50\%		\checkmark	
		Outbd BF			10\%	
		Outbd Web			\checkmark	
		Inbd TF	50\%		\checkmark	
		Inbd BF			60\%	At L2 end
		Inbd Web			10\%	Average
1	2	Top Chord (Lt)				
		Cover Plate	50\%		60\%	
		Outbd TF	5\%		10\%	
		Outbd BF	10\%		\checkmark	
		Outbd Web			\checkmark	
		Inbd TF	5\%		\checkmark	
		Inbd BF	30\%		40\%	
		Inbd Web			\checkmark	

For abbreviations, see Legend on First page of Appendix 2.
For guide to numbering system and directional

Salinas River Bridge Updated Inspection Report

TABLE 1
TRUSS MEMBERS

SPAN	PANEL OR PANEL PT.	COMPONENT	$\begin{gathered} 2001 \\ \text { SECTION } \\ \text { LOSS } \\ \hline \end{gathered}$	2001 COMMENT	$\begin{array}{\|c\|} \hline 2010 \\ \text { SECTION } \\ \text { LOSS } \end{array}$	2010 COMMENT
		Bottom Lacing				1 @ portal end w/100\% SL, 20\% SL of 20\% lacing
1	2	Top Chord (Rt)				
		Cover Plate	80\%	near U1R	\checkmark	
			90\%	near U2R	\checkmark	
			60\%	typical along length of member, except as noted above	\checkmark	
		Outbd TF	10\%		\checkmark	
		Outbd BF	50\%		65\%	
		Outbd Web	5\%		\checkmark	
		Inbd TF			\checkmark	
		Inbd BF	20\%		\checkmark	
		Inbd Web	5\%		\checkmark	
		Bottom Lacing				50\% SL of 20\% of lacing
1	2	Diagonal (Lt)				
		Outbd TF	20\%		50\%	
		Outbd BF	5\%		\checkmark	
		Outbd Web	5\%		\checkmark	
		Inbd TF	20\%		50\%	
		Inbd BF	20\%		40\%	
		Inbd Web	5\%		\checkmark	
		Bottom Lacing				$\begin{aligned} & 30 \% \text { SL of } 30 \%, 10 \% \text { SL } \\ & \text { of rest } \end{aligned}$
		Top Lacing				$\begin{aligned} & 100 \% \text { SL of } 50 \%, 50 \% \text { SL } \\ & \text { of rest } \end{aligned}$
1	2	Diagonal (Rt)				
		Outbd TF	50\%		\checkmark	
		Outbd BF	25\%		30\%	
		Outbd Web	5\%		\checkmark	
		Inbd TF	50\%		\checkmark	
		Inbd BF	10\%		\checkmark	
		Inbd Web	5\%		\checkmark	
		Bottom Lacing				$\begin{aligned} & 100 \% \text { SL of } 50 \%, 20 \% \text { SL } \\ & \text { of rest } \end{aligned}$
		Top Lacing				$\begin{aligned} & 100 \% \text { SL of } 40 \%, 60 \% \text { SL } \\ & \text { of } 50 \% \text { SL of rest } \end{aligned}$
1	L2L-U2L	Post (Lt)				
		Outbd FI (SF side)			5\%	
		Outbd FI (Mty side)			5\%	
		Inbd FI (SF side)			5\%	
		Inbd FI (Mty side)			10\%	

For abbreviations, see Legend on First page of Appendix 2.
For guide to numbering system and directional

Salinas River Bridge Updated Inspection Report

TABLE 1
TRUSS MEMBERS

SPAN	PANEL OR PANEL PT.	COMPONENT	$\begin{gathered} 2001 \\ \text { SECTION } \\ \text { LOSS } \\ \hline \end{gathered}$	2001 COMMENT	$\begin{array}{\|c\|} \hline 2010 \\ \text { SECTION } \\ \text { LOSS } \\ \hline \end{array}$	2010 COMMENT
		Web			\checkmark	
		Lacing				100\% SL of 80\%
1	L2R-U2R	Post (Rt)				
		Outbd FI (SF side)			5\%	
		Outbd FI (Mty side)	50\%	just below top chord	\checkmark	
			15\%	along 10 ft . section at mid height of post	\checkmark	
		Inbd FI (SF side)			\checkmark	
		Inbd FI (Mty side)	25\%	above fill plate at flbm connection	\checkmark	
		Web			\checkmark	
		Lacing				100\% SL of 50\%
1	3	Bottom Chord (Lt)		100% SL at 30% of top lacing bars; Bottom chord covered with tree limbs		
		Outbd TF	20\%		50\%	
		Outbd BF	10\%		30\%	
		Outbd Web	5\%		\checkmark	
		Inbd TF	20\%		50\%	
		Inbd BF	10\%		15\%	
		Inbd Web	5\%		10\%	
		Bottom Lacing				100\% SL of 70\%
		Top Lacing				100\% SL of 70\%
1	3	Bottom Chord (Rt)		Bottom chord covered with tree limbs		
		Outbd TF	15\%		40\%	Mty end
		Outbd BF			5\%	
		Outbd Web			5\%	
		Inbd TF	15\%		50\%	Mty end
		Inbd BF			10\%	
		Inbd Web			10\%	
		Bottom Lacing				$\begin{aligned} & 70 \% \text { SL of } 1,20 \% \text { SL of } \\ & 50 \% \end{aligned}$
		Top Lacing				10\% SL of 20\%
1	3	Top Chord (Lt)				
		Cover Plate	50\%		70\%	
		Outbd TF	5\%		\checkmark	
		Outbd BF	10\%		20\%	
		Outbd Web			\checkmark	
		Inbd TF	20\%		\checkmark	
		Inbd BF	30\%		50\%	
		Inbd Web	5\%		\checkmark	

For abbreviations, see Legend on First page of Appendix 2.
For guide to numbering system and directional

Salinas River Bridge Updated Inspection Report

TABLE 1
TRUSS MEMBERS

SPAN	PANEL OR PANEL PT.	COMPONENT	$\begin{array}{\|c\|} \hline 2001 \\ \text { SECTION } \\ \text { LOSS } \\ \hline \end{array}$	2001 COMMENT	$\begin{gathered} 2010 \\ \text { SECTION } \\ \text { LOSS } \\ \hline \end{gathered}$	2010 COMMENT
		Bottom Lacing				20\% SL of 20\%
1	3	Top Chord (Rt)				
		Cover Plate	50\%		80\%	
		Outbd TF	15\%		20\%	
		Outbd BF	50\%		65\%	
		Outbd Web	5\%		5\%	
		Inbd TF	5\%		10\%	
		Inbd BF	40\%		40\%	
		Inbd Web	5\%		5\%	
		Bottom Lacing				20\% SL of 20\%
1	3	Diagonal (Lt)				
		Outbd TF	10\%		15\%	
		Outbd BF	10\%		20\%	
		Outbd Web	5\%		\checkmark	
		Inbd TF	10\%		\checkmark	
		Inbd BF	10\%		\checkmark	
		Inbd Web	5\%		\checkmark	
		Bottom Lacing				Bottom lacing ok
		Top Lacing				$\begin{aligned} & 100 \% \text { SL of } 20 \%, 20 \% \text { SL } \\ & \text { average } \end{aligned}$
1	3	Diagonal (Rt)		100% SL at upper 12 top lacing bars, and 50% SL at remaining top lacing bars.		
		Outbd TF	50\%		30\%?	
		Outbd BF	30\%		\checkmark	
		Outbd Web	5\%		\checkmark	
		Inbd TF	50\%		20\%?	
		Inbd BF	10\%		25\%	
		Inbd Web	10\%		\checkmark	
		Bottom Lacing				10\% SL of 10\%
		Top Lacing				100\% SL of 50\%
1	L3L-U3L	Hanger (Lt)				
		Outbd FI (SF side)			\checkmark	
		Outbd FI (Mty side)			\checkmark	
		Inbd Fl (SF side)	40\%	along top of fill plate at flbm connection	10\%	10% SL in hanger at top of fill plate, 40% SL in fill plate
		Inbd Fl (Mty side)	25\%	along top of fill plate at flbm connection	10\%	10% SL in hanger at top of fill plate, 25% SL in fill plate
		Web			\checkmark	
1	L3R-U3R	Hanger (Rt)				

For abbreviations, see Legend on First page of Appendix 2.

Salinas River Bridge Updated Inspection Report

TABLE 1
TRUSS MEMBERS

SPAN	PANEL OR PANEL PT.	COMPONENT	$\begin{array}{\|c\|} \hline 2001 \\ \text { SECTION } \\ \text { LOSS } \\ \hline \end{array}$	2001 COMMENT	$\begin{array}{\|c\|} \hline 2010 \\ \text { SECTION } \\ \text { LOSS } \\ \hline \end{array}$	2010 COMMENT
		Outbd FI (SF side)			\checkmark	
		Outbd FI (Mty side)			\checkmark	
		Inbd Fl (SF side)	50\%	along top of fill plate at flbm connection	\checkmark	in angle 10% SL in fill plate
		Inbd Fl (Mty side)	20\%	along top of fill plate at flbm connection	\checkmark	in angle 20\% SL in fill plate
		Web			\checkmark	
1	4	Bottom Chord (Lt)		100% SL at 50% of top lacing bars; Bottom chord covered with tree limbs		
		Outbd TF	50\%		\checkmark	
		Outbd BF	25\%		40\%	
		Outbd Web	5\%		10\%	
		Inbd TF	50\%		60\%	2 or 3 spots
		Inbd BF	25\%		30\%	
		Inbd Web	5\%		15\%	
		Bottom Lacing				100\% SL of 70\%
		Top Lacing				100\% SL of 100\%
1	4	Bottom Chord (Rt)		Bottom chord covering with tree limbs.		
		Outbd TF	20\%		40\%	
		Outbd BF	15\%		20\%	
		Outbd Web	5\%		\checkmark	
		Inbd TF	20\%		60\%	
		Inbd BF	15\%		20\%	
		Inbd Web	5\%		\checkmark	
		Bottom Lacing				20\% SL of 50\%
		Top Lacing				30\% SL of 90\%
1	4	Top Chord (Lt)				
		Cover Plate	40\%		60\%	
		Outbd TF			10\%	
		Outbd BF	15\%		20\%	
		Outbd Web	5\%		\checkmark	
		Inbd TF	5\%		\checkmark	
		Inbd BF	30\%		50\%	
		Inbd Web	10\%		\checkmark	
		Bottom Lacing				20\% SL of 20\%
1	4	Top Chord (Rt)				
		Cover Plate	80\%	at 6 ft . section near U3R and at 8 ft . Section near U4R	90\%	

For abbreviations, see Legend on First page of Appendix 2.
For guide to numbering system and directional

Salinas River Bridge Updated Inspection Report

TABLE 1
TRUSS MEMBERS

SPAN	PANEL OR PANEL PT.	COMPONENT	$\begin{gathered} 2001 \\ \text { SECTION } \\ \text { LOSS } \\ \hline \end{gathered}$	2001 COMMENT	$\begin{array}{\|c\|} \hline 2010 \\ \text { SECTION } \\ \text { LOSS } \\ \hline \end{array}$	2010 COMMENT
			60\%	between section noted above	90\%	
		Outbd TF	5\%		20\%	
		Outbd BF	50\%		60\%	
		Outbd Web	5\%		10\%	
		Inbd TF			\checkmark	
		Inbd BF	10\%		\checkmark	
		Inbd Web			\checkmark	
		Bottom Lacing				30\% SL of 40\%
1	4	Diagonal (Lt)		100% SL at two top lacing bars; 50\% SL at remaining top lacing bars		
		Outbd TF	50\%		\checkmark	
		Outbd BF	20\%		25\%	
		Outbd Web	5\%		\checkmark	
		Inbd TF	50\%		\checkmark	
		Inbd BF	40\%		\checkmark	
		Inbd Web	5\%		\checkmark	
		Bottom Lacing				100\% SL of 70\%
		Top Lacing				$\begin{aligned} & 100 \% \text { SL of } 2,50 \% \text { SL of } \\ & \text { rest } \end{aligned}$
1	4	Diagonal (Rt)		100% SL at 75% of bottom lacing bars and at 10% of top lacing bars; 50% SL at remaining lacing bars.		
		Outbd TF	50\%		\checkmark	
		Outbd BF	25\%		40\%	
		Outbd Web	5\%		\checkmark	
		Inbd TF	25\%		\checkmark	
		Inbd BF	5\%		\checkmark	
		Inbd Web			\checkmark	
		Bottom Lacing				100\% SL of 100\%
		Top Lacing				100\% SL of 90\%
1	L4L-U4L	Post (Lt)				
		Outbd FI (SF side)	5\%		10\%	
		Outbd FI (Mty side)	5\%		10\%	
		Inbd FI (SF side)	20\%		30\%	
		Inbd FI (Mty side)	20\%		30\%	
		Web		80\% SL at all lacing bars		
		Lacing				100\% SL of 100\%

For abbreviations, see Legend on First page of Appendix 2.
For guide to numbering system and directional

Salinas River Bridge Updated Inspection Report

TABLE 1
TRUSS MEMBERS

SPAN	PANEL OR PANEL PT.	COMPONENT	$\begin{array}{c\|} \hline 2001 \\ \text { SECTION } \\ \text { LOSS } \\ \hline \end{array}$	2001 COMMENT	$\begin{gathered} 2010 \\ \text { SECTION } \\ \text { LOSS } \\ \hline \end{gathered}$	2010 COMMENT
1	L4R-U4R	Post (Rt)				
		Outbd FI (SF side)	10\%		20\%	
		Outbd FI (Mty side)	10\%		20\%	
		Inbd FI (SF side)	5\%		20\%	
		Inbd FI (Mty side)	5\%		20\%	
		Web		80\% SL at all lacing bars		
		Lacing				100\% SL of 100\%
1	5	Bottom Chord (Lt)		95% SL at 50% of top lacing bars		
		Outbd TF	70\%		\checkmark	
		Outbd BF	10\%		30\%	
		Outbd Web			5\%	
		Inbd TF	70\%		\checkmark	
		Inbd BF	10\%		\checkmark	
		Inbd Web			\checkmark	
		Bottom Lacing				40\% SL of average
		Top Lacing				$\begin{aligned} & 100 \% \text { SL of } 60 \%, 30 \% \text { SL } \\ & \text { of rest } \end{aligned}$
1	5	Bottom Chord (Rt)				
		Outbd TF	50\%	50\% SL at L5R; 20\% SL typical	60\%	
		Outbd BF	20\%		60\%	
		Outbd Web	5\%		15\%	
		Inbd TF	50\%	50\% SL at L5R; 20\% SL typical	60\%	
		Inbd BF	20\%		30\%	
		Inbd Web	5\%		20\%	
		Bottom Lacing				30\% SL of 50\%
		Top Lacing				$\begin{aligned} & 80 \% \text { SL of } 20 \%, 60 \% \text { SL } \\ & \text { of average } \end{aligned}$
1	5	Top Chord (Lt)				
		Cover Plate	50\%		\checkmark	
		Outbd TF			\checkmark	
		Outbd BF	15\%		\checkmark	
		Outbd Web			\checkmark	
		Inbd TF	15\%		\checkmark	
		Inbd BF	30\%		40\%	
		Inbd Web	5\%		\checkmark	
		Bottom Lacing				30\% SL of 30\%
1	5	Top Chord (Rt)				
		Cover Plate	90\%	near U4R and at 7 ft . section near U5R	95\%	

For abbreviations, see Legend on First page of Appendix 2.

Salinas River Bridge Updated Inspection Report

TABLE 1
TRUSS MEMBERS

SPAN	PANEL OR PANEL PT.	COMPONENT	$\begin{array}{\|c\|} \hline 2001 \\ \text { SECTION } \\ \text { LOSS } \\ \hline \end{array}$	2001 COMMENT	$\begin{array}{\|c\|} \hline 2010 \\ \text { SECTION } \\ \text { LOSS } \\ \hline \end{array}$	2010 COMMENT
			70\%	between sections noted above	90\%	
		Outbd TF	10\%		20\%	
		Outbd BF	70\%		\checkmark	
		Outbd Web	5\%		\checkmark	
		Inbd TF	5\%		\checkmark	
		Inbd BF	10\%		\checkmark	
		Inbd Web			\checkmark	
		Bottom Lacing				20\% SL of 20\%
1	5	Diagonal (Lt)				
		Outbd TF	50\%		\checkmark	
		Outbd BF	15\%		\checkmark	
		Outbd Web	5\%		10\%	
		Inbd TF	40\%		50\%	
		Inbd BF	20\%		\checkmark	
		Inbd Web	5\%		\checkmark	
		Bottom Lacing				20\% SL of 20\%
		Top Lacing				$\begin{aligned} & 100 \% \text { SL of } 50 \%, 30 \% \text { SL } \\ & \text { of rest } \end{aligned}$
1	5	Diagonal (Rt)		$\begin{aligned} & 100 \% \text { SL at seven top } \\ & \text { lacing bars } \\ & \hline \end{aligned}$		
		Outbd TF	40\%		\checkmark	
		Outbd BF	60\%		\checkmark	
		Outbd Web	5\%		\checkmark	
		Inbd TF	40\%		\checkmark	
		Inbd BF	15\%		20\%	
		Inbd Web	10\%		\checkmark	
		Lacing				100\% SL of 70\%
1	L5L-U5L	Hanger (Lt)				
		Outbd FI (SF side)	5\%	along top of bottom chord	\checkmark	
		Outbd FI (Mty side)	20\%	along top of bottom chord	\checkmark	
		Inbd FI (SF side)	5\%	near U5L	15\%	At top chord
		Inbd FI (Mty side)	5\%	near U5L	\checkmark	
		Web			\checkmark	
1	L5R-U5R	Hanger (Rt)				
		Outbd FI (SF side)	10\%	along top of bottom chord	15\%	
		Outbd Fl (Mty side)	10\%	along top of bottom chord	\checkmark	
		Inbd FI (SF side)			\checkmark	

For abbreviations, see Legend on First page of Appendix 2.

Salinas River Bridge Updated Inspection Report

TABLE 1
TRUSS MEMBERS

SPAN	PANEL OR PANEL PT.	COMPONENT	$\begin{array}{\|c\|} \hline 2001 \\ \text { SECTION } \\ \text { LOSS } \\ \hline \end{array}$	2001 COMMENT	$\begin{gathered} 2010 \\ \text { SECTION } \\ \text { LOSS } \\ \hline \end{gathered}$	2010 COMMENT
		Inbd Fl (Mty side)	5\%	along top of fill plate at flbm connection	\checkmark	
		Web			\checkmark	
1	6	Bottom Chord (Lt)		95% SL at 50% of top lacing bars		
		Outbd TF	50\%		70\%	
		Outbd BF	20\%		30\%	
		Outbd Web			\checkmark	
		Inbd TF	50\%		\checkmark	
		Inbd BF	15\%		20\%	
		Inbd Web			5\%	
		Bottom Lacing				30\% SL of average
		Top Lacing				$\begin{aligned} & 100 \% \text { SL of } 50 \%, 50 \% \text { SL } \\ & \text { of rest } \end{aligned}$
1	6	Bottom Chord (Rt)				
		Outbd TF	50\%	50\% SL at L5R; 20\% SL typical	60\%	
		Outbd BF	25\%		60\%	
		Outbd Web	5\%		\checkmark	
		Inbd TF	50\%	50\% SL at L5R; 20\% SL typical	60\%	
		Inbd BF	15\%		30\%	At ends
		Inbd Web	5\%		\checkmark	
		Bottom Lacing				40\% SL of average
		Top Lacing				$\begin{aligned} & 80 \% \text { SL of } 10 \%, 50 \% \text { SL } \\ & \text { of rest } \end{aligned}$
1	6	End Post (Lt)				
		Cover Plate	70\%	$70 \% \mathrm{SL}$ at isolated area located approximately 3 ft . above flbm; 5\% SL typical	\checkmark	
		Outbd TF			\checkmark	
		Outbd BF	20\%		\checkmark	
		Outbd Web			\checkmark	
		Inbd TF			\checkmark	
		Inbd BF	20\%		\checkmark	
		Inbd Web			5\%	
		Bottom Lacing				10\% SL of 10\%
1	6	End Post (Rt)				
		Cover Plate	10\%		20\%	Many rivet heads gone, some holes through
		Outbd TF			\checkmark	
		Outbd BF	30\%		\checkmark	

For abbreviations, see Legend on First page of Appendix 2.
For guide to numbering system and directional designations, see Appendix 1.

Salinas River Bridge Updated Inspection Report

TABLE 1
TRUSS MEMBERS

SPAN	PANEL OR PANEL PT.	COMPONENT	$\begin{array}{\|c\|} \hline 2001 \\ \text { SECTION } \\ \text { LOSS } \\ \hline \end{array}$	2001 COMMENT	$\begin{gathered} 2010 \\ \text { SECTION } \\ \text { LOSS } \\ \hline \end{gathered}$	2010 COMMENT
		Outbd Web			\checkmark	
		Inbd TF			\checkmark	
		Inbd BF	5\%		\checkmark	
		Inbd Web			\checkmark	
		Bottom Lacing				10\% SL of 10\%
2	1	End Post (Lt)				
		Cover Plate			10\%	
		Outbd TF			\checkmark	
		Outbd BF			\checkmark	
		Outbd Web			\checkmark	
		Inbd TF	5\%		\checkmark	
		Inbd BF	5\%		\checkmark	
		Inbd Web	5\%		\checkmark	
		Bottom Lacing				10\% SL average
2	1	End Post (Rt)				
		Cover Plate	10\%		15\%	
		Outbd TF			\checkmark	
		Outbd BF			10\%	
		Outbd Web			\checkmark	
		Inbd TF			\checkmark	
		Inbd BF			5\%	
		Inbd Web			\checkmark	
		Bottom Lacing				100% SL of top, 50% SL next 3, 10\% SL rest
2	1	Bottom Chord (Lt)		Tree limbs growing into bottom chord		Tree limbs gone
		Outbd FI (top)	10\%	at L1L	\checkmark	
			5\%	throughout length of member, except as noted above	\checkmark	
		Outbd Fl (btm)			\checkmark	
		Inbd FI (top)	5\%		\checkmark	
		Inbd FI (btm)			\checkmark	
		Web		20% SL at 50% of lacing bars		Mid lacing 30\% SL of $20 \%, 10 \%$ SL rest
2	1	Bottom Chord (Rt)				
		Outbd Fl (top)	10\%		\checkmark	
		Outbd FI (btm)			\checkmark	
		Inbd FI (top)	10\%		\checkmark	
		Inbd FI (btm)			\checkmark	
		Web				$\begin{aligned} & \text { Lacing 30\% SL of 20\%, } \\ & 10 \% \text { SL rest } \end{aligned}$
2	L1L-U1L	Hanger (Lt)				

For abbreviations, see Legend on First page of Appendix 2.

Salinas River Bridge

Updated Inspection Report
TABLE 1
TRUSS MEMBERS

SPAN	PANEL OR PANEL PT.	COMPONENT	$\begin{array}{\|c\|} \hline 2001 \\ \text { SECTION } \\ \text { LOSS } \\ \hline \end{array}$	2001 COMMENT	$\begin{array}{\|c\|} \hline 2010 \\ \text { SECTION } \\ \text { LOSS } \\ \hline \end{array}$	2010 COMMENT
		Outbd FI (SF side)			5\%	
		Outbd FI (Mty side)	10\%		\checkmark	
		Inbd FI (SF side)			5\%	Mid
		Inbd FI (Mty side)			\checkmark	Bottom gusset 10\% SL both
		Web			\checkmark	
2	L1R-U1R	Hanger (Rt)				
		Outbd FI (SF side)	25\%	along top of gusset plate at L1R	\checkmark	
		Outbd FI (Mty side)			5\%	
		Inbd FI (SF side)			5\%	
		Inbd FI (Mty side)			\checkmark	
		Web			\checkmark	
2	2	Bottom Chord (Lt)		Tree limbs growing into bottom chord		
		Outbd FI (top)	5\%		15\%	L2L gusset 10\% SL
		Outbd FI (btm)	5\%		\checkmark	
		Inbd FI (top)	5\%		10\%	
		Inbd FI (btm)	5\%		\checkmark	
		Web		20% SL at 10% of lacing chord		Lacing 20\% SL of 20\%
2	2	Bottom Chord (Rt)				
		Outbd FI (top)	10\%	in area btw gusset plates at L2R (probably due to moisture associated with accumulated of debris/ballast btw gussets plates)	10\%	10% SL at L1R \& L2R, L2R gusset 15\% SL
			5\%	throughout length of member, except as noted above	\checkmark	
		Outbd Fl (btm)			\checkmark	
		Inbd FI (top)	10\%	in area btw gusset plates at L2R (probably due to moisture associated with accumulated of debris/ballast btw gussets plates)	\checkmark	10\% SL at ends
			5\%	throughout length of member, except as noted above	\checkmark	

For abbreviations, see Legend on First page of Appendix 2.
For guide to numbering system and directional designations, see Appendix 1.

Salinas River Bridge

 Updated Inspection ReportTABLE 1
TRUSS MEMBERS

SPAN	PANEL OR PANEL PT.	COMPONENT	$\begin{array}{\|c\|} \hline 2001 \\ \text { SECTION } \\ \text { LOSS } \\ \hline \end{array}$	2001 COMMENT	$\begin{array}{\|c\|} \hline 2010 \\ \text { SECTION } \\ \text { LOSS } \\ \hline \end{array}$	2010 COMMENT
		Inbd FI (btm)			\checkmark	
		Web				$\begin{aligned} & \text { Lacing } 1 \text { at } 100 \% \text { SL, } \\ & 60 \% \text { of rest } \\ & \hline \end{aligned}$
2	2	Top Chord (Lt)				
		Cover Plate	15\%		\checkmark	No holes
		Outbd TF			\checkmark	
		Outbd BF			\checkmark	
		Outbd Web			\checkmark	
		Inbd TF	20\%		\checkmark	
		Inbd BF	5\%		10\%	
		Inbd Web			\checkmark	
		Bottom Lacing				20\% SL average
2	2	Top Chord (Rt)				
		Cover Plate	5\%		30\%	No holes
		Outbd TF			5\%	
		Outbd BF	10\%		20\%	
		Outbd Web	5\%		\checkmark	
		Inbd TF			5\%	
		Inbd BF			5\%	
		Inbd Web			5\%	
		Bottom Lacing				$\begin{aligned} & \text { 20\% SL average, } 1 \text { at } \\ & 60 \% \text { SL } \\ & \hline \end{aligned}$
2	2	Diagonal (Lt)				
		Outbd FI (top)	5\%	near mid-point btw U1L \& L2L	\checkmark	
		Outbd FI (btm)			5\%	
		Inbd FI (top)			5\%	
		Inbd FI (btm)			5\%	
		Web	20\%	in horiz leg of both top angles and in section of web plate btw angles, just above connection at L2L	25\%	
2	2	Diagonal (Rt)		debris build-up btw gusset plates at L2R	\checkmark	
		Outbd FI (top)			5\%	
		Outbd Fl (btm)			5\%	
		Inbd FI (top)			5\%	
		Inbd Fl (btm)			\checkmark	
		Web	10\%	in section of web plate btw angles	20\%	
2	L2L-U2L	Post (Lt)				
		Outbd FI (SF side)			\checkmark	

For abbreviations, see Legend on First page of Appendix 2.
For guide to numbering system and directional

Salinas River Bridge Updated Inspection Report

TABLE 1
TRUSS MEMBERS

SPAN	PANEL OR PANEL PT.	COMPONENT	$\begin{gathered} 2001 \\ \text { SECTION } \\ \text { LOSS } \\ \hline \end{gathered}$	2001 COMMENT	$\begin{array}{\|c\|} \hline 2010 \\ \text { SECTION } \\ \text { LOSS } \\ \hline \end{array}$	2010 COMMENT
		Outbd FI (Mty side)			\checkmark	
		Inbd FI (SF side)			\checkmark	
		Inbd FI (Mty side)			\checkmark	
		Web	5\%	located 3 ft . above flbm connection	\checkmark	
2	L2R-U2R	Post (Rt)				
		Outbd Fl (SF side)			\checkmark	
		Outbd FI (Mty side)			5\%	
		Inbd FI (SF side)	25\%	along top of gusset plate at L2R	\checkmark	
		Inbd FI (Mty side)			\checkmark	
		Web			\checkmark	
2	3	Bottom Chord (Lt)				
		Outbd FI Plate			\checkmark	
		Outbd FI (top L)	5\%		10\%	
		Outbd Fl (btm L)	5\%		\checkmark	
		Inbd FI Plate			\checkmark	
		Inbd FI (top L)	5\%		10\%	
		Inbd FI (btm L)	5\%		\checkmark	
		Web	10\%	in horiz leg of both top angles and in section of web plate btw angles	10\%	10% SL plate between angle
2	3	Bottom Chord (Rt)				
		Outbd FI Plate			\checkmark	
		Outbd FI (top L)	5\%		15\%	
		Outbd FI (btm L)			\checkmark	
		Inbd FI Plate			\checkmark	
		Inbd FI (top L)	5\%		15\%	
		Inbd FI (btm L)			\checkmark	
		Web	10\%	in horiz leg of both top angles and in section of web plate btw angles	20\%	20\% SL in plate
2	3	Top Chord (Lt)				
		Cover Plate	25\%		50\%	Holes after 5-10' each end
		Outbd TF			\checkmark	
		Outbd BF	10\%		\checkmark	
		Outbd Web			\checkmark	
		Inbd TF			\checkmark	
		Inbd BF	15\%		30\%	
		Inbd Web			5\%	
		Bottom Lacing				$\begin{aligned} & 30 \% \text { SL average, } 2 \text { at } \\ & 60 \% \text { SL } \end{aligned}$

For abbreviations, see Legend on First page of Appendix 2.
For guide to numbering system and directional

Salinas River Bridge Updated Inspection Report

TABLE 1
TRUSS MEMBERS

SPAN	PANEL OR PANEL PT.	COMPONENT	$\begin{gathered} 2001 \\ \text { SECTION } \\ \text { LOSS } \\ \hline \end{gathered}$	2001 COMMENT	$\begin{gathered} 2010 \\ \text { SECTION } \\ \text { LOSS } \\ \hline \end{gathered}$	2010 COMMENT
2	3	Top Chord (Rt)				
		Cover Plate	10\%		15\%	
		Outbd TF			\checkmark	
		Outbd BF	10\%		20\%	
		Outbd Web	5\%		\checkmark	
		Inbd TF			5\%	
		Inbd BF	10\%		15\%	
		Inbd Web			\checkmark	
		Bottom Lacing				$\begin{aligned} & \text { 20\% SL average, } 2 \text { at } \\ & 100 \% \text { SL } \end{aligned}$
2	3	Diagonal (Lt)		100\% SL at two bottom lacing bars and 20% SL a remaining bottom lacing bars		
		Outbd TF			\checkmark	
		Outbd BF	5\%		\checkmark	
		Outbd Web			5\%	
		Inbd TF	10\%		\checkmark	
		Inbd BF	10\%		\checkmark	
		Inbd Web	5\%		\checkmark	
		Bottom Lacing				$\begin{aligned} & 100 \% \text { SL of } 10 \%, 20 \% \mathrm{SL} \\ & \text { average } \end{aligned}$
		Top Lacing				$\begin{aligned} & 100 \% \text { SL on } 10 \%, 5 \% \text { SL } \\ & \text { average } \end{aligned}$
2	3	Diagonal (Rt)				
		Outbd TF	5\%		\checkmark	
		Outbd BF	5\%		\checkmark	
		Outbd Web			\checkmark	
		Inbd TF			\checkmark	
		Inbd BF			\checkmark	
		Inbd Web			\checkmark	
		Bottom Lacing				100\% SL of 30\%
		Top Lacing				$\begin{aligned} & 20 \% \text { SL of } 10 \%, 5 \% \text { SL } \\ & \text { average } \end{aligned}$
2	L3L-U3L	Hanger (Lt)				
		Outbd FI (SF side)			\checkmark	
		Outbd FI (Mty side)			\checkmark	
		Inbd FI (SF side)			\checkmark	
		Inbd Fl (Mty side)	5\%	along top of gusset plate at L3L	\checkmark	
		Web	5\%		\checkmark	
2	L3R-U3R	Hanger (Rt)				
		Outbd Fl (SF side)			\checkmark	

For abbreviations, see Legend on First page of Appendix 2.
For guide to numbering system and directional

Salinas River Bridge Updated Inspection Report

TABLE 1
TRUSS MEMBERS

SPAN	PANEL OR PANEL PT.	COMPONENT	$\begin{array}{\|c\|} \hline 2001 \\ \text { SECTION } \\ \text { LOSS } \\ \hline \end{array}$	2001 COMMENT	$\begin{array}{\|c\|} \hline 2010 \\ \text { SECTION } \\ \text { LOSS } \\ \hline \end{array}$	2010 COMMENT
		Outbd FI (Mty side)			\checkmark	
		Inbd Fl (SF side)	5\%	along top of gusset plate at L3R	10\%	
		Inbd FI (Mty side)			\checkmark	
		Web	5\%	in section of web plate btw angles	10\%	
2	4	Bottom Chord (Lt)				
		Outbd FI Plate			\checkmark	
		Outbd FI (top L)	20\%		\checkmark	
		Outbd FI (btm L)	10\%		\checkmark	
		Inbd FI Plate			\checkmark	
		Inbd FI (top L)	20\%		\checkmark	
		Inbd FI (btm L)	10\%		\checkmark	
		Web	20\%	in horiz leg of both top angles and in section of web plate btw angles	\checkmark	
2	4	Bottom Chord (Rt)				
		Outbd FI Plate			\checkmark	
		Outbd FI (top L)	5\%		10\%	
		Outbd FI (btm L)			\checkmark	
		Inbd FI Plate	5\%	along gusset plate at L3R	\checkmark	
		Inbd FI (top L)	10\%		\checkmark	
		Inbd FI (btm L)			\checkmark	
		Web	10\%	in horiz leg of both top angles and in section of web plate btw angles	20\%	
2	4	Top Chord (Lt)				
		Cover Plate	50\%		\checkmark	
		Outbd TF			\checkmark	
		Outbd BF			\checkmark	
		Outbd Web			5\%	
		Inbd TF	5\%		10\%	
		Inbd BF	20\%		50\%	
		Inbd Web	5\%		10\%	
		Bottom Lacing				10\% SL average
2	4	Top Chord (Rt)				
		Cover Plate	10\%		20\%	No holes
		Outbd TF			5\%	
		Outbd BF	15\%		20\%	
		Outbd Web	5\%		\checkmark	
		Inbd TF			\checkmark	
		Inbd BF			5\%	

For abbreviations, see Legend on First page of Appendix 2.
For guide to numbering system and directional

Salinas River Bridge Updated Inspection Report

TABLE 1
TRUSS MEMBERS

SPAN	PANEL OR PANEL PT.	COMPONENT	$\begin{array}{\|c\|} \hline 2001 \\ \text { SECTION } \\ \text { LOSS } \end{array}$	2001 COMMENT	$\begin{gathered} 2010 \\ \text { SECTION } \\ \text { LOSS } \end{gathered}$	2010 COMMENT
		Inbd Web			5\%	
		Bottom Lacing				$\begin{aligned} & \text { 15\% SL average, } 1 \text { at } \\ & 80 \% \text { SL } \\ & \hline \end{aligned}$
2	4	Diagonal (Lt)				
		Outbd TF	10\%		\checkmark	
		Outbd BF	5\%		\checkmark	
		Outbd Web	5\%		\checkmark	
		Inbd TF	5\%		\checkmark	
		Inbd BF	10\%		\checkmark	
		Inbd Web	5\%		\checkmark	
		Bottom Lacing				30\% SL average
		Top Lacing				100% SL of $1,20 \%$ SL average
2	4	Diagonal (Rt)				
		Outbd TF	5\%		10\%	
		Outbd BF	20\%		30\%	
		Outbd Web	5\%		\checkmark	
		Inbd TF	20\%		30\%	
		Inbd BF			\checkmark	
		Inbd Web	5\%		\checkmark	
		Bottom Lacing				100% SL of $20 \%, 30 \%$ SL average
		Top Lacing				$\begin{aligned} & 90 \% \text { SL of } 20 \%, 20 \% \text { SL } \\ & \text { average } \end{aligned}$
2	L4L-U4L	Post (Lt)				
		Outbd Fl (SF side)	10\%	along top of gusset plate at L4L	\checkmark	
		Outbd FI (Mty side)			\checkmark	
		Inbd FI (SF side)	5\%	along top of gusset plate at L4L	\checkmark	
		Inbd FI (Mty side)	5\%	along top of gusset plate at L4L	\checkmark	
		Web	5\%		\checkmark	
2	L4R-U4R	Post (Rt)				
		Outbd FI (SF side)			\checkmark	
		Outbd FI (Mty side)			\checkmark	
		Inbd FI (SF side)			\checkmark	
		Inbd FI (Mty side)			\checkmark	
		Web			\checkmark	
2	5	Bottom Chord (Lt)				
		Outbd FI (top)	10\%		\checkmark	
		Outbd FI (btm)	5\%		\checkmark	
		Inbd FI (top)	10\%		\checkmark	

For abbreviations, see Legend on First page of Appendix 2.
For guide to numbering system and directional

Salinas River Bridge Updated Inspection Report

TABLE 1
TRUSS MEMBERS

SPAN	PANEL OR PANEL PT.	COMPONENT	$\begin{array}{\|c\|} \hline 2001 \\ \text { SECTION } \\ \text { LOSS } \\ \hline \end{array}$	2001 COMMENT	$\begin{array}{\|c\|} \hline 2010 \\ \text { SECTION } \\ \text { LOSS } \\ \hline \end{array}$	2010 COMMENT
		Inbd Fl (btm)	5\%		\checkmark	
		Web	20\%	in horiz legs of both top angles	\checkmark	Lacing
				50\% SL at all lacing bars	\checkmark	Lacing
2	5	Bottom Chord (Rt)				
		Outbd Fl (top)	5\%		10\%	
		Outbd FI (btm)			\checkmark	
		Inbd FI (top)	5\%		10\%	
		Inbd FI (btm)			5\%	
		Web	5\%	in horiz legs of both top angles	10\%	Lacing 60\% SL in 30\%
2	5	Top Chord (Lt)				
		Cover Plate	25\%		30\%	No holes through
		Outbd TF			\checkmark	
		Outbd BF			\checkmark	
		Outbd Web			5\%	
		Inbd TF			\checkmark	
		Inbd BF	15\%		20\%	
		Inbd Web			\checkmark	
		Bottom Lacing				15\% SL average
2	5	Top Chord (Rt)				
		Cover Plate	60\%	at 12" length of member adjacent to lateral connection plate at U4R	\checkmark	Holes in 1 area
			15\%	throughout length of member, except as noted above	\checkmark	
		Outbd TF			10\%	
		Outbd BF	15\%		\checkmark	
		Outbd Web	5\%		\checkmark	
		Inbd TF			5\%	
		Inbd BF			\checkmark	
		Inbd Web			\checkmark	
		Bottom Lacing				$\begin{aligned} & \text { 15\% SL average, } 1 \text { at } \\ & 80 \% \text { SL } \end{aligned}$
2	5	Diagonal (Lt)				
		Outbd FI (top)			20\%	20\% SL at L4L gusset
		Outbd Fl (btm)			20\%	20\% SL at L4L gusset
		Inbd FI (top)			\checkmark	
		Inbd FI (btm)			\checkmark	

For abbreviations, see Legend on First page of Appendix 2.
For guide to numbering system and directional

Salinas River Bridge Updated Inspection Report

TABLE 1
TRUSS MEMBERS

SPAN	PANEL OR PANEL PT.	COMPONENT	$\begin{gathered} 2001 \\ \text { SECTION } \\ \text { LOSS } \\ \hline \end{gathered}$	2001 COMMENT	$\begin{array}{\|c\|} \hline 2010 \\ \text { SECTION } \\ \text { LOSS } \\ \hline \end{array}$	2010 COMMENT
		Web	20\%	in horiz leg of both top angles and in section of web plate btw angles (along 5 ft . length starting at L4L)	\checkmark	
2	5	Diagonal (Rt)				
		Outbd FI (top)			\checkmark	
		Outbd Fl (btm)	5\%	along gusset plate at L4R	\checkmark	Pack rust prying
		Inbd FI (top)	20\%	along gusset plate at L4R	\checkmark	
		Inbd FI (btm)	15\%	along gusset plate at L4R	\checkmark	
		Web	10\%	in horiz leg of both top angles and in section of web plate btw angles	20\%	
2	L5L-U5L	Hanger (Lt)				
		Outbd FI (SF side)			\checkmark	Bottom gusset inside 5\% SL
		Outbd FI (Mty side)			\checkmark	
		Inbd FI (SF side)			\checkmark	
		Inbd FI (Mty side)			\checkmark	
		Web	10\%	along 3 ft . length of member starting at top of flbm	\checkmark	L5L gusset outside 20\% SL
2	L5R-U5R	Hanger (Rt)				
		Outbd FI (SF side)			\checkmark	
		Outbd FI (Mty side)			\checkmark	Bottom gusset inside 10\% SL
		Inbd FI (SF side)			\checkmark	
		Inbd FI (Mty side)			\checkmark	
		Web			\checkmark	
2	6	Bottom Chord (Lt)				
		Outbd FI (top)	10\%		\checkmark	
		Outbd Fl (btm)			\checkmark	
		Inbd FI (top)	10\%		\checkmark	
		Inbd FI (btm)			\checkmark	
		Web		30\% SL at all lacing bars	40\%	
2	6	Bottom Chord (Rt)				
		Outbd FI (top)	5\%		\checkmark	
		Outbd FI (btm)			\checkmark	
		Inbd FI (top)	5\%		\checkmark	

For abbreviations, see Legend on First page of Appendix 2.
For guide to numbering system and directional

Salinas River Bridge Updated Inspection Report

TABLE 1
TRUSS MEMBERS

SPAN	PANEL OR PANEL PT.	COMPONENT	$\begin{array}{\|c\|} \hline 2001 \\ \text { SECTION } \\ \text { LOSS } \\ \hline \end{array}$	2001 COMMENT	$\begin{gathered} 2010 \\ \text { SECTION } \\ \text { LOSS } \end{gathered}$	2010 COMMENT
		Inbd Fl (btm)			\checkmark	
		Web	10\%	$\begin{aligned} & \text { in horiz legs of both top } \\ & \text { angles } \end{aligned}$	\checkmark	Lacing 50\% in 30\%
2	6	End Post (Lt)		10% SL at all bottom lacing bars		
		Cover Plate	10\%		\checkmark	
		Outbd TF			\checkmark	
		Outbd BF			\checkmark	
		Outbd Web			5\%	
		Inbd TF			\checkmark	
		Inbd BF	10\%		15\%	
		Inbd Web			5\%	
		Bottom Lacing				20\% SL of 50\%
2	6	End Post (Rt)				
		Cover Plate			5\%	
		Outbd TF			\checkmark	
		Outbd BF	5\%		\checkmark	
		Outbd Web			\checkmark	
		Inbd TF			\checkmark	
		Inbd BF			\checkmark	
		Inbd Web			\checkmark	
		Bottom Lacing				20\% SL of 50\%
3	1	End Post (Lt)		50% SL at 50% of the bottom lacing bars		
		Cover Plate			5\%	
		Outbd TF	5\%		\checkmark	
		Outbd BF	5\%		\checkmark	
		Outbd Web	5\%		\checkmark	
		Inbd TF	10\%		\checkmark	
		Inbd BF	5\%		10\%	
		Inbd Web			5\%	
		Bottom Lacing				$\begin{aligned} & 100 \% \text { SL of } 20 \%, 30 \% \text { SL } \\ & \text { rest } \end{aligned}$
3	1	End Post (Rt)		100% SL at ten bottom lacing bars; remainder of lacing bars in poor condition		
		Cover Plate	10\%		\checkmark	
		Outbd TF			\checkmark	
		Outbd BF	5\%		\checkmark	
		Outbd Web			\checkmark	
		Inbd TF			\checkmark	
		Inbd BF			5\%	

For abbreviations, see Legend on First page of Appendix 2.
For guide to numbering system and directional

Appendix 2

Salinas River Bridge

Updated Inspection Report
TABLE 1
TRUSS MEMBERS

SPAN	PANEL OR PANEL PT.	COMPONENT	$\begin{array}{\|c\|} \hline 2001 \\ \text { SECTION } \\ \text { LOSS } \\ \hline \end{array}$	2001 COMMENT	$\begin{array}{\|c\|} \hline 2010 \\ \text { SECTION } \\ \text { LOSS } \\ \hline \end{array}$	2010 COMMENT
		Inbd Web			\checkmark	
		Bottom Lacing				$\begin{aligned} & 100 \% \text { SL of } 50 \%, 30 \% \text { SL } \\ & \text { rest } \end{aligned}$
3	1	Bottom Chord (Lt)				
		Outbd FI (top)	10\%		\checkmark	
		Outbd Fl (btm)	15\%		\checkmark	
		Inbd FI (top)			5\%	
		Inbd Fl (btm)	15\%		\checkmark	
		Web	20\%	in horiz leg of both top angles	\checkmark	
				20\% SL of all lacing bars	\checkmark	
3	1	Bottom Chord (Rt)		Tree limbs growing into bottom chord.		
		Outbd FI (top)	5\%		10\%	
		Outbd FI (btm)			\checkmark	
		Inbd FI (top)	5\%		10\%	
		Inbd Fl (btm)			\checkmark	
		Web	10\%	$\begin{aligned} & \text { in horiz leg of both top } \\ & \text { angles } \end{aligned}$	\checkmark	Lacing 20\% SL average, 50% SL at L1 end
3	L1L-U1L	Hanger (Lt)		50\% SL of Inbd gusset plate at L1L, above floorbeam		
		Outbd FI (SF side)	15\%	along top of gusset plate at L1L	\checkmark	
		Outbd FI (Mty side)	15\%	along top of gusset plate at L1L	\checkmark	
		Inbd FI (SF side)	10\%	along top of gusset plate at L1L	15\%	
		Inbd Fl (Mty side)	10\%	along top of gusset plate at L1L	\checkmark	Bottom gusset above flbm 70% SL
		Web	5\%		\checkmark	
3	L1R-U1R	Hanger (Rt)				
		Outbd FI (SF side)			\checkmark	Gusset bottom 30\% SL
		Outbd FI (Mty side)			\checkmark	
		Inbd FI (SF side)	30\%	along top of gusset plate at L1L	40\%	
		Inbd Fl (Mty side)	30\%	along top of gusset plate at L1L	\checkmark	
		Web			\checkmark	
3	2	Bottom Chord (Lt)				
		Outbd FI (top)	5\%		10\%	
		Outbd Fl (btm)			5\%	

For abbreviations, see Legend on First page of Appendix 2.
For guide to numbering system and directional designations, see Appendix 1.

Salinas River Bridge

 Updated Inspection ReportTABLE 1
TRUSS MEMBERS

SPAN	PANEL OR PANEL PT.	COMPONENT	$\begin{array}{\|c\|} \hline 2001 \\ \text { SECTION } \\ \text { LOSS } \\ \hline \end{array}$	2001 COMMENT	$\begin{array}{\|c\|} \hline 2010 \\ \text { SECTION } \\ \text { LOSS } \end{array}$	2010 COMMENT
		Inbd FI (top)			10\%	
		Inbd FI (btm)	5\%		\checkmark	
		Web	10\%	in horiz leg of both top angles		Lacing 30\% SL average
3	2	Bottom Chord (Rt)				
		Outbd FI (top)			5\%	
		Outbd FI (btm)			\checkmark	
		Inbd FI (top)	5\%		10\%	
		Inbd FI (btm)			\checkmark	
		Web	10\%	in horiz leg of Inbd top angle	\checkmark	Lacing 30\% SL average, 100% SL of 2 at L2 end web, Plate 10\% SL
			5\%	in horiz leg of Outbd top angle	\checkmark	
3	2	Top Chord (Lt)				
		Cover Plate	15\%		20\%	No holes
		Outbd TF			\checkmark	
		Outbd BF			5\%	
		Outbd Web			\checkmark	
		Inbd TF	5\%		\checkmark	
		Inbd BF	15\%		\checkmark	
		Inbd Web			\checkmark	
3	2	Top Chord (Rt)				
		Cover Plate	10\%		20\%	No holes
		Outbd TF			\checkmark	
		Outbd BF	15\%		\checkmark	
		Outbd Web			\checkmark	
		Inbd TF			\checkmark	
		Inbd BF	10\%		\checkmark	
		Inbd Web			\checkmark	
3	2	Diagonal (Lt)				
		Outbd Fl (top)	10\%	along top of gusset plate at L2L	\checkmark	Outbd member L2 gusset $70 \% \mathrm{SL}$
		Outbd FI (btm)	5\%		\checkmark	
		Inbd FI (top)	10\%	along top of gusset plate at L2L	25\%	1/2 inside
		Inbd FI (btm)	5\%		\checkmark	
		Web	20\%	in horiz leg of both top angles and in section of web plate between angles, along 4 ft . length of member starting from L2L	30\%	

For abbreviations, see Legend on First page of Appendix 2.
For guide to numbering system and directional designations, see Appendix 1.

Salinas River Bridge Updated Inspection Report

TABLE 1
TRUSS MEMBERS

SPAN	PANEL OR PANEL PT.	COMPONENT	$\begin{array}{\|c\|} \hline 2001 \\ \text { SECTION } \\ \text { LOSS } \\ \hline \end{array}$	2001 COMMENT	$\begin{array}{\|c\|} \hline 2010 \\ \text { SECTION } \\ \text { LOSS } \\ \hline \end{array}$	2010 COMMENT
3	2	Diagonal (Rt)				
		Outbd FI (top)	5\%		\checkmark	
		Outbd Fl (btm)			\checkmark	
		Inbd Fl (top)	30\%	along gusset plate at L2R	\checkmark	
		Inbd FI (btm)	5\%	along gusset plate at L2R	\checkmark	
		Web	5\%	lin horiz leg of both top angles and in section of web plate between angles	10\%	
3	L2L-U2L	Post (Lt)				
		Outbd FI (SF side)			\checkmark	
		Outbd FI (Mty side)			\checkmark	
		Inbd FI (SF side)	5\%	along top of gusset plate at L2L	\checkmark	
		Inbd FI (Mty side)	5\%	along top of gusset plate at L2L	\checkmark	
		Web	5\%		\checkmark	
3	L2R-U2R	Post (Rt)				
		Outbd FI (SF side)			\checkmark	
		Outbd FI (Mty side)			\checkmark	
		Inbd FI (SF side)	5\%	along top of gusset plate at L2R	\checkmark	Main L2 gusset 10\% SL
		Inbd FI (Mty side)			\checkmark	
		Web			\checkmark	
3	3	Bottom Chord (Lt)				
		Outbd FI Plate			\checkmark	
		Outbd FI (top L)			10\%	
		Outbd FI (btm L)			\checkmark	
		Inbd FI Plate			\checkmark	
		Inbd FI (top L)			10\%	
		Inbd FI (btm L)			\checkmark	
		Web	20\%	in horiz leg of both top angles and in section of web plate btw angles	20\%	20\% all
3	3	Bottom Chord (Rt)				
		Outbd FI Plate			\checkmark	
		Outbd FI (top L)	10\%		\checkmark	
		Outbd FI (btm L)			\checkmark	
		Inbd FI Plate			\checkmark	
		Inbd FI (top L)	10\%		\checkmark	
		Inbd FI (btm L)			\checkmark	

For abbreviations, see Legend on First page of Appendix 2.
For guide to numbering system and directional

Salinas River Bridge Updated Inspection Report

TABLE 1
TRUSS MEMBERS

SPAN	PANEL OR PANEL PT.	COMPONENT	$\begin{gathered} 2001 \\ \text { SECTION } \\ \text { LOSS } \\ \hline \end{gathered}$	2001 COMMENT	$\begin{array}{\|c\|} \hline 2010 \\ \text { SECTION } \\ \text { LOSS } \\ \hline \end{array}$	2010 COMMENT
		Web	10\%	in horiz leg of both top angles and in section of web plate btw angles	30\%	30% of plate
3	3	Top Chord (Lt)				
		Cover Plate	50\%		70\%	Many holes
		Outbd TF			\checkmark	
		Outbd BF			15\%	
		Outbd Web			\checkmark	
		Inbd TF	5\%		\checkmark	
		Inbd BF	10\%		\checkmark	
		Inbd Web			\checkmark	
3	3	Top Chord (Rt)				
		Cover Plate	70\%	along 2 ft . length of member adjacent to lateral connection plate at U2R	80\%	Many holes
			15\%	Typical SL along length of member, except as noted above	20\%	
		Outbd TF			\checkmark	
		Outbd BF	10\%		15\%	
		Outbd Web			5\%	
		Inbd TF			\checkmark	
		Inbd BF	5\%		\checkmark	
		Inbd Web			\checkmark	
3	3	Diagonal (Lt)		20% SL at 30% of the bottom lacing bars		
		Outbd TF			\checkmark	
		Outbd BF			\checkmark	
		Outbd Web			\checkmark	
		Inbd TF			\checkmark	
		Inbd BF			5\%	
		Inbd Web			\checkmark	
		Bottom Lacing				100% SL of $40 \%, 30 \%$ SL average
		Top Lacing				5\% SL average
3	3	Diagonal (Rt)				
		Outbd TF	5\%		\checkmark	
		Outbd BF	5\%		\checkmark	
		Outbd Web	5\%		\checkmark	
		Inbd TF	20\%	along edges of top lacing bars	30\%	
		Inbd BF			5\%	

For abbreviations, see Legend on First page of Appendix 2.
For guide to numbering system and directional

Salinas River Bridge

 Updated Inspection ReportTABLE 1
TRUSS MEMBERS

SPAN	PANEL OR PANEL PT.	COMPONENT	$\begin{gathered} 2001 \\ \text { SECTION } \\ \text { LOSS } \end{gathered}$	2001 COMMENT	$\begin{array}{\|c\|} \hline 2010 \\ \text { SECTION } \\ \text { LOSS } \\ \hline \end{array}$	2010 COMMENT
		Inbd Web	5\%		\checkmark	
		Bottom Lacing				100% SL of $30 \%, 30 \%$ SL average, 10% SL at bottom
		Top Lacing				$\begin{aligned} & 100 \% \text { SL of } 30 \%, 30 \% \text { SL } \\ & \text { average } \end{aligned}$
3	L3L-U3L	Hanger (Lt)				
		Outbd FI (SF side)			\checkmark	
		Outbd FI (Mty side)			\checkmark	
		Inbd FI (SF side)			5\%	
		Inbd FI (Mty side)			5\%	
		Web	5\%		\checkmark	
3	L3R-U3R	Hanger (Rt)				
		Outbd FI (SF side)			\checkmark	
		Outbd Fl (Mty side)			\checkmark	
		Inbd FI (SF side)			\checkmark	
		Inbd FI (Mty side)	5\%		\checkmark	Inbd bottom gusset 10\% SL
		Web	5\%	only in section of web plate between angles	\checkmark	
3	4	Bottom Chord (Lt)				
		Outbd FI Plate			\checkmark	
		Outbd FI (top L)			10\%	
		Outbd FI (btm L)			\checkmark	
		Inbd FI Plate			\checkmark	
		Inbd FI (top L)			10\%	
		Inbd FI (btm L)			\checkmark	
		Web	20\%	in horiz leg of both top angles and in section of web plate btw angles	\checkmark	
3	4	Bottom Chord (Rt)		minor spreading at Inbd and Outbd flange angles and cover plates due to crevice corrosion		Moderate pack rust
		Outbd FI Plate			10\%	
		Outbd FI (top L)	5\%		10\%	
		Outbd FI (btm L)			\checkmark	
		Inbd FI Plate			\checkmark	
		Inbd FI (top L)	10\%		\checkmark	
		Inbd FI (btm L)			\checkmark	
		Web	10\%	in horiz leg of both top angles and in section of web plate btw angles	\checkmark	

For abbreviations, see Legend on First page of Appendix 2.

Salinas River Bridge Updated Inspection Report

TABLE 1
TRUSS MEMBERS

SPAN	PANEL OR PANEL PT.	COMPONENT	$\begin{gathered} 2001 \\ \text { SECTION } \\ \text { LOSS } \\ \hline \end{gathered}$	2001 COMMENT	$\begin{array}{\|c\|} \hline 2010 \\ \text { SECTION } \\ \text { LOSS } \\ \hline \end{array}$	2010 COMMENT
3	4	Top Chord (Lt)				
		Cover Plate	50\%		\checkmark	No holes
		Outbd TF			\checkmark	
		Outbd BF			10\%	
		Outbd Web			\checkmark	
		Inbd TF			5\%	
		Inbd BF	15\%		\checkmark	
		Inbd Web			\checkmark	
3	4	Top Chord (Rt)				
		Cover Plate	10\%		25\%	No holes
		Outbd TF			\checkmark	
		Outbd BF	5\%		\checkmark	
		Outbd Web	5\%		\checkmark	
		Inbd TF			5\%	
		Inbd BF	5\%		10\%	
		Inbd Web			\checkmark	
3	4	Diagonal (Lt)				
		Outbd TF	5\%		\checkmark	Gusset bottom 30\% SL
		Outbd BF	5\%		\checkmark	
		Outbd Web	5\%		\checkmark	
		Inbd TF	5\%		\checkmark	10\% SL at L4 end
		Inbd BF	5\%		\checkmark	15\% SL at L4 end
		Inbd Web	5\%		\checkmark	
		Bottom Lacing				30\% SL average
		Top Lacing				$\begin{aligned} & 50 \% \text { SL of } 30 \%, 10 \% \text { SL } \\ & \text { average } \end{aligned}$
3	4	Diagonal (Rt)				
		Outbd TF	30\%		10\%	Maybe at top
		Outbd BF	20\%		\checkmark	
		Outbd Web	5\%		\checkmark	
		Inbd TF	50\%		\checkmark	
		Inbd BF	5\%		\checkmark	10\% SL at L4
		Inbd Web	10\%		\checkmark	
		Bottom Lacing				$\begin{aligned} & 100 \% \text { SL of } 40 \%, 30 \% \text { SL } \\ & \text { rest } \end{aligned}$
		Top Lacing				$\begin{aligned} & 100 \% \text { SL of } 20 \%, 40 \% \text { SL } \\ & \text { average } \end{aligned}$
3	L4L-U4L	Post (Lt)				
		Outbd FI (SF side)	30\%	along top of gusset plate at L4L	\checkmark	
		Outbd FI (Mty side)			\checkmark	
		Inbd FI (SF side)			\checkmark	
		Inbd FI (Mty side)			\checkmark	

For abbreviations, see Legend on First page of Appendix 2.
For guide to numbering system and directional

Salinas River Bridge Updated Inspection Report

TABLE 1
TRUSS MEMBERS

SPAN	PANEL OR PANEL PT.	COMPONENT	$\begin{array}{\|c\|} \hline 2001 \\ \text { SECTION } \\ \text { LOSS } \\ \hline \end{array}$	2001 COMMENT	$\begin{array}{\|c\|} \hline 2010 \\ \text { SECTION } \\ \text { LOSS } \\ \hline \end{array}$	2010 COMMENT
		Web			5\%	
3	L4R-U4R	Post (Rt)				
		Outbd FI (SF side)			5\%	
		Outbd FI (Mty side)			\checkmark	
		Inbd Fl (SF side)	15\%	along gusset plate at L4R	30\%	L4 Gusset inside 20\% SL
		Inbd Fl (Mty side)	5\%	along gusset plate at L4R	10\%	
		Web			\checkmark	
3	5	Bottom Chord (Lt)				
		Outbd FI (top)			5\%	
		Outbd Fl (btm)			5\%	
		Inbd FI (top)			5\%	
		Inbd Fl (btm)			10\%	
		Web	15\%	in horiz leg of both top angles	\checkmark	
		Lacing		30\% SL of all lacing bars	\checkmark	
3	5	Bottom Chord (Rt)				
		Outbd FI (top)	5\%		10\%	
		Outbd Fl (btm)			\checkmark	
		Inbd FI (top)	5\%		\checkmark	
		Inbd FI (btm)			\checkmark	
		Web	5\%	in horiz leg of both top angles	\checkmark	$\begin{aligned} & \text { Lacing } 50 \% \text { SL of } 20 \% \text {, } \\ & 40 \% \text { SL average } \end{aligned}$
3	5	Top Chord (Lt)				
		Cover Plate	50\%		\checkmark	No holes
		Outbd TF			\checkmark	
		Outbd BF			5\%	
		Outbd Web			\checkmark	
		Inbd TF	5\%		\checkmark	
		Inbd BF	15\%		\checkmark	
		Inbd Web			5\%	
3	5	Top Chord (Rt)				
		Cover Plate	10\%		30\%	Small holes
		Outbd TF			\checkmark	
		Outbd BF	10\%		\checkmark	
		Outbd Web			\checkmark	
		Inbd TF			5\%	
		Inbd BF	10\%		\checkmark	
		Inbd Web			\checkmark	
3	5	Diagonal (Lt)				

For abbreviations, see Legend on First page of Appendix 2.

Appendix 2

Salinas River Bridge Updated Inspection Report

TABLE 1
TRUSS MEMBERS

SPAN	PANEL OR PANEL PT.	COMPONENT	$\begin{array}{\|c\|} \hline 2001 \\ \text { SECTION } \\ \text { LOSS } \\ \hline \end{array}$	2001 COMMENT	$\begin{gathered} 2010 \\ \text { SECTION } \\ \text { LOSS } \\ \hline \end{gathered}$	2010 COMMENT
		Outbd Fl (top)	10\%	along gusset plate at L4L	40\%	
		Outbd FI (btm)			\checkmark	
		Inbd FI (top)			\checkmark	
		Inbd FI (btm)			\checkmark	
		Web			5\%	
3	5	Diagonal (Rt)				
		Outbd Fl (top)	5\%	along gusset plate at L4L	10\%	
		Outbd Fl (btm)	5\%	along gusset plate at L4L	10\%	
		Inbd Fl (top)	20\%	along gusset plate at L4L	30\%	
		Inbd FI (btm)	10\%	along gusset plate at L4L	20\%	
		Web			10\%	At bottom
3	L5L-U5L	Hanger (Lt)				
		Outbd FI (SF side)			\checkmark	
		Outbd FI (Mty side)			5\%	
		Inbd FI (SF side)	10\%	at two isolated locations: 1.5 ft . from top of gusset plate at L5L, and 3 ft . from top of gusset plate at L5L	\checkmark	Inbd gusset 25\% SL at bottom, outside 10\% SL
		Inbd FI (Mty side)			\checkmark	
		Web			5\%	
3	L5R-U5R	Hanger (Rt)				
		Outbd FI (SF side)			\checkmark	
		Outbd Fl (Mty side)			\checkmark	Inbd gusset 20\% SL above flbm
		Inbd FI (SF side)			\checkmark	Outbd gusset 10\% SL
		Inbd FI (Mty side)			\checkmark	
		Web			\checkmark	
3	6	Bottom Chord (Lt)				
		Outbd FI (top)			5\%	
		Outbd FI (btm)			10\%	
		Inbd FI (top)			5\%	Bend 3' from L6 end
		Inbd Fl (btm)			5\%	
		Web		30% SL at 90% of the lacing bars		50% SL at 90% of the lacing bars
3	6	Bottom Chord (Rt)				
		Outbd FI (top)	5\%		\checkmark	
		Outbd Fl (btm)			\checkmark	

For abbreviations, see Legend on First page of Appendix 2.
For guide to numbering system and directional designations, see Appendix 1.

Salinas River Bridge Updated Inspection Report

TABLE 1
 TRUSS MEMBERS

SPAN	PANEL OR PANEL PT.	COMPONENT	$\begin{array}{\|c\|} \hline 2001 \\ \text { SECTION } \\ \text { LOSS } \end{array}$	2001 COMMENT	$\begin{gathered} 2010 \\ \text { SECTION } \\ \text { LOSS } \end{gathered}$	2010 COMMENT
		Inbd FI (top)	5\%		\checkmark	
		Inbd FI (btm)			\checkmark	
		Web	5\%	in horiz leg of both top angles	\checkmark	Lacing 30\% SL average
3	6	End Post (Lt)				
		Cover Plate			\checkmark	10\% SL near bottom
		Outbd TF			\checkmark	
		Outbd BF			\checkmark	
		Outbd Web			\checkmark	
		Inbd TF	10\%		\checkmark	
		Inbd BF	10\%		\checkmark	
		Inbd Web			5\%	
3	6	End Post (Rt)				
		Cover Plate			\checkmark	5\% SL near bottom
		Outbd TF			\checkmark	
		Outbd BF	5\%		\checkmark	
		Outbd Web		5\% SL in vertical leg of bottom angle	\checkmark	
		Inbd TF			\checkmark	
		Inbd BF			5\%	At bottom
		Inbd Web			\checkmark	
4	1	End Post (Lt)		50% SL at 75% of the bottom lacing bars		
		Cover Plate	5\%		\checkmark	
		Outbd TF			5\%	
		Outbd BF			5\%	
		Outbd Web			5\%	
		Inbd TF	5\%		\checkmark	
		Inbd BF	10\%		15\%	
		Inbd Web			5\%	
4	1	End Post (Rt)		100% SL at six of the bottom lacing bars		
		Cover Plate	5\%		10\%	
		Outbd TF			\checkmark	
		Outbd BF	5\%		\checkmark	
		Outbd Web	5\%		\checkmark	
		Inbd TF			\checkmark	
		Inbd BF			\checkmark	
		Inbd Web			\checkmark	
4	1	Bottom Chord (Lt)				
		Outbd FI (top)	10\%		\checkmark	
		Outbd FI (btm)			10\%	
		Inbd FI (top)	10\%		\checkmark	

For abbreviations, see Legend on First page of Appendix 2.
For guide to numbering system and directional

Salinas River Bridge Updated Inspection Report

TABLE 1
TRUSS MEMBERS

SPAN	PANEL OR PANEL PT.	COMPONENT	$\begin{array}{\|c\|} \hline 2001 \\ \text { SECTION } \\ \text { LOSS } \\ \hline \end{array}$	2001 COMMENT	$\begin{array}{\|c\|} \hline 2010 \\ \text { SECTION } \\ \text { LOSS } \end{array}$	2010 COMMENT
		Inbd FI (btm)			5\%	
		Web	30\%	$\begin{aligned} & \text { in horiz leg of both top } \\ & \text { angles } \\ & \hline \end{aligned}$	\checkmark	
				50% SL at 75% of lacing bars		$\begin{aligned} & \text { Lacing } 100 \% \text { SL of 6, } \\ & 75 \% \text { SL of rest } \end{aligned}$
4	1	Bottom Chord (Rt)				
		Outbd FI (top)			\checkmark	
		Outbd FI (btm)			\checkmark	
		Inbd FI (top)	5\%		\checkmark	
		Inbd FI (btm)			\checkmark	
		Web	10\%	in horiz leg in Inbd top angle	\checkmark	Lacing 80\% SL of 10\%, 30% SL average
4	L1L-U1L	Hanger (Lt)				
		Outbd FI (SF side)			\checkmark	
		Outbd FI (Mty side)	20\%	along 2 ft . length of member starting from top of gusset plate at L1L	30\%	2 holes
		Inbd FI (SF side)			\checkmark	
		Inbd FI (Mty side)			\checkmark	
		Web			5\%	
4	L1R-U1R	Hanger (Rt)				
		Outbd FI (SF side)			\checkmark	
		Outbd FI (Mty side)			\checkmark	
		Inbd FI (SF side)			\checkmark	
		Inbd FI (Mty side)			\checkmark	
		Web	5\%	in section of web plate between angles	10\%	
4	2	Bottom Chord (Lt)				
		Outbd FI (top)	10\%		\checkmark	
		Outbd FI (btm)			\checkmark	
		Inbd FI (top)	10\%		\checkmark	
		Inbd FI (btm)			\checkmark	
		Web	15\%	in horiz leg of both top angles	\checkmark	
				50\% SL at all lacing bars		Lacing 80\% SL of 50\%, 30% average rest
4	2	Bottom Chord (Rt)				
		Outbd FI (top)	5\%		\checkmark	
		Outbd Fl (btm)			\checkmark	
		Inbd FI (top)	5\%		10\%	
		Inbd FI (btm)			\checkmark	

For abbreviations, see Legend on First page of Appendix 2.
For guide to numbering system and directional

Salinas River Bridge Updated Inspection Report

TABLE 1
TRUSS MEMBERS

SPAN	PANEL OR PANEL PT.	COMPONENT	$\begin{array}{\|c\|} \hline 2001 \\ \text { SECTION } \\ \text { LOSS } \\ \hline \end{array}$	2001 COMMENT	$\begin{array}{\|c\|} \hline 2010 \\ \text { SECTION } \\ \text { LOSS } \\ \hline \end{array}$	2010 COMMENT
		Web	10\%	in horiz leg of Inbd top angle	\checkmark	Lacing 60\% SL of 30\%, 40% SL average rest
			5\%	in horiz leg of Outbd top angle	\checkmark	
4	2	Top Chord (Lt)				
		Cover Plate	30\%		40\%	One hole
		Outbd TF			\checkmark	
		Outbd BF			\checkmark	
		Outbd Web			\checkmark	
		Inbd TF	5\%		\checkmark	
		Inbd BF	15\%		\checkmark	
		Inbd Web	5\%		\checkmark	
4	2	Top Chord (Rt)				
		Cover Plate	10\%		15\%	No holes
		Outbd TF			\checkmark	
		Outbd BF	15\%		\checkmark	
		Outbd Web			\checkmark	
		Inbd TF			10\%	
		Inbd BF	5\%		10\%	
		Inbd Web			\checkmark	
4	2	Diagonal (Lt)				
		Outbd FI (top)	5\%		\checkmark	
		Outbd Fl (btm)	5\%		\checkmark	
		Inbd FI (top)	30\%	along gusset plate at L2L	5\%	40\% SL along gusset plate at L2L, 5\% SL general
		Inbd FI (btm)	5\%		\checkmark	
		Web	5\%	in horiz leg both top angles and in section of web plate between angles	5\%	5\% SL general
4	2	Diagonal (Rt)				
		Outbd FI (top)	5\%	along gusset plate at L2R	20\%	
		Outbd FI (btm)			\checkmark	
		Inbd FI (top)	10\%	along gusset plate at L2R	5\%	20\% SL along gusset plate at L2R, 5% SL general
		Inbd Fl (btm)	5\%	along gusset plate at L2R	\checkmark	

Salinas River Bridge Updated Inspection Report

TABLE 1
TRUSS MEMBERS

SPAN	PANEL OR PANEL PT.	COMPONENT	$\begin{gathered} 2001 \\ \text { SECTION } \\ \text { LOSS } \\ \hline \end{gathered}$	2001 COMMENT	$\begin{array}{\|c\|} \hline 2010 \\ \text { SECTION } \\ \text { LOSS } \\ \hline \end{array}$	2010 COMMENT
		Web	5\%	in horiz leg both top angles and in section of web plate between angles	5\%	5\% SL general
4	L2L-U2L	Post (Lt)				
		Outbd FI (SF side)			\checkmark	
		Outbd FI (Mty side)			\checkmark	Gusset Inbd \& Outbd 60\% SL wide areas
		Inbd FI (SF side)			\checkmark	
		Inbd FI (Mty side)			5\%	
		Web			\checkmark	
4	L2R-U2R	Post (Rt)				
		Outbd FI (SF side)			\checkmark	
		Outbd FI (Mty side)			\checkmark	
		Inbd Fl (SF side)	5\%	along gusset plate at L2R	\checkmark	Gusset Inbd \& Outbd 15\% SL wide areas
		Inbd FI (Mty side)	5\%	along gusset plate at L2R	\checkmark	
		Web			\checkmark	
4	3	Bottom Chord (Lt)				
		Outbd FI Plate			\checkmark	
		Outbd FI (top L)	10\%		\checkmark	
		Outbd FI (btm L)			\checkmark	
		Inbd FI Plate			5\%	
		Inbd FI (top L)	10\%		\checkmark	
		Inbd FI (btm L)			\checkmark	
		Web	20\%	in horiz leg of both top angles and in section of web plate btw angles	\checkmark	
4	3	Bottom Chord (Rt)		minor spreading at Inbd and Outbd flange angles and cover plates due to crevice corrosion	\checkmark	
		Outbd FI Plate			\checkmark	
		Outbd FI (top L)	10\%		15\%	
		Outbd FI (btm L)			\checkmark	
		Inbd FI Plate			5\%	
		Inbd FI (top L)	10\%		15\%	
		Inbd FI (btm L)			\checkmark	
		Web	10\%	in horiz leg of both angles and in section of web plate btw angles	\checkmark	
4	3	Top Chord (Lt)				

For abbreviations, see Legend on First page of Appendix 2.
For guide to numbering system and directional

Salinas River Bridge Updated Inspection Report

TABLE 1
 TRUSS MEMBERS

SPAN	PANEL OR PANEL PT.	COMPONENT	$\begin{array}{\|c\|} \hline 2001 \\ \text { SECTION } \\ \text { LOSS } \end{array}$	2001 COMMENT	$\begin{gathered} 2010 \\ \text { SECTION } \\ \text { LOSS } \end{gathered}$	2010 COMMENT
		Cover Plate	50\%		60\%	Many holes
		Outbd TF			\checkmark	
		Outbd BF			\checkmark	
		Outbd Web			\checkmark	
		Inbd TF			\checkmark	
		Inbd BF			\checkmark	
		Inbd Web			\checkmark	
4	3	Top Chord (Rt)				
		Cover Plate	30\%	along edge of lateral connection plate at U2R	\checkmark	No holes
			10\%	throughout length of member, except as noted above	\checkmark	
		Outbd TF			\checkmark	
		Outbd BF	10\%		15\%	
		Outbd Web			\checkmark	
		Inbd TF			10\%	
		Inbd BF	10\%		\checkmark	
		Inbd Web			\checkmark	
4	3	Diagonal (Lt)		50% SL at 10% of bottom lacing bars		
		Outbd TF			\checkmark	
		Outbd BF			\checkmark	
		Outbd Web			\checkmark	
		Inbd TF			\checkmark	
		Inbd BF	5\%		\checkmark	
		Inbd Web			\checkmark	
		Bottom Lacing				$\begin{aligned} & 100 \% \text { SL of } 20 \%, 40 \% \text { SL } \\ & \text { average } \end{aligned}$
		Top Lacing				5\% SL average
4	3	Diagonal (Rt)				
		Outbd TF	5\%		\checkmark	
		Outbd BF	20\%	at an isolated location	30\%	
		Outbd Web	5\%		\checkmark	
		Inbd TF	5\%		\checkmark	
		Inbd BF			5\%	
		Inbd Web			\checkmark	
		Bottom Lacing				$\begin{aligned} & 100 \% \text { SL of } 40 \%, 50 \% \text { SL } \\ & \text { average } \end{aligned}$
		Top Lacing				$\begin{aligned} & 60 \% \text { SL of } 20 \%, 20 \% \text { SL } \\ & \text { average } \\ & \hline \end{aligned}$
4	L3L-U3L	Hanger (Lt)				
		Outbd FI (SF side)			\checkmark	

For abbreviations, see Legend on First page of Appendix 2.
For guide to numbering system and directional

Salinas River Bridge

 Updated Inspection ReportTABLE 1
TRUSS MEMBERS

SPAN	PANEL OR PANEL PT.	COMPONENT	$\begin{gathered} 2001 \\ \text { SECTION } \\ \text { LOSS } \\ \hline \end{gathered}$	2001 COMMENT	$\begin{array}{\|c\|} \hline 2010 \\ \text { SECTION } \\ \text { LOSS } \\ \hline \end{array}$	2010 COMMENT
		Outbd FI (Mty side)			\checkmark	
		Inbd FI (SF side)			\checkmark	
		Inbd FI (Mty side)			\checkmark	
		Web			\checkmark	
4	L3R-U3R	Hanger (Rt)				
		Outbd FI (SF side)			\checkmark	Gusset Outbd 15\% SL
		Outbd FI (Mty side)			\checkmark	Gusset Outbd 30\% SL
		Inbd FI (SF side)			\checkmark	
		Inbd FI (Mty side)			15\%	@ bottom
		Web			\checkmark	
4	4	Bottom Chord (Lt)				
		Outbd FI Plate			\checkmark	
		Outbd FI (top L)	10\%		\checkmark	
		Outbd FI (btm L)			\checkmark	
		Inbd FI Plate	10\%		\checkmark	
		Inbd FI (top L)			10\%	
		Inbd Fl (btm L)			\checkmark	
		Web	20\%	in horiz leg of both top angles and in section of web plate btw angles	\checkmark	
4	4	Bottom Chord (Rt)		minor spreading at Inbd and Outbd flange angles and cover plates due to crevice corrosion		
		Outbd FI Plate			\checkmark	
		Outbd FI (top L)	10\%		\checkmark	
		Outbd FI (btm L)			\checkmark	
		Inbd FI Plate			5\%	
		Inbd FI (top L)	10\%		\checkmark	
		Inbd FI (btm L)			\checkmark	
		Web	10\%	in horiz leg of both top angles and in section of web plate btw angles	15\%	
4	4	Top Chord (Lt)				
		Cover Plate	40\%		70\%	Many holes, especially at U4 end
		Outbd TF			\checkmark	
		Outbd BF			\checkmark	
		Outbd Web			\checkmark	
		Inbd TF	5\%		\checkmark	
		Inbd BF	20\%		\checkmark	
		Inbd Web			5\%	
4	4	Top Chord (Rt)				

For abbreviations, see Legend on First page of Appendix 2.
For guide to numbering system and directional

Salinas River Bridge Updated Inspection Report

TABLE 1
TRUSS MEMBERS

SPAN	PANEL OR PANEL PT.	COMPONENT	$\begin{array}{\|c\|} \hline 2001 \\ \text { SECTION } \\ \text { LOSS } \\ \hline \end{array}$	2001 COMMENT	$\begin{array}{\|c\|} \hline 2010 \\ \text { SECTION } \\ \text { LOSS } \\ \hline \end{array}$	2010 COMMENT
		Cover Plate	50\%	in 2 ft . length of member adjacent to lateral connection plate at U3R	70\%	Many big holes throughout
			50\%	in 2 ft . length of member adjacent to lateral connection plate at U4R	70\%	
			15\%	throughout length of member, except as notes above	50\%	
		Outbd TF			\checkmark	
		Outbd BF	10\%		15\%	
		Outbd Web			\checkmark	
		Inbd TF			5\%	
		Inbd BF			\checkmark	
		Inbd Web			\checkmark	
4	4	Diagonal (Lt)				
		Outbd TF	25\%	along edge of lacing bar	\checkmark	
		Outbd BF			\checkmark	
		Outbd Web			\checkmark	
		Inbd TF	25\%	along edge of lacing bar	\checkmark	
		Inbd BF	25\%		30\%	
		Inbd Web			5\%	
4	4	Diagonal (Rt)				
		Outbd TF	15\%		20\%	
		Outbd BF	20\%		30\%	
		Outbd Web	10\%		\checkmark	
		Inbd TF	25\%		30\%	
		Inbd BF	15\%		\checkmark	
		Inbd Web	15\%		\checkmark	
4	L4L-U4L	Post (Lt)				
		Outbd FI (SF side)	30\%	along top of gusset plate at L4L	35\%	Gusset 30\% SL with many holes Inbd and Outbd
		Outbd FI (Mty side)	15\%	along top of gusset plate at L4L	35\%	
		Inbd FI (SF side)			\checkmark	
		Inbd FI (Mty side)			\checkmark	
		Web	5\%		\checkmark	
4	L4R-U4R	Post (Rt)				
		Outbd Fl (SF side)			\checkmark	
		Outbd FI (Mty side)	5\%	along top of gusset plate at L4R	\checkmark	With 2 holes, gusset Inbd 25\% SL, Outbd 5\% SL

For abbreviations, see Legend on First page of Appendix 2.
For guide to numbering system and directional designations, see Appendix 1.

Salinas River Bridge Updated Inspection Report

TABLE 1
TRUSS MEMBERS

SPAN	PANEL OR PANEL PT.	COMPONENT	$\begin{array}{\|c\|} \hline 2001 \\ \text { SECTION } \\ \text { LOSS } \\ \hline \end{array}$	2001 COMMENT	$\begin{array}{\|c\|} \hline 2010 \\ \text { SECTION } \\ \text { LOSS } \\ \hline \end{array}$	2010 COMMENT
		Inbd Fl (SF side)			\checkmark	
		Inbd FI (Mty side)			5\%	Top of L4R gusset
		Web			\checkmark	
4	5	Bottom Chord (Lt)				
		Outbd FI (top)	10\%		\checkmark	
		Outbd Fl (btm)			\checkmark	
		Inbd FI (top)	10\%		\checkmark	
		Inbd FI (btm)			5\%	
		Web	15\%	in horiz leg of both top angles	\checkmark	
				25\% SL at all lacing bars	40\%	
4	5	Bottom Chord (Rt)				
		Outbd FI (top)	5\%		\checkmark	
			10\%	at L4R \& L5R (between gusset plates)	\checkmark	
		Outbd Fl (btm)			\checkmark	
		Inbd FI (top)	5\%		\checkmark	
			10\%	at L4R \& L5R (between gusset plates)	\checkmark	
		Inbd FI (btm)			\checkmark	
		Web	5\%	$\begin{aligned} & \text { in horiz leg of both top } \\ & \text { angles } \\ & \hline \end{aligned}$	\checkmark	Lacing 80\% SL of 20\%, 30% average
4	5	Top Chord (Lt)				
		Cover Plate	40\%		\checkmark	No holes
		Outbd TF			\checkmark	
		Outbd BF			\checkmark	
		Outbd Web			\checkmark	
		Inbd TF			5\%	
		Inbd BF	10\%		\checkmark	
		Inbd Web			\checkmark	
4	5	Top Chord (Rt)				
		Cover Plate	50\%	in 1 ft . length of member adjacent to lateral connection plate at U4R	60\%	Hole
			15\%	throughout length of member, except as noted above	20\%	No holes in rest
		Outbd TF			\checkmark	
		Outbd BF	15\%		20\%	
		Outbd Web	5\%	in vertical leg of bottom angle (only)	\checkmark	
		Inbd TF			5\%	

For abbreviations, see Legend on First page of Appendix 2.
For guide to numbering system and directional

Salinas River Bridge

 Updated Inspection ReportTABLE 1
TRUSS MEMBERS

SPAN	PANEL OR PANEL PT.	COMPONENT	$\begin{array}{\|c\|} \hline 2001 \\ \text { SECTION } \\ \text { LOSS } \\ \hline \end{array}$	2001 COMMENT	$\begin{array}{\|c\|} \hline 2010 \\ \text { SECTION } \\ \text { LOSS } \\ \hline \end{array}$	2010 COMMENT
		Inbd BF	5\%		\checkmark	
		Inbd Web	5\%	in vertical leg of bottom angle (only)	\checkmark	
4	5	Diagonal (Lt)		75% SL of Inbd and Outbd gusset plates at L4L in area located between the hanger and the diagonal of Panel 5.	\checkmark	
		Outbd Fl (top)			\checkmark	30\% SL @ top L4 gusset
		Outbd FI (btm)	5\%		\checkmark	30\% SL @ top L4 gusset
		Inbd FI (top)				5\% SL @ top L4 gusset
		Inbd Fl (btm)				5\% SL @ top L4 gusset
		Web			5\%	
4	5	Diagonal (Rt)				
		Outbd FI (top)			\checkmark	
		Outbd Fl (btm)			\checkmark	
		Inbd FI (top)	15\%	along gusset plate at L 4 R	30\%	
		Inbd FI (btm)	10\%	along gusset plate at L4R	20\%	
		Web			10\%	
4	L5L-U5L	Hanger (Lt)				
		Outbd FI (SF side)	20\%	along top of gusset plate at L5L	30\%	30% SL along top of gusset plate at L 5 L
		Outbd FI (Mty side)			\checkmark	10% SL along top of gusset plate at L 5 L , Gusset Inbd 20\% SL, Outbd 5\% SL
		Inbd Fl (SF side)			\checkmark	5\% SL along top of gusset plate at L5L
		Inbd FI (Mty side)			\checkmark	5\% SL along top of gusset plate at L5L
		Web			5\%	
4	L5R-U5R	Hanger (Rt)				
		Outbd FI (SF side)			\checkmark	
		Outbd FI (Mty side)			\checkmark	$\begin{aligned} & \text { Gusset Inbd 10\% SL, } \\ & \text { Outbd 5\% SL } \end{aligned}$
		Inbd FI (SF side)			\checkmark	
		Inbd FI (Mty side)			\checkmark	
		Web			5\%	
4	6	Bottom Chord (Lt)				

For abbreviations, see Legend on First page of Appendix 2.
For guide to numbering system and directional

Salinas River Bridge

 Updated Inspection ReportTABLE 1
TRUSS MEMBERS

SPAN	PANEL OR PANEL PT.	COMPONENT	$\begin{gathered} 2001 \\ \text { SECTION } \\ \text { LOSS } \\ \hline \end{gathered}$	2001 COMMENT	$\begin{gathered} 2010 \\ \text { SECTION } \\ \text { LOSS } \\ \hline \end{gathered}$	2010 COMMENT
		Outbd FI (top)	5\%		\checkmark	
		Outbd FI (btm)	5\%		\checkmark	
		Inbd FI (top)	5\%		\checkmark	
		Inbd FI (btm)			5\%	
		Web		25% SL at 95% of lacing bars		70\% SL of 50\%
4	6	Bottom Chord (Rt)				
		Outbd FI (top)	5\%		10\%	
			10\%	at L5R (between gusset plates)	\checkmark	Both ends
		Outbd FI (btm)			\checkmark	
		Inbd FI (top)	5\%		\checkmark	
			10\%	at L5R (between gusset plates)	\checkmark	
		Inbd FI (btm)			\checkmark	
		Web	10\%	in horiz leg of Outbd top angle	\checkmark	$\begin{array}{\|l\|} \hline \text { Lacing } 100 \% \text { SL of } 10 \%, \\ 25 \% \text { SL or rest } \\ \hline \end{array}$
			5\%	in horiz leg of Inbd top angle	\checkmark	
4	6	End Post (Lt)				
		Cover Plate			5\%	
		Outbd TF			\checkmark	
		Outbd BF			5\%	
		Outbd Web			\checkmark	
		Inbd TF	5\%		\checkmark	
		Inbd BF			5\%	
		Inbd Web			5\%	
		Bottom Lacing				20\% SL of 30\%
4	6	End Post (Rt)		80\% SL of outside pin plate and 30% SL of gusset plate, at the Outbd side of the bearing pin at L6R (no SL at inside pin plate)		
		Cover Plate			5\%	
		Outbd TF			\checkmark	
		Outbd BF	10\%		\checkmark	
		Outbd Web			\checkmark	
		Inbd TF			5\%	
		Inbd BF			5\%	
		Inbd Web			5\%	
		Bottom Lacing				20\% SL of 20\%

For abbreviations, see Legend on First page of Appendix 2.

Salinas River Bridge Updated Inspection Report

TABLE 1
TRUSS MEMBERS

SPAN	PANEL OR PANEL PT.	COMPONENT	$\begin{gathered} 2001 \\ \text { SECTION } \\ \text { LOSS } \end{gathered}$	2001 COMMENT	$\begin{array}{\|c\|} \hline 2010 \\ \text { SECTION } \\ \text { LOSS } \\ \hline \end{array}$	2010 COMMENT
5	1	End Post (Lt)		20\% SL at all bottom lacing bars (1 lacing bar broken)		
		Cover Plate			5\%	
		Outbd TF			\checkmark	
		Outbd BF			5\%	
		Outbd Web			\checkmark	
		Inbd TF			5\%	
		Inbd BF			5\%	
		Inbd Web			5\%	
		Bottom Lacing				100% SL of $20 \%, 60 \%$ SL of $30 \%, 40 \% \mathrm{SL}$ of rest
5	1	End Post (Rt)		100% SL at four bottom lacing bars at top of end post		
		Cover Plate	20\%	at isolated location along edge of bottom horiz angle of portal		5\% SL general
		Outbd TF			\checkmark	
		Outbd BF			\checkmark	
		Outbd Web			\checkmark	
		Inbd TF			\checkmark	
		Inbd BF			\checkmark	
		Inbd Web			\checkmark	
		Bottom Lacing				100\% SL of 60\%
5	1	Bottom Chord (Lt)				
		Outbd FI (top)	15\%		\checkmark	
		Outbd FI (btm)			5\%	
		Inbd FI (top)	10\%		15\%	
		Inbd Fl (btm)			5\%	
		Web	10\%	in horiz leg of both top angles	\checkmark	
				50\% SL at all lacing bars		$\begin{aligned} & \text { 100\% SL of } 8(40 \%), 30 \% \\ & \text { SL rest } \end{aligned}$
5	1	Bottom Chord (Rt)				
		Outbd FI (top)	5\%		\checkmark	
		Outbd FI (btm)			\checkmark	
		Inbd FI (top)	5\%		10\%	
		Inbd Fl (btm)			\checkmark	
		Web	10\%	in horiz leg of top Inbd angle		Lacing 40\% SL average

For abbreviations, see Legend on First page of Appendix 2.
For guide to numbering system and directional

Salinas River Bridge Updated Inspection Report

TABLE 1
TRUSS MEMBERS

SPAN	PANEL OR PANEL PT	COMPONENT	$\begin{gathered} 2001 \\ \text { SECTION } \\ \text { LOSS } \\ \hline \end{gathered}$	2001 COMMENT	$\begin{gathered} 2010 \\ \text { SECTION } \\ \text { LOSS } \\ \hline \end{gathered}$	2010 COMMENT
			5\%	in horiz leg of top Outbd angle		
5	L1L-U1L	Hanger (Lt)				
		Outbd Fl (SF side)			\checkmark	
		Outbd FI (Mty side)			5\%	Outbd gusset 10\% SL, Inbd gusset 5\% SL
		Inbd FI (SF side)			\checkmark	
		Inbd FI (Mty side)			\checkmark	
		Web			\checkmark	
5	L1R-U1R	Hanger (Rt)				
		Outbd FI (SF side)			\checkmark	Outbd gusset 10\% SL, Inbd gusset SL 15\%
		Outbd FI (Mty side)			\checkmark	
		Inbd FI (SF side)	5\%	along top of gusset plate at L1R	\checkmark	
		Inbd FI (Mty side)	5\%	along top of gusset plate at L1R	\checkmark	
		Web			\checkmark	
5	2	Bottom Chord (Lt)				
		Outbd FI (top)	5\%		10\%	
		Outbd FI (btm)			\checkmark	
		Inbd FI (top)	5\%		\checkmark	
		Inbd Fl (btm)			\checkmark	
		Web	5\%	in horiz leg of top Outbd angle	\checkmark	
				50\% SL at all lacing bars	\checkmark	
5	2	Bottom Chord (Rt)				
		Outbd FI (top)	5\%		\checkmark	
		Outbd Fl (btm)			\checkmark	
		Inbd FI (top)	5\%		10\%	
		Inbd Fl (btm)			\checkmark	
		Web	10\%	in horiz leg of both top angles	\checkmark	$\begin{aligned} & \text { 60\% SL of } 4,40 \% \text { SL } \\ & \text { average } \end{aligned}$
5	2	Top Chord (Lt)				
		Cover Plate	40\%		\checkmark	No holes
		Outbd TF			\checkmark	
		Outbd BF			30\%	
		Outbd Web			\checkmark	
		Inbd TF			10\%	
		Inbd BF			10\%	
		Inbd Web	15\%		\checkmark	
5	2	Top Chord (Rt)				

For abbreviations, see Legend on First page of Appendix 2.

Salinas River Bridge Updated Inspection Report

TABLE 1
TRUSS MEMBERS

SPAN	PANEL OR PANEL PT.	COMPONENT	$\begin{array}{\|c\|} \hline 2001 \\ \text { SECTION } \\ \text { LOSS } \\ \hline \end{array}$	2001 COMMENT	$\begin{gathered} 2010 \\ \text { SECTION } \\ \text { LOSS } \end{gathered}$	2010 COMMENT
		Cover Plate	20\%		30\%	No holes
		Outbd TF			\checkmark	
		Outbd BF	10\%		30\%	
		Outbd Web	10\%	in vertical leg of bottom angle (only)	\checkmark	
		Inbd TF			10\%	
		Inbd BF	5\%		\checkmark	
		Inbd Web			5\%	
5	2	Diagonal (Lt)				
		Outbd FI (top)	15\%		\checkmark	
		Outbd Fl (btm)			\checkmark	
		Inbd FI (top)			\checkmark	
		Inbd FI (btm)			\checkmark	
		Web	25\%	in horiz leg of Outbd top angle and in section of web between angles	\checkmark	
5	2	Diagonal (Rt)				
		Outbd FI (top)			5\%	
		Outbd FI (btm)			\checkmark	
		Inbd FI (top)	15\%	along edge of gusset plate at L2R	25\%	
		Inbd Fl (btm)	5\%	along edge of gusset plate at L2R	10\%	
		Web	5\%	in horiz leg of Outbd top angle and in section of web plate between angles	10\%	
5	L2L-U2L	Post (Lt)				
		Outbd FI (SF side)			\checkmark	$\begin{aligned} & \text { Bottom gusset Outbd 5\% } \\ & \text { SL, Inbd 10\% SL } \end{aligned}$
		Outbd FI (Mty side)			\checkmark	
		Inbd FI (SF side)			\checkmark	
		Inbd FI (Mty side)			\checkmark	
		Web			\checkmark	
5	L2R-U2R	Post (Rt)				
		Outbd FI (SF side)			\checkmark	
		Outbd FI (Mty side)			\checkmark	
		Inbd FI (SF side)			\checkmark	Bottom gusset Outbd 10\% SL, Inbd 5\% SL
		Inbd FI (Mty side)			\checkmark	
		Web			\checkmark	
5	3	Bottom Chord (Lt)				
		Outbd FI Plate			\checkmark	

For abbreviations, see Legend on First page of Appendix 2.
For guide to numbering system and directional

Salinas River Bridge

 Updated Inspection ReportTABLE 1
TRUSS MEMBERS

SPAN	PANEL OR PANEL PT.	COMPONENT	$\begin{array}{\|c\|} \hline 2001 \\ \text { SECTION } \\ \text { LOSS } \\ \hline \end{array}$	2001 COMMENT	$\begin{gathered} 2010 \\ \text { SECTION } \\ \text { LOSS } \\ \hline \end{gathered}$	2010 COMMENT
		Outbd Fl (top L)	5\%		15\%	
		Outbd FI (btm L)			\checkmark	
		Inbd FI Plate			\checkmark	
		Inbd FI (top L)			5\%	
		Inbd FI (btm L)			\checkmark	
		Web	10\%	in horiz leg of both to angles and in section of web plate btw angles	\checkmark	
5	3	Bottom Chord (Rt)		minor spreading at Inbd and Outbd flange plates and angles due to crevice corrosion	\checkmark	
		Outbd FI Plate			\checkmark	
		Outbd FI (top L)	5\%		10\%	
		Outbd FI (btm L)			\checkmark	
		Inbd FI Plate			\checkmark	Some pack rust
		Inbd FI (top L)	5\%		10\%	
		Inbd Fl (btm L)			\checkmark	
		Web	10\%	in horiz leg of both top angles and in section of web plate btw angles	\checkmark	
5	3	Top Chord (Lt)				
		Cover Plate	75\%		80\%	Many holes
		Outbd TF			\checkmark	
		Outbd BF			20\%	
		Outbd Web			\checkmark	
		Inbd TF	5\%		10\%	
		Inbd BF	20\%		\checkmark	
		Inbd Web			\checkmark	
5	3	Top Chord (Rt)				
		Cover Plate	50\%	near lateral connection plate at U2R	75-80\%	Many big holes
			30\%	throughout length of member, except as noted above	50\%	
		Outbd TF			\checkmark	
		Outbd BF	10\%		25\%	
		Outbd Web	5\%	in vertical leg of bottom angle (only)	\checkmark	
		Inbd TF			5\%	
		Inbd BF	5\%		10\%	
		Inbd Web			5\%	
5	3	Diagonal (Lt)				

For abbreviations, see Legend on First page of Appendix 2.

Salinas River Bridge Updated Inspection Report

TABLE 1
TRUSS MEMBERS

SPAN	PANEL OR PANEL PT.	COMPONENT	$\begin{array}{\|c\|} \hline 2001 \\ \text { SECTION } \\ \text { LOSS } \\ \hline \end{array}$	2001 COMMENT	$\begin{array}{\|c\|} \hline 2010 \\ \text { SECTION } \\ \text { LOSS } \\ \hline \end{array}$	2010 COMMENT
		Outbd TF			\checkmark	
		Outbd BF			\checkmark	
		Outbd Web			\checkmark	
		Inbd TF			5\%	
		Inbd BF			5\%	
		Inbd Web			\checkmark	
		Bottom Lacing				$\begin{aligned} & 100 \% \text { SL of } 10 \%, 30 \% \text { SL } \\ & \text { average } \end{aligned}$
		Top Lacing				10\% SL average
5	3	Diagonal (Rt)		100% SL at five bottom lacing bars		
		Outbd TF	5\%		\checkmark	
		Outbd BF	5\%		\checkmark	
		Outbd Web	2\%		\checkmark	
		Inbd TF	5\%		\checkmark	
		Inbd BF			10\%	
		Inbd Web			5\%	
		Bottom Lacing				100\% SL of 70\%
		Top Lacing				100% SL of $3,50 \%$ SL of 20%, 20\% SL average
5	L3L-U3L	Hanger (Lt)		25\% SL of Inbd gusset plate at L3L, above flbm		
		Outbd FI (SF side)			\checkmark	Gusset Inbd 10\% SL , Outbd 5\% SL
		Outbd FI (Mty side)			\checkmark	
		Inbd FI (SF side)			\checkmark	
		Inbd FI (Mty side)			\checkmark	
		Web			5\%	
5	L3R-U3R	Hanger (Rt)				
		Outbd FI (SF side)			\checkmark	$\begin{array}{\|l} \hline \text { Gusset Inbd 25\% SL, } \\ \text { Outbd } 10 \% \text { SL } \\ \hline \end{array}$
		Outbd FI (Mty side)			\checkmark	
		Inbd FI (SF side)			\checkmark	
		Inbd FI (Mty side)			\checkmark	
		Web			5\%	
5	4	Bottom Chord (Lt)				
		Outbd FI Plate			\checkmark	
		Outbd FI (top L)	20\%		\checkmark	
		Outbd FI (btm L)			\checkmark	
		Inbd FI Plate			\checkmark	
		Inbd FI (top L)	15\%		\checkmark	
		Inbd FI (btm L)			\checkmark	

For abbreviations, see Legend on First page of Appendix 2.
For guide to numbering system and directional

Salinas River Bridge Updated Inspection Report

TABLE 1
TRUSS MEMBERS

SPAN	PANEL OR PANEL PT.	COMPONENT	$\begin{gathered} 2001 \\ \text { SECTION } \\ \text { LOSS } \\ \hline \end{gathered}$	2001 COMMENT	$\begin{array}{\|c\|} \hline 2010 \\ \text { SECTION } \\ \text { LOSS } \\ \hline \end{array}$	2010 COMMENT
		Web	15\%	in horiz leg of both top angles and in section of web plate btw angles	20\%	
5	4	Bottom Chord (Rt)		minor spreading at Inbd and Outbd flange plates and angles due to crevice corrosion	\checkmark	
		Outbd FI Plate			\checkmark	
		Outbd FI (top L)	5\%		10\%	
		Outbd Fl (btm L)			\checkmark	
		Inbd FI Plate			\checkmark	
		Inbd FI (top L)	5\%		10\%	
		Inbd FI (btm L)			\checkmark	
		Web	10\%	in horiz leg of both top angles and in section of web plate btw angles	\checkmark	
5	4	Top Chord (Lt)				
		Cover Plate	50\%		\checkmark	No holes
		Outbd TF			\checkmark	
		Outbd BF			10\%	
		Outbd Web			\checkmark	
		Inbd TF	5\%		\checkmark	
		Inbd BF	15\%		20\%	
		Inbd Web			\checkmark	
5	4	Top Chord (Rt)				
		Cover Plate	40\%	near lateral connection plate at U3R	50\%	Holes at both ends
			20\%	throughout length of member, except as notes above	30\%	
		Outbd TF			\checkmark	
		Outbd BF	10\%		20\%	
		Outbd Web	5\%	in vertical leg of bottom angle (only)	\checkmark	
		Inbd TF			5\%	
		Inbd BF			\checkmark	
		Inbd Web			\checkmark	
5	4	Diagonal (Lt)		90% SL at 10% of top lacing bars		
		Outbd TF			\checkmark	
		Outbd BF			5\%	
		Outbd Web			\checkmark	
		Inbd TF			5\%	

For abbreviations, see Legend on First page of Appendix 2.
For guide to numbering system and directional

Salinas River Bridge Updated Inspection Report

TABLE 1
TRUSS MEMBERS

SPAN	PANEL OR PANEL PT.	COMPONENT	$\begin{array}{\|c\|} \hline 2001 \\ \text { SECTION } \\ \text { LOSS } \end{array}$	2001 COMMENT	$\begin{gathered} 2010 \\ \text { SECTION } \\ \text { LOSS } \end{gathered}$	2010 COMMENT
		Inbd BF	40\%		\checkmark	
		Inbd Web	10\%		\checkmark	
		Bottom Lacing				40\% SL average
		Top Lacing				$\begin{aligned} & 100 \% \text { SL of } 30 \%, 30 \% \text { SL } \\ & \text { average } \end{aligned}$
5	4	Diagonal (Rt)		100% SL at one bottom lacing bar		
				100% SL at three top		
		Outbd TF	15\%		20\%	at lacing
		Outbd BF	10\%		\checkmark	
		Outbd Web	2\%		\checkmark	
		Inbd TF	15\%		20\%	
		Inbd BF			\checkmark	
		Inbd Web			\checkmark	
		Bottom Lacing				$\begin{aligned} & 100 \% \text { SL of } 40 \%, 50 \% \text { SL } \\ & \text { average } \end{aligned}$
		Top Lacing				100% SL of $30 \%, 50 \%$ SL average
5	L4L-U4L	Post (Lt)				
		Outbd FI (SF side)	10\%	along top of gusset plate at L4L	\checkmark	Bottom gusset Outbd 10\% SL, Inbd 20\% SL
		Outbd FI (Mty side)	10\%	along top of gusset plate at L4L	\checkmark	
		Inbd FI (SF side)			\checkmark	5\% SL at L4L gusset
		Inbd FI (Mty side)			\checkmark	5\% SL at L4L gusset
		Web			5\%	
5	L4R-U4R	Post (Rt)				
		Outbd Fl (SF side)			\checkmark	
		Outbd Fl (Mty side)			\checkmark	Bottom gusset Inbd 15\% SL
		Inbd FI (SF side)			\checkmark	
		Inbd Fl (Mty side)	5\%	along top of gusset plate at L4R	\checkmark	
		Web			5\%	
5	5	Bottom Chord (Lt)				
		Outbd FI (top)			5\%	
		Outbd FI (btm)			5\%	
		Inbd FI (top)			5\%	
		Inbd FI (btm)			5\%	
		Web	20\%	in horiz leg of top Inbd angle	\checkmark	

For abbreviations, see Legend on First page of Appendix 2.
For guide to numbering system and directional

Salinas River Bridge Updated Inspection Report

TABLE 1
TRUSS MEMBERS

SPAN	PANEL OR PANEL PT.	COMPONENT	$\begin{gathered} 2001 \\ \text { SECTION } \\ \text { LOSS } \\ \hline \end{gathered}$	2001 COMMENT	$\begin{array}{\|c\|} \hline 2010 \\ \text { SECTION } \\ \text { LOSS } \\ \hline \end{array}$	2010 COMMENT
				30% SL at all lacing bars	\checkmark	
5	5	Bottom Chord (Rt)				
		Outbd FI (top)	5\%		10\%	
		Outbd Fl (btm)			\checkmark	
		Inbd FI (top)	5\%		10\%	
		Inbd FI (btm)			\checkmark	
		Web	10\%	in horiz leg of both angles	\checkmark	Lacing 50\% SL average
5	5	Top Chord (Lt)				
		Cover Plate	50\%		\checkmark	No holes
		Outbd TF			\checkmark	
		Outbd BF			\checkmark	
		Outbd Web			\checkmark	
		Inbd TF			\checkmark	
		Inbd BF	10\%		\checkmark	
		Inbd Web			\checkmark	
5	5	Top Chord (Rt)				
		Cover Plate	50\%	near lateral connection plate at U4R	\checkmark	No holes
			25\%	throughout length of member, except as noted above	\checkmark	
		Outbd TF			\checkmark	
		Outbd BF	10\%		\checkmark	
		Outbd Web	10\%	in vertical leg bottom angle (only)	\checkmark	
		Inbd TF			10\%	
		Inbd BF			5\%	
		Inbd Web			5\%	
5	5	Diagonal (Lt)				
		Outbd Fl (top)			\checkmark	20\% SL at top gusset L5
		Outbd FI (btm)			\checkmark	
		Inbd FI (top)	30\%	along edge of gusset plate	\checkmark	
		Inbd FI (btm)	20\%	along edge of gusset plate at L4L	\checkmark	
		Web			5\%	
5	5	Diagonal (Rt)				
		Outbd FI (top)	10\%	along edge of gusset plate at L4R	30\%	

For abbreviations, see Legend on First page of Appendix 2.
For guide to numbering system and directional

Salinas River Bridge Updated Inspection Report

TABLE 1
TRUSS MEMBERS

SPAN	PANEL OR PANEL PT.	COMPONENT	$\begin{array}{\|c\|} \hline 2001 \\ \text { SECTION } \\ \text { LOSS } \\ \hline \end{array}$	2001 COMMENT	$\begin{array}{\|c\|} \hline 2010 \\ \text { SECTION } \\ \text { LOSS } \\ \hline \end{array}$	2010 COMMENT
		Outbd Fl (btm)	5\%	along edge of gusset plate at L4R	10\%	
		Inbd Fl (top)	10\%	along edge of gusset plate at L4R	20\%	
		Inbd Fl (btm)	5\%	along edge of gusset plate at L4R	15\%	
		Web			\checkmark	
5	L5L-U5L	Hanger (Lt)		25\% SL of Inbd gusset plate at L5L, in area above floorbeam		
		Outbd FI (SF side)			\checkmark	
		Outbd FI (Mty side)			\checkmark	
		Inbd FI (SF side)			\checkmark	Gusset Inbd 15\% SL, Outbd 5\% SL
		Inbd FI (Mty side)			\checkmark	
		Web			\checkmark	
5	L5R-U5R	Hanger (Rt)				
		Outbd FI (SF side)			\checkmark	
		Outbd FI (Mty side)			\checkmark	
		Inbd Fl (SF side)	5\%	along top of gusset plate at L5R	\checkmark	Gusset Inbd 25\% SL, Outbd 5\% SL
		Inbd Fl (Mty side)	5\%	along top of gusset plate at L5R	10\%	
		Web			\checkmark	
5	6	Bottom Chord (Lt)				
		Outbd FI (top)	5\%		\checkmark	
		Outbd FI (btm)			5\%	
		Inbd FI (top)			5\%	
		Inbd FI (btm)			5\%	
		Web	10\%	in horiz leg of both top angles	\checkmark	
				10\% SL at all lacing bars	20\%	
5	6	Bottom Chord (Rt)				
		Outbd FI (top)	5\%		\checkmark	
		Outbd Fl (btm)			\checkmark	
		Inbd FI (top)	5\%		\checkmark	
		Inbd FI (btm)			\checkmark	
		Web	10\%	in horiz leg of both top angles		Lacing 40\% SL average
5	6	End Post (Lt)				

For abbreviations, see Legend on First page of Appendix 2.

Salinas River Bridge

Updated Inspection Report
TABLE 1
TRUSS MEMBERS

SPAN	PANEL OR PANEL PT.	COMPONENT	$\begin{gathered} 2001 \\ \text { SECTION } \\ \text { LOSS } \\ \hline \end{gathered}$	2001 COMMENT	$\begin{gathered} 2010 \\ \text { SECTION } \\ \text { LOSS } \\ \hline \end{gathered}$	2010 COMMENT
		Cover Plate	20\%	at isolated location along edge of bottom horiz angle of portal frame	\checkmark	
		Outbd TF			\checkmark	
		Outbd BF			\checkmark	
		Outbd Web			\checkmark	
		Inbd TF	5\%		\checkmark	
		Inbd BF	10\%		\checkmark	
		Inbd Web			\checkmark	
		Bottom Lacing				20\% SL average
5	6	End Post (Rt)				
		Cover Plate	25\%	at isolated location along edge of bottom horiz angle of portal frame	\checkmark	
		Outbd TF			\checkmark	
		Outbd BF			\checkmark	
		Outbd Web			\checkmark	
		Inbd TF			\checkmark	
		Inbd BF			\checkmark	
		Inbd Web			\checkmark	
		Bottom Lacing			\checkmark	20\% SL average

Appendix 2

Salinas River Bridge
 Updated Inspection Report

TABLE 2
TRUSS BRACING

SPAN	MEMBER NUMBER	COMPONENT	$\begin{array}{\|c\|} \hline 2001 \\ \text { SECTION } \\ \text { LOSS } \\ \hline \end{array}$	2001 COMMENT	$\begin{gathered} 2010 \\ \text { SECTION } \\ \text { LOSS } \\ \hline \end{gathered}$	2010 COMMENT
1	LOL-L1R	Bottom Lateral			10\%	30% SL of L0 \& L1 gusset
1	LOR-L1L	Bottom Lateral			10\%	30% SL of L0 \& L1 gusset
1	U1L-U1R	Portal Frame	50\%	in bottom flange angles of top strut, at center-line of bridge	\checkmark	50% SL on top angles 3' from each end, 80% SL of both diagonal panels
1	L1L-L2R	Bottom Lateral	25\%	near L1L	30\%	$\begin{aligned} & 50 \% \text { SL near L2R, L2R } \\ & \text { gusset } 30 \% \text { SL } \end{aligned}$
1	L1R-L2L	Bottom Lateral	50\%	near L1R	\checkmark	20\% SL near midpoint and near L2L, L2R gusset 40\% SL
1	U1L-U2R	Top Lateral			\checkmark	
1	U1R-U2L	Top Lateral			\checkmark	
1	U2	Top Strut			\checkmark	
1	U2L	Knee Brace			\checkmark	
1	U2R	Knee Brace			\checkmark	
1	L2L-L3R	Bottom Lateral	50\%	near L2L	\checkmark	
			50\%	near L3R	\checkmark	50\% SL of gusset
1	L2R-L3L	Bottom Lateral	30\%	near L3L	50\%	near L2, 50\% SL of gusset
1	U2L-U3R	Top Lateral			\checkmark	
1	U2R-U3L	Top Lateral			\checkmark	
1	U3	Top Strut			\checkmark	
1	U3L	Knee Brace			\checkmark	
1	U3R	Knee Brace			\checkmark	
1	L3L-L4R	Bottom Lateral	50\%	near L3L	60\%	50\% SL average, 90\% SL of Lt L3 gusset, 70% SL of Rt L3 gusset
			50\%	near L4R	\checkmark	50\% SL gusset
1	L3R-L4L	Bottom Lateral	50\%	near L3R	70\%	50\% SL average
			50\%	near L4L	\checkmark	80\% SL gusset
1	U3L-U4R	Top Lateral			\checkmark	
1	U3R-U4L	Top Lateral			\checkmark	
1	U4	Top Strut			\checkmark	
1	U4L	Knee Brace			\checkmark	
1	U4R	Knee Brace			\checkmark	
1	L4L-L5R	Bottom Lateral	50\%	near L5R	60\%	50\% SL gusset
			40\%	near L4L	50\%	Through midpoint
1	L4R-L5L	Bottom Lateral	50\%	near L4R	60\%	Through midpoint
1	U4L-U5R	Top Lateral			\checkmark	10\% SL L4R gusset
1	U4R-U5L	Top Lateral			\checkmark	30\% SL gusset

For abbreviations, see Legend on First page of Appendix 2.
For guide to numbering system and directional

Salinas River Bridge

Updated Inspection Report
TABLE 2
TRUSS BRACING

SPAN	MEMBER NUMBER	COMPONENT	$\begin{array}{\|c\|} \hline 2001 \\ \text { SECTION } \\ \text { LOSS } \\ \hline \end{array}$	2001 COMMENT	$\begin{array}{\|c\|} \hline 2010 \\ \text { SECTION } \\ \text { LOSS } \\ \hline \end{array}$	2010 COMMENT
1	L5L-L6R	Bottom Lateral			15\%	near L5L \& L6R, 70\% SL of gusset
1	L5R-L6L	Bottom Lateral	50\%	near L5R	5\%	near L6L, 60-80\% SL of gusset
1	U5L-U5R	Portal Frame	50\%	in bottom flange angles of top strut, at center-line of bridge	\checkmark	50\% SL on top angles 3' from each end, 80% SL of both diagonal panels
1		LO Stringer Strut			0-15\%	15% SL at Rt, 0\% SL at Lt,30\% SL Rt. Gusset, 80% SL at Lt. gusset
2	LOL-L1R	Bottom Lateral			10\%	at end L0, 10\% SL L1R Gusset
2	LOR-L1L	Bottom Lateral			5\%	$\begin{aligned} & \text { at end L0 \& L1, 5\% SL } \\ & \text { L1L Gusset } \end{aligned}$
2	U1L-U1R	Portal Frame			5-10\%	
2	L1L-L2R	Bottom Lateral				5\% SL at L2R end, 40\% SL at L1L gusset, 25\% SL at L2R gusset
2	L1R-L2L	Bottom Lateral			5\%	70\% SL of L1R gusset, 10\% SL of L2L gusset
2	U1L-U2R	Top Lateral			5\%	100% SL of gussets, 100% SL of 50% lacing
2	U1R-U2L	Top Lateral			5\%	100\% SL of 50\% lacing
2	U2	Top Strut	70\%	in bottom angles	\checkmark	100\% SL of lacing
2	U2	Sway Bracing	70\%	in bottom angles	90\%	30% SL of diagonal angle
2	L2L-L3R	Bottom Lateral			5\%	20\% SL of L2R gusset, 25% SL of L3L gusset
2	L2R-L3L	Bottom Lateral			\checkmark	5\% SL at L2L
2	U2L-U3R	Top Lateral		100% SL of top connections plate at U2L	\checkmark	10% SL at L3R, 60% SL of gussets
				50% SL of bottom connection plate at U2L	\checkmark	
2	U2R-U3L	Top Lateral			\checkmark	
2	U3	Top Strut	70\%	in bottom angles	\checkmark	100\% SL of lacing
2	U3	Sway Bracing	70\%	in bottom angles	90\%	10\% SL of diagonals
2	L3L-L4R	Bottom Lateral			5\%	60\% SL of L3R gusset, 50% SL of L4R gusset
2	L3R-L4L	Bottom Lateral			5\%	15\% SL of L3L gusset, 30% SL of L4L gusset
2	U3L-U4R	Top Lateral		90\% SL of top connection plate at U3L		

For abbreviations, see Legend on First page of Appendix 2.
For guide to numbering system and directional designations, see Appendix 1.

Appendix 2

Salinas River Bridge
 Updated Inspection Report

TABLE 2

TRUSS BRACING

SPAN	MEMBER NUMBER	COMPONENT	$\begin{gathered} 2001 \\ \text { SECTION } \\ \text { LOSS } \\ \hline \end{gathered}$	2001 COMMENT	$\begin{array}{\|c\|} \hline 2010 \\ \text { SECTION } \\ \text { LOSS } \\ \hline \end{array}$	2010 COMMENT
				50\% SL of bottom connection plate at U3L		
2	U3R-U4L	Top Lateral				100\% SL of 60\% lacing
2	U4	Top Strut			40\%	top and bottom angles, 100% SL of lacing
2	U4	Sway Bracing	70\%	in bottom angles	80\%	50% SL of some, 10% SL of diagonal angles
2	L4L-L5R	Bottom Lateral			5\%	40\% SL of L4R gusset, 30% SL of L5R gusset
2	L4R-L5L	Bottom Lateral			5\%	50% SL of L4L gusset, 20% SL of L5L gusset,
2	U4L-U5R	Top Lateral				
2	U4R-U5L	Top Lateral		95\% SL of top connection plate at U5L	\checkmark	
				25% SL of bottom connection plate at U5L	\checkmark	L6R end
2	L5L-L6R	Bottom Lateral			5\%	20\% SL of L5R gusset, 30% SL of L6R gusset
2	L5R-L6L	Bottom Lateral			5-10\%	5\% at L5R end, 10% at L5L end, 30\% SL of L5L gusset, 50% SL of L6L gusset
2	U5L-U5R	Portal Frame				
2		L6 Stringer Strut			10\%	at Lt \& Rt, 90% SL at L6L gusset, 70% SL at L6R gusset
3		L0 Stringer Strut			10-25\%	10% SL at Lt, 25\% SL at Rt, 40% SL at LOR gusset, 90% SL at LOL gusset
3	LOL-L1R	Bottom Lateral			5\%	5\% SL at LOL end, 60\% SL at LOL gusset, 10\% SL at L1L gusset
3	L0R-L1L	Bottom Lateral			5\%	15\% SL at LOR end, 20\% SL at LOR gusset, 15% SL at L1R gusset
3	U1L-U1R	Portal Frame			20\%	20\% SL average with 50% SL at one spot
3	L1L-L2R	Bottom Lateral			5-10\%	15% SL at L1L gusset, 40% SL at L1R gusset
3	L1R-L2L	Bottom Lateral			5-10\%	30% SL at L1R gusset, 40% SL at L2L gusset

For abbreviations, see Legend on First page of Appendix 2.
For guide to numbering system and directional designations, see Appendix 1.

Appendix 2

Salinas River Bridge

Updated Inspection Report

TABLE 2

TRUSS BRACING

SPAN	MEMBER NUMBER	COMPONENT	$\begin{array}{\|c\|} \hline 2001 \\ \text { SECTION } \\ \text { LOSS } \\ \hline \end{array}$	2001 COMMENT	$\begin{array}{\|c\|} \hline 2010 \\ \text { SECTION } \\ \text { LOSS } \\ \hline \end{array}$	2010 COMMENT
3	U1L-U2R	Top Lateral		95\% SL of top connection plate at U1L		100% SL of top connection plate at U1L
3	U1R-U2L	Top Lateral		95\% SL of top connection plate at U2L		100% SL of top connection plate at U2L
3	U2	Top Strut	70\%	in bottom angles	\checkmark	100\% SL of lacing
3	U2	Sway Bracing	50\%	in bottom angles	\checkmark	
3	L2L-L3R	Bottom Lateral			5\%	30\% SL at L2L gusset
3	L2R-L3L	Bottom Lateral			5\%	60\% SL at L2R gusset, 50% SL at L3R gusset, 10% SL at L3L
3	U2L-U3R	Top Lateral		90% SL of top connection plate at U2L		100% SL of top connection plate at U2L, 80% SL at U3L, 100\% SL of 20% lacing, 30% SL average of lacing
3	U2R-U3L	Top Lateral				100% SL at U2R gusset, 30\% SL of U2L gusset
3	U3	Top Strut	70\%	in bottom angles	\checkmark	100\% SL of lacing
3	U3	Sway Bracing	50\%	in bottom angles	80\%	
3	L3L-L4R	Bottom Lateral			5-10\%	30\% SL of L3L \& L4R gusset, 25% SL at L4L gusset
3	L3R-L4L	Bottom Lateral			5\%	20\% SL of L4R gusset
3	U3L-U4R	Top Lateral	70\%	in top angle near U3L	\checkmark	
				70\% SL of top connection plate at U3L	\checkmark	80\% SL of top connection plate at U3L, 40% SL at U4R gusset
			50\%	in top angle at center connection	80\%	of full length at top angle
3	U3R-U4L	Top Lateral		90\% SL of top connection plate at U4L	\checkmark	
3	U4	Top Strut			50\%	of angles, 100% SL of lacing
3	U4	Sway Bracing			40\%	of angles, 20% SL of diagonals
3	L4L-L5R	Bottom Lateral			5\%	25% SL of L5R gussets, 15% SL of L4L gusset
3	L4R-L5L	Bottom Lateral		70\% SL of connection plate at L4R	5\%	90\% SL of L4R gusset, 25% SL of L5L gussets
3	U4L-U5R	Top Lateral		90% SL of top connection plate at U4L	\checkmark	20% SL of angles, 100% SL of 20% lacing, 50% SL lacing average

For abbreviations, see Legend on First page of Appendix 2.
For guide to numbering system and directional designations, see Appendix 1.

Appendix 2

Salinas River Bridge

Updated Inspection Report

TABLE 2

TRUSS BRACING

SPAN	MEMBER NUMBER	COMPONENT	$\begin{gathered} 2001 \\ \text { SECTION } \\ \text { LOSS } \\ \hline \end{gathered}$	2001 COMMENT	$\begin{gathered} 2010 \\ \text { SECTION } \\ \text { LOSS } \\ \hline \end{gathered}$	2010 COMMENT
3	U4R-U5L	Top Lateral		100% SL of top connection plate at U5L	\checkmark	100\% SL of 70\% lacing, 60% SL rest
3	L5L-L6R	Bottom Lateral			5\%	15% SL of L6L gusset, 10% SL of L5L gusset,
3	L5R-L6L	Bottom Lateral			5\%	5\% SL of L6R gusset, 50% SL of L5R gusset
3	U5L-U5R	Portal Frame			15\%	15% SL average of both angles, 5% SL average
4	LOL-L1R	Bottom Lateral			5\%	30% SL of LOL \& LOR gusset, 10% SL of L1L gusset
4	L0R-L1L	Bottom Lateral			5\%	20\% SL of L1R gusset
4	U1L-U1R	Portal Frame				1 angle at 40% SL, 1 gusset at 90% SL, 5% SL general
4	L1L-L2R	Bottom Lateral			5\%	20% SL of L1L gusset, 10% SL of L2L gusset
4	L1R-L2L	Bottom Lateral			5\%	40\% SL of L1R gusset, 10% SL of L2R gusset
4	U1L-U2R	Top Lateral		100% SL of top connection plate at U1L		100% SL of top connection plate at U1L \& U1R, 100% SL of 30% lacing
				25\% SL of bottom connection plate at U1L	\checkmark	25% SL of bottom connection plate at U1L \& U1R, 100% SL of both U1 gussets, 40% SL of both U2 gussets
4	U1R-U2L	Top Lateral				100\% SL of 50\% lacing
4	U2	Top Strut	70\%	in bottom angles	\checkmark	50\% SL of top lacing
				lacing bars in poor condition	100\%	all
4	U2	Sway Bracing	70\%	in bottom angles	\checkmark	10\% SL diagonal
4	L2L-L3R	Bottom Lateral			5\%	10% SL of L2L gusset, 50% SL of L3L \& L3R gusset
4	L2R-L3L	Bottom Lateral			5\%	70\% SL of L2R gusset
4	U2L-U3R	Top Lateral				100% SL of U3L \& U2L gusset
4	U2R-U3L	Top Lateral	100\%	in bottom angle at U3L	\checkmark	20\% SL of both gussets
4	U3	Top Strut	50\%	in bottom angles	60\%	100\% SL of 80\% lacing
4	U3	Sway Bracing	70\%	in bottom angles		2 at 60% SL of diagonals

For abbreviations, see Legend on First page of Appendix 2.
For guide to numbering system and directional designations, see Appendix 1.

Salinas River Bridge

Updated Inspection Report
TABLE 2
TRUSS BRACING

SPAN	MEMBER NUMBER	COMPONENT	$\begin{gathered} 2001 \\ \text { SECTION } \\ \text { LOSS } \\ \hline \end{gathered}$	2001 COMMENT	$\begin{array}{\|c\|} \hline 2010 \\ \text { SECTION } \\ \text { LOSS } \\ \hline \end{array}$	2010 COMMENT
4	L3L-L4R	Bottom Lateral			5\%	15\% SL of L3L gusset, 50% SL of L4L gusset,
4	L3R-L4L	Bottom Lateral			5\%	25\% SL of L3R gusset, 25% SL of L4R gusset
4	U3L-U4R	Top Lateral			40\%	both angles, 100% SL of 2 lacing, 20\% SL average
4	U3R-U4L	Top Lateral	70\%	in bottom angle of U3R	100\%	70% SL of 2 lacing, 20\% SL average
4	U4	Top Strut	40\%	in bottom angles		100\% SL of 60\% lacing
4	U4	Sway Bracing	60\%	in bottom angles	70\%	40\% SL of diagonal
4	L4L-L5R	Bottom Lateral			5\%	30% SL of L4L gusset, 10% SL of L5L gusset
4	L4R-L5L	Bottom Lateral			5\%	60\% SL of L4R gusset, 60% SL of L5R gusset
4	U4L-U5R	Top Lateral		50\% SL of top connection plate at U4L	90\%	100\% SL of U4L
				75% SL of top connection plate at U5R	100\%	5\% SL of angles, 100% SL of 10% lacing, 20% SL lacing average
4	U4R-U5L	Top Lateral		100% SL of top connection plate at U5L	\checkmark	5\% SL of angles, 100% SL of 10% lacing, 20% SL of lacing average
				40\% SL of bottom connection plate at U5L	\checkmark	
4	L5L-L6R	Bottom Lateral		50% SL of connection plate at L6R	5\%	10% SL of L5L gusset, 50% SL of L6L gusset
4	L5R-L6L	Bottom Lateral			5\%	40\% SL of L5R gusset, 90% SL of L6L gusset
4	U5L-U5R	Portal Frame				40\% SL of bottom angles, 1 hole
5	LOL-L1R	Bottom Lateral				30\% SL between stringer \& LOL, 40% SL of LOL gusset, 5\% SL of L1L gusset
5	L0R-L1L	Bottom Lateral				20\% SL between stringer \& LOR, 30% SL of LOR gusset, 5% SL of L1R gusset
5	U1L-U1R	Portal Frame				20\% SL of bottom angles, 30% SL of both diagonals

For abbreviations, see Legend on First page of Appendix 2.
For guide to numbering system and directional designations, see Appendix 1.

Salinas River Bridge

Updated Inspection Report
TABLE 2
TRUSS BRACING

SPAN	MEMBER NUMBER	COMPONENT	$\begin{gathered} 2001 \\ \text { SECTION } \\ \text { LOSS } \\ \hline \end{gathered}$	2001 COMMENT	$\begin{array}{\|c\|} \hline 2010 \\ \text { SECTION } \\ \text { LOSS } \\ \hline \end{array}$	2010 COMMENT
5	L1L-L2R	Bottom Lateral			5\%	15\% SL of L1L gusset, 35\% SL L2L gusset
5	L1R-L2L	Bottom Lateral			5\%	50% SL of L1R gusset, 25% SL of L2R gusset
5	U1L-U2R	Top Lateral		100% SL of top connection plate at U1L	\checkmark	100% SL of top connection plate at U1L \& U1R
				50\% SL of bottom connection plate at U1L		
			50\%	in top angle between center connection and U2R	100\%	50\% other end
			30\%	in bottom angle between center connection and U2R	80\%	3 at 100% SL of lacing
5	U1R-U2L	Top Lateral		95\% SL of top connection plate at U2L	100\%	$\begin{aligned} & 50 \% \text { SL at U2R, 100\% SL } \\ & \text { of } 5 \text { lacing bars } \end{aligned}$
5	U2	Top Strut	15\%	in bottom angles	30\%	100\% SL of 90\%
5	U2	Sway Bracing	100\%	in bottom angles	\checkmark	50\% SL of diagonal
5	L2L-L3R	Bottom Lateral			5\%	$\begin{aligned} & 25 \% \text { SL of L2L gusset, } \\ & 25 \% \text { SL of L3L gusset } \end{aligned}$
5	L2R-L3L	Bottom Lateral			5\%	50% SL of L2R gusset, 20% SL of L3R gusset
5	U2L-U3R	Top Lateral		95\% SL of top connection plate at U2L	\checkmark	25% SL of U2R, 100% of 30% SL lacing
5	U2R-U3L	Top Lateral		90\% SL of top connection plate at U3L	100\%	100% U3R, 100% of 40% lacing, 30\% SL of bottom angle
5	U3	Top Strut	30\%	in bottom angles	80\%	20\% SL of top angle, 100% SL of 90% lacing
5	U3	Sway Bracing	50\%	in bottom angles	60\%	50\% SL of diagonal
5	L3L-L4R	Bottom Lateral			5\%	30% SL of L4L \& L4R gusset, 25% SL of L3L gusset
5	L3R-L4L	Bottom Lateral			5\%	25% SL of L3R gusset, 10% SL of L4R gusset
5	U3L-U4R	Top Lateral		75\% SL of top connection plate U3L	90\%	70% SL of 2 lacing bars, 50% SL average

For abbreviations, see Legend on First page of Appendix 2.
For guide to numbering system and directional designations, see Appendix 1.

Appendix 2

Salinas River Bridge

Updated Inspection Report

TABLE 2

TRUSS BRACING

SPAN	MEMBER NUMBER	COMPONENT	2001 SECTION LOSS	2001 COMMENT	$\begin{array}{\|c\|} \hline 2010 \\ \text { SECTION } \\ \text { LOSS } \\ \hline \end{array}$	2010 COMMENT
5	U3R-U4L	Top Lateral		50% SL of top connection plate at U4L	90\%	50% SL of top connection plate at U4L \& U4R, 20\% SL of bottom angle, 100% SL of 50% lacing, 70% SL rest
				50\% SL of top connection plate at U3R	80\%	
5	U4	Top Strut				20\% SL of top angle, 30\% SL of bottom angle, 100\% SL of 60% lacing, 50% SL rest
5	U4	Sway Bracing				20% SL of bottom angle, 30\% SL of diagonal
5	L4L-L5R	Bottom Lateral			10\%	35\% SL of L4L gusset, 30% SL of L5L gusset
5	L4R-L5L	Bottom Lateral			5\%	30% SL of L4R gusset, 10% SL of L5R gusset
5	U4L-U5R	Top Lateral				30% SL lacing average, 80% SL of U4L gusset, 50% SL of U5R
5	U4R-U5L	Top Lateral		100% SL of top connection plate U5L	\checkmark	100% SL of 60% lacing, 60\% SL rest lacing, 50\% SL of U4R
				75% SL of bottom connection plate at U5L	\checkmark	30\% SL of both angles
5	L5L-L6R	Bottom Lateral			5\%	15% SL of L5L gusset, 20\% SL of L6L gusset
5	L5R-L6L	Bottom Lateral			5\%	20\% SL of L5R, 5% SL of L6R gusset
5	U5L-U5R	Portal Frame				30% SL of bottom angles, 30% SL of portal diagonal Lt, $10 \% \mathrm{SL}$ of Rt diagonal

For abbreviations, see Legend on First page of Appendix 2.
For guide to numbering system and directional designations, see Appendix 1.

Appendix 2

Salinas River Bridge Updated Inspection Report

TABLE 3
 TRUSS BEARINGS

SPAN	PANEL OR PANEL PT.	COMPONENT	2001 COMMENT	$\begin{aligned} & 2010 \\ & \text { CHECK } \end{aligned}$	2010 COMMENT
1	LOL	Truss Fixed Brg. (Lt)			Bearing plate disintegrated, 20% SL on pedestal, 10\% SL on bottom flange, $20 \% \mathrm{SL}$ on bottom plate
1	LOR	Truss Fixed Brg. (Rt)			Bearing plate disintegrated, 30% SL on bottom plate, 20 50% SL on top plate, webs ok
1	L6L	Truss Exp. Brg. (Lt)	Segmental rollers frozen and "working out" (shifted toward Monterey side of bearing)	\checkmark	
			Corrosion at bearing plates above and below rollers with minor SL.		
			3 of 4 anchor bolts broken.	\checkmark	
1	L6R	Truss Exp. Brg. (Rt)	Segmental rollers frozen and "working out" (shifted toward Monterey side of bearing).	\checkmark	
			Corrosion at bearing plates above and below rollers with minor SL.		
2	LOL	Truss Fixed Brg. (Lt)			15% SL on top plate Rt side, 50% SL on bottom plate, 1 anchor bolt missing, broken off
2	LOR	Truss Fixed Brg. (Rt)			15% SL on top plate, bottom plate ok, 10% SL on web total
2	L6L	Truss Exp. Brg (Lt)	Segmental rollers frozen	\checkmark	
			Channels of bearing pedestal have 20\% SL (average) in webs along bottom fillets and 30% SL (average) of bottom flanges.		Channels of bearing pedestal have 25% SL (average) in webs along bottom fillets and 35% SL (average) of bottom flanges.
			Inboard anchor bolt missing.	\checkmark	
2	L6R	Truss Exp. Brg (Rt)	Segmental rollers frozen in expanded position.	\checkmark	Outbd anchor bolts broken off
			Channels of bearing pedestal have 20\% SL (average) in webs along bottom fillets and 30% SL (average) of bottom flanges.	\checkmark	

Salinas River Bridge Updated Inspection Report

TABLE 3
TRUSS BEARINGS

SPAN	PANEL OR PANEL PT	COMPONENT	2001 COMMENT	$\begin{aligned} & 2010 \\ & \text { CHECK } \end{aligned}$	2010 COMMENT
			Minor section loss at top surface of bed plate ($1 / 8^{\prime \prime}$ thick pack rust, outside of bearing area).	\checkmark	
			Minor section loss at bearing plate atop segmental rollers.	\checkmark	
			Both anchor bolts are missing.	\checkmark	
3	LOL	Truss Fixed Brg. (Lt)	I-beams of bearing pedestal have 25% SL (average) in webs along bottom fillets.		I-beams of bearing pedestal have 50% SL on bottom flange
			Minor section loss at bearing plate atop pedestal l-beams (10\% reduction in plate thickness outside of bearing area).	\checkmark	
			Minor section loss at top surface of bed plate (20\% reduction in plate thickness outside of bearing area)	\checkmark	
3	LOR	Truss Fixed Brg. (Rt)	I-beams of bearing pedestal have 20% SL (average) in webs along bottom flange	\checkmark	
			Minor section loss at bearing plate atop pedestal I-beams (1/2" thick pack rust, plate thickness reduced from 15/16" to $3 / 4$ " outside of bearing area).	\checkmark	
			Minor section loss at top surface of bed plate ($1 / 2^{\prime \prime}$ thick pack rust located outside of bearing area).	\checkmark	
3	L6L	Truss Exp. Brg. (Lt)	Channels of bearing pedestal have 10\% SL (average) in webs along bottom fillets.		Channels of bearing pedestal have 40% SL (average) in webs along bottom fillets, roller nest ok
			Minor pack rust at top flange of pedestal channels.	\checkmark	
			Outboard anchor bolt missing	\checkmark	
3	L6R	Truss Exp. Brg (Rt)	Segmental rollers frozen	\checkmark	

For abbreviations, see Legend on First page of Appendix 2.
For guide to numbering system and directional

Appendix 2

Salinas River Bridge

Updated Inspection Report

TABLE 3
 TRUSS BEARINGS

SPAN	PANEL OR PANEL PT.	COMPONENT	2001 COMMENT	$\begin{aligned} & 2010 \\ & \text { CHECK } \end{aligned}$	2010 COMMENT
			Channels of bearing pedestal have 20\% SL (average) in webs along bottom fillets.		Channels of bearing pedestal have 30% SL (average) in webs along bottom fillets.
			Minor section loss at bearing plate atop segmental rollers.		Moderate section loss at bearing plate atop segmental rollers.
			Minor section loss at top surface of bed plate ($1 / 4^{\prime \prime}$ thick pack rust).		Moderate section loss at top surface of bed plate ($1 / 4^{\prime \prime}$ thick pack rust).
			Outboard anchor bolt missing.	\checkmark	
			50% SL of inboard anchor bolt.	\checkmark	
4	LOL	Truss Fixed Brg. (Lt)	I-beams of bearing pedestal have 20\% SL (average) of bottom flanges	\checkmark	Holes in web 50\% inside web
4	LOR	Truss Fixed Brg. (Rt)	I-beams of bearing pedestal have 20% SL (average) of webs along bottom fillets	\checkmark	
			1/4" to $1 / 2^{\prime \prime}$ thick pack rust with minor section loss at top surface of bearing plate atop pedestal I-beams, outside of bearing area.	\checkmark	
			$1 / 4$ " to $1 / 2^{\prime \prime}$ thick pack rust with minor section loss at top surface of bed plate, outside of bearing area.	\checkmark	
4	L6L	Truss Exp. Brg. (Lt)	Segmental rollers frozen.	\checkmark	
			Channels of bearing pedestal have 10\% SL (average) in webs along bottom fillets.		Channels of bearing pedestal have 20% SL (average) in webs along bottom fillets.
			15% SL at top surface of bed plate, outside of bearing area.	\checkmark	20% SL at top surface of bed plate, outside of bearing area.
4	L6R	Truss Exp. Brg (Rt)	Segmental rollers frozen.	\checkmark	
			Channels of bearing pedestal have 20% SL (average) of webs along bottom fillets.		Channels of bearing pedestal have 30% SL (average) of webs along bottom fillets. Outside anchor bolt missing.
			1/4" to $1 / 2^{\prime \prime}$ thick rust with minor section loss at top surface of bed plate, outside of bearing area.	\checkmark	

For abbreviations, see Legend on First page of Appendix 2.
For guide to numbering system and directional designations, see Appendix 1.

Appendix 2

Salinas River Bridge Updated Inspection Report

TABLE 3

TRUSS BEARINGS

SPAN	PANEL OR PANEL PT.	COMPONENT	2001 COMMENT	$\begin{gathered} 2010 \\ \text { CHECK } \end{gathered}$	2010 COMMENT
5	LOL	Truss Fixed Brg. (Lt)	The two inboard I-beams of bearing pedestal have 15% SL of top flanges and $15 \% \mathrm{SL}$ of webs along 6 " length of beams, at the Monterey side bearing.	\checkmark	
			20% SL at top surface of bed plate, outside of bearing area.		30% SL at top surface of bed plate, outside of bearing area.
5	LOR	Truss Fixed Brg. (Rt)	l-beams of bearing pedestal have minor (less than 5%) SL of webs along bottom fillets.		1 of 4 webs has 25% SL
			1/4" to $1 / 2^{\prime \prime}$ thick pack rust with minor section loss at top surface of bearing plate atop pedestal l-beams, outside of bearing area.	\checkmark	
			1/4" to $1 / 2$ " thick pack rust with minor section loss at top surface of bed plate, outside of bearing area.	\checkmark	
5	L6L	Truss Exp. Brg. (Lt)			Inside anchor bolt broken, 10\% SL pedestal
5	L6R	Truss Exp. Brg (Rt)	Channels of bearing pedestal have 5\% SL (average) of webs along bottom fillets.		Channels of bearing pedestal have 15% SL (average) of webs along bottom fillets, anchor bolt 15% gone

Salinas River Bridge Updated Inspection Report

TABLE 4

FLOOR SYSTEM

SPAN	PANEL OR PANEL PT.	COMPONENT	$\begin{array}{\|c\|} \hline 2001 \\ \text { SECTION } \\ \text { LOSS } \\ \hline \end{array}$	2001 COMMENT	$\begin{array}{\|c\|} \hline 2010 \\ \text { SECTION } \\ \text { LOSS } \\ \hline \end{array}$	2010 COMMENT
1	L0	Floorbeam 0				
		TF (SF side)	5\%	located 30" left of centerline	\checkmark	
		TF (Mty side)	5\%	located 30" left of centerline	\checkmark	
		BF (SF side)	15\%	located 15" from end, left side	\checkmark	
		BF (Mty side)	15\%	located 15" from end, left side	\checkmark	
		Web			\checkmark	
1	LOL	End Post-FIbm TF Connection Plate (Lt)	30\%		50\%	Inbd angle
1	LOR	End Post-Flbm TF Connection Plate (Rt)	70\%		\checkmark	
1	L0	Str Bracket (Lt)				
		TF Outbd	95\%		\checkmark	
		TF Inbd	70\%	1" $\times 2$ " hole	\checkmark	
1	L0	Str Bracket (Rt)				
		TF Outbd	10\%		30\%	
		TF Inbd	15\%		\checkmark	
1	Panel 1	Stringer LT				
		TF Outbd			\checkmark	
		TF Inbd			\checkmark	
		BF Outbd			\checkmark	
		BF Inbd			\checkmark	
		Web			\checkmark	
1	Panel 1	Stringer (Rt)				
		TF Outbd			\checkmark	30\% SL of L1 end
		TF Inbd			\checkmark	
		BF Outbd			\checkmark	
		BF Inbd			\checkmark	
		Web			\checkmark	
1	Panel 1	Str Top Laterals		7" diameter hole in 2nd lateral connection plate from Flbm 0, at Rt stringer.	\checkmark	Lt 3'
1	L1	Floorbeam 1				
		TF Cover Plate	10\%	located 30" left of centerline of flbm	20\%	
		TF (SF side)			\checkmark	
		TF (Mty side)			\checkmark	
		BF Cover Plate			\checkmark	
		BF (SF side)			5\%	5\% SL Lt end

For abbreviations, see Legend on First page of Appendix 2.
For guide to numbering system and directional

Salinas River Bridge Updated Inspection Report

TABLE 4

FLOOR SYSTEM

SPAN	PANEL OR PANEL PT.	COMPONENT	$\begin{gathered} 2001 \\ \text { SECTION } \\ \text { LOSS } \\ \hline \end{gathered}$	2001 COMMENT	$\begin{array}{\|c\|} \hline 2010 \\ \text { SECTION } \\ \text { LOSS } \\ \hline \end{array}$	2010 COMMENT
		BF (Mty side)	10\%	horiz leg angle, Lt side (between $\operatorname{Str} \& \mathrm{BC}$)	20\%	15\% SL Rt
		Web		1" diameter hole in web (at top of Rt Str, Outbd side)		11/2" diameter hole
				3/4" diameter hole in web (at top of Lt Str)		1" diameter hole
		Lt Flbm Bracket			5\%	
		Rt Flbm Bracket			5\%	
1	Panel 2	Stringer (Lt)				
		TF Outbd			5\%	
		TF Inbd			5\%	
		BF Outbd			\checkmark	
		BF Inbd			\checkmark	
		Web			\checkmark	
1	Panel 2	Stringer (Rt)				
		TF Outbd			5\%	
		TF Inbd			5\%	
		BF Outbd			\checkmark	
		BF Inbd			\checkmark	
		Web			\checkmark	
1	Panel 2	Str Top Laterals				
1	L2	Floorbeam 2				
		TF Cover Plate	5\%	at various locations including center-line of flbm	30\%	30% SL Rt end, 15% SL average
		TF (SF side)			\checkmark	
		TF (Mty side)			\checkmark	
		BF Cover Plate			\checkmark	
		BF (SF side)	5\%	horiz leg of angle, Lt side (between Str \& BC)	10\%	10\% SL average, 40\% hole/notch at Rt gusset
		BF (Mty side)			10\%	
		Web			\checkmark	
		Lt Flbm Bracket			20\%	at base
		Rt Flbm Bracket			10\%	at base
1	Panel 3	Stringer (Lt)				
		TF Outbd	5\%		\checkmark	
		TF Inbd			5\%	
		BF Outbd			\checkmark	
		BF Inbd			\checkmark	
		Web			\checkmark	
1	Panel 3	Stringer (Rt)				
		TF Outbd			5\%	

For abbreviations, see Legend on First page of Appendix 2.
For guide to numbering system and directional

Salinas River Bridge Updated Inspection Report

TABLE 4
 FLOOR SYSTEM

SPAN	PANEL OR PANEL PT.	COMPONENT	$\begin{array}{\|c\|} \hline 2001 \\ \text { SECTION } \\ \text { LOSS } \\ \hline \end{array}$	2001 COMMENT	$\begin{gathered} 2010 \\ \text { SECTION } \\ \text { LOSS } \\ \hline \end{gathered}$	2010 COMMENT
		TF Inbd			5\%	
		BF Outbd			\checkmark	
		BF Inbd			\checkmark	
		Web			\checkmark	
1	Panel 3	Str Top Laterals			\checkmark	Rt gusset 40\% SL Mty end
1	L3	Floorbeam 3				
		TF Cover Plate	10\%	at various locations	25\%	at ends
		TF (SF side)			\checkmark	
		TF (Mty side)			\checkmark	
		BF Cover Plate			\checkmark	
		BF (SF side)	25\%	horiz leg of angle, Rt side (between Str \& BC)	\checkmark	Notch at gusset
			5\%	horiz leg of angle, Lt side (between $\operatorname{Str} \& \mathrm{BC}$)	20\%	
		BF (Mty side)	25\%	horiz leg of angle, Rt side (between Str \& BC)	30\%	
			5\%	horiz leg of angle, Lt side (between Str \& BC)	20\%	
		Web		1" diameter hole in web (at top of Rt Str, Outbd side)	\checkmark	1" x 1/2" slot
		Lt Flbm Bracket		50% SL of horiz legs of both connection angles riveted to flbm TF	\checkmark	Fill plate 30% SL fop of bracket
		Rt Flbm Bracket	10\%	in top portion of bracket plate	30\%	Top 6"
				50% SL of horiz legs of both connection angles riveted to flbm TF	60\%	Fill plate 20% SL top of bracket
1	Panel 4	Stringer (Lt)				
		TF Outbd	5\%		\checkmark	
		TF Inbd			5\%	
		BF Outbd			5\%	
		BF Inbd			\checkmark	
		Web			\checkmark	
1	Panel 4	Stringer (Rt)				
		TF Outbd			5\%	
		TF Inbd			5\%	
		BF Outbd			15\%	
		BF Inbd			\checkmark	
		Web			\checkmark	
1	Panel 4	Str Top Laterals			50\%	2 diag.

For abbreviations, see Legend on First page of Appendix 2.
For guide to numbering system and directional

Salinas River Bridge Updated Inspection Report

TABLE 4

FLOOR SYSTEM

SPAN	PANEL OR PANEL PT.	COMPONENT	$\begin{gathered} 2001 \\ \text { SECTION } \\ \text { LOSS } \\ \hline \end{gathered}$	2001 COMMENT	$\begin{array}{\|c\|} \hline 2010 \\ \text { SECTION } \\ \text { LOSS } \\ \hline \end{array}$	2010 COMMENT
1	L4	Floorbeam 4				
		TF Cover Plate	15\%	throughout entire length	40\%	
		TF (SF side)			\checkmark	
		TF (Mty side)			5\%	
		BF Cover Plate			\checkmark	
		BF (SF side)	5\%	horiz leg of angle, Lt side (between Str \& BC)	10\%	
			15\%	horiz leg of angle, Rt side (between Str \& BC)	25\%	Notch at gusset
		BF (Mty side)	15\%	horiz leg of angle, Lt side (between Str \& BC)	30\%	
			15\%	horiz leg of angle, Rt side (between Str \& BC)	30\%	Hole near gusset
		Web		2" diameter hole in web (at top of Rt Str, Outbd. Side)	\checkmark	5\% SL Mty side
		Lt Flbm Bracket				Base 40\% SL, fill plate 40% SL at top bracket
		Rt Flbm Bracket				Base 40\% SL, fill plate 10% SL at top bracket
1	Panel 5	Stringer (Lt)				
		TF Outbd	5\%	at mid-panel	5\%	
		TF Inbd			5\%	
		BF Outbd			5\%	
		BF Inbd			\checkmark	
		Web			\checkmark	
1	Panel 5	Stringer (Rt)				
		TF Outbd			5\%	
		TF Inbd			5\%	
		BF Outbd	10\%		15\%	
		BF Inbd			5\%	
		Web			\checkmark	
1	Panel 5	Str Top Laterals			20\%	
1	L5	Floorbeam 5				
		TF Cover Plate	15\%	throughout entire length	30\%	30\% SL at ends
		TF (SF side)			\checkmark	
		TF (Mty side)			\checkmark	
		BF Cover Plate			\checkmark	
		BF (SF side)	25\%	horiz leg of angle, Rt side (between Str \& BC)	\checkmark	
		BF (Mty side)	15\%	horiz leg of angle, Lt side (between $\operatorname{Str} \& \mathrm{BC}$)	\checkmark	

Salinas River Bridge Updated Inspection Report

TABLE 4

FLOOR SYSTEM

SPAN	PANEL OR PANEL PT.	COMPONENT	$\begin{gathered} 2001 \\ \text { SECTION } \\ \text { LOSS } \end{gathered}$	2001 COMMENT	$\begin{array}{\|c\|} \hline 2010 \\ \text { SECTION } \\ \text { LOSS } \\ \hline \end{array}$	2010 COMMENT
			25\%	horiz leg of angle, Rt side (between Str \& BC)	\checkmark	
		Web		$1 / 2 " \times 2$ " hole in web (at top of Rt Str, Outbd side)	\checkmark	1" $\times 1 / 2 \mathrm{l}$ angle hole
		Lt Flbm Bracket	40\%	in bracket plate		in bracket plate (fill plate)
				75% SL of horiz legs of both connection angles riveted to flbm TF	\checkmark	
		Rt Flbm Bracket	30\%	in bracket plate, along bottom connection angles	\checkmark	15\% SL at fill plate
				90% SL of horiz legs of both connection angles riveted to flbm TF	\checkmark	
1	Panel 6	Stringer (Lt)				
		TF Outbd	5\%		\checkmark	
		TF Inbd			\checkmark	
		BF Outbd			\checkmark	
		BF Inbd			\checkmark	
		Web			\checkmark	
1	Panel 6	Stringer (Rt)				
		TF Outbd			5\%	
		TF Inbd			\checkmark	
		BF Outbd	10\%		15\%	
		BF Inbd			\checkmark	
		Web			\checkmark	
1	Panel 6	Str Top Laterals			\checkmark	
1	L6	Floorbeam 6				
		TF (SF side)			10\%	
		TF (Mty side)			10\%	
		BF (SF side)	70\%	located 15 " from end of flbm, Rt side	? 40\%	
			10\%	located 31" from end of flbm, Rt side	\checkmark	
			15\%	located 15" from end of flbm, Lt side	40\%	
		BF (Mty side)	70\%	located 15 " from end of flbm, Rt side	\checkmark	
			40\%	located 31 " from end of flbm, Rt side	\checkmark	

Salinas River Bridge Updated Inspection Report

TABLE 4

FLOOR SYSTEM

SPAN	PANEL OR PANEL PT.	COMPONENT	$\begin{array}{\|c\|} \hline 2001 \\ \text { SECTION } \\ \text { LOSS } \\ \hline \end{array}$	2001 COMMENT	$\begin{gathered} 2010 \\ \text { SECTION } \\ \text { LOSS } \\ \hline \end{gathered}$	2010 COMMENT
			10\%	located 15" from end of flbm, Lt side	15\%	
			15\%	located at center section of floorbeam (btw stringers)	20\%	
		Web		5% SL in vertical leg BF angle on Mty side, at center section of floorbeam (btw. Stringers)	\checkmark	
1	L6L	End Post-FIbm TF Connection Plate (Lt)	70\%		80\%	
1	L6R	End Post-FIbm TF Connection Plate (Rt)	90\%		100\%	
1	L6	Str Bracket (Lt)				
		TR Outbd	70\%	1" x 2" hole	\checkmark	
		TF Inbd	80\%	1" x 2" hole	\checkmark	
1	L6	Str Bracket (Rt)				
		TF Outbd	100\%		\checkmark	Outstanding leg
		TF Inbd	80\%	1" x 2" hole	\checkmark	
2	Panel 1	Stringer (Lt)				
		TF Outbd	10\%	at Flbm 1	\checkmark	
		TF Inbd			5\%	
		BF Outbd			\checkmark	
		BF Inbd			\checkmark	
		Web			\checkmark	
		LO cross frame			15\%	
2	Panel 1	Stringer (Rt)				
		TF Outbd	5\%		\checkmark	
		TF Inbd	5\%		\checkmark	
		BF Outbd	10\%		\checkmark	
		BF Inbd			\checkmark	
		Web			5\%	
2	Panel 1	Str Top Laterals				
2	L1	Floorbeam 1				
		TF (SF side)	10\%	at 30 " to Lt and Rt of center (under rails)	\checkmark	
			10\%	at 50 " to Lt and Rt of center (under guard timbers)	\checkmark	
		TF (Mty side)	10\%	at 30 " to Lt and Rt of center (under rails)	\checkmark	

Salinas River Bridge Updated Inspection Report

TABLE 4

FLOOR SYSTEM

SPAN	PANEL OR PANEL PT.	COMPONENT	$\begin{gathered} 2001 \\ \text { SECTION } \\ \text { LOSS } \\ \hline \end{gathered}$	2001 COMMENT	$\begin{gathered} 2010 \\ \text { SECTION } \\ \text { LOSS } \\ \hline \end{gathered}$	2010 COMMENT
			10\%	at 50 " to Lt and Rt of center (under guard timbers)	\checkmark	
		BF (SF side)	5\%	Lt side (btw Str \& BC)	\checkmark	
			10\%	Rt side (btw Str \& BC)	\checkmark	
			5\%	center (btw stringers)	\checkmark	
		BF (Mty side)	10\%	Lt side (btw Str \& BC)	\checkmark	
			10\%	Rt side (btw Str \& BC)	\checkmark	
			5\%	center (btw stringers)	\checkmark	
		Web			\checkmark	
2	Panel 2	Stringer (Lt)				
		TF Outbd	10\%	at Flbms 1 \& 2	\checkmark	
		TF Inbd			5\%	
		BF Outbd			\checkmark	
		BF Inbd			5\%	
		Web			\checkmark	
2	Panel 2	Stringer (Rt)				
		TF Outbd	5\%		\checkmark	
		TF Inbd	5\%		\checkmark	
		BF Outbd	10\%		\checkmark	
		BF Inbd			5\%	
		Web			\checkmark	
2	Panel 2	Str Top Laterals			\checkmark	
2	L2	Floorbeam 2				
		TF (SF side)	15\%	at 30 " to Lt and Rt of center (under rails)	\checkmark	
			15\%	at 50 " to Lt and Rt of center (under guard timbers)	\checkmark	
		TF (Mty side)	15\%	at $30^{\prime \prime}$ to Lt and Rt of center (under rails)	\checkmark	
			15\%	at 50" to Lt and Rt of center (under guard timbers)	\checkmark	
		BF (SF side)	10\%	Lt side (btw Str \& BC)	\checkmark	
			10\%	Rt side (btw Str \& BC)	\checkmark	
			5\%	center (btw stringers)	\checkmark	
		BF (Mty side)	15\%	Lt side (btw Str \& BC)	\checkmark	
			10\%	Rt side (btw Str \& BC)	15\%	
			15\%	center (btw stringers)	\checkmark	
		Web			\checkmark	
2	Panel 3	Stringer (Lt)				
		TF Outbd	10\%	at Flbm 2	\checkmark	Flbm 2 end

For abbreviations, see Legend on First page of Appendix 2.
For guide to numbering system and directional

Salinas River Bridge Updated Inspection Report

TABLE 4

FLOOR SYSTEM

SPAN	PANEL OR PANEL PT.	COMPONENT	$\begin{array}{\|c\|} \hline 2001 \\ \text { SECTION } \\ \text { LOSS } \\ \hline \end{array}$	2001 COMMENT	$\begin{gathered} 2010 \\ \text { SECTION } \\ \text { LOSS } \\ \hline \end{gathered}$	2010 COMMENT
		TF Inbd			5\%	
		BF Outbd			5\%	
		BF Inbd			5\%	
		Web			\checkmark	
2	Panel 3	Stringer (Rt)				
		TF Outbd	5\%		\checkmark	
		TF Inbd			5\%	
		BF Outbd	5\%		10\%	at end
		BF Inbd			5\%	
		Web			\checkmark	
2	Panel 3	Str Top Laterals			5\%	
2	L3	Floorbeam 3				
		TF (SF side)	10\%	at 30 " to Lt and Rt of center (under rails)	\checkmark	
			10\%	at 50 to Lt and Rt of center (under guard timbers)	\checkmark	
		TF (Mty side)	10\%	at 30 " to Lt and Rt of center (under rails)	\checkmark	
			10\%	at 50 " to Lt and Rt of center (under guard timbers)	25\%	
		BF (SF side)	10\%	Lt side (btw Str \& BC)	15\%	
			15\%	Rt side (btw Str \& BC)	\checkmark	
			10\%	center (btw stringers)	\checkmark	
		BF (Mty side)	15\%	Lt side (btw Str \& BC)	\checkmark	
			10\%	Rt side (btw Str \& BD)	\checkmark	
			5\%	center (btw stringers)	\checkmark	
		Web		3/4" diameter hole in web at top of Rt Str, Outbd side		1" diameter hole
2	Panel 4	Stringer (Lt)				
		TF Outbd	15\%	at Flbms 3 \& 4	20\%	2' from L3 end
		TF Inbd			10\%	average
		BF Outbd	5\%		\checkmark	
		BF Inbd			\checkmark	
		Web			\checkmark	
2	Panel 4	Stringer (Rt)				
		TF Outbd	5\%		\checkmark	
		TF Inbd	5\%		\checkmark	
		BF Outbd	10\%		\checkmark	
		BF Inbd			\checkmark	
		Web			\checkmark	

For abbreviations, see Legend on First page of Appendix 2.
For guide to numbering system and directional

Salinas River Bridge Updated Inspection Report

TABLE 4

FLOOR SYSTEM

SPAN	PANEL OR PANEL PT.	COMPONENT	SECTION LOSS	2001 COMMENT	SECTION LOSS	2010 COMMENT
$\mathbf{2}$	Panel 4	Str Top Laterals			10%	in spots
$\mathbf{2}$	L4	Floorbeam 4				
		TF (SF side)	10%	at 30" to Lt and Rt of center (under rails)	\checkmark	
			10%	an 50" to Lt and Rt of center (under guard timbers)	\checkmark	
		TF (Mty side)	10%	at 30" to Lt and Rt of center (under rails)	\checkmark	
			BF (SF side)	10%	at 50" to Lt and Rt of center (under guard timbers)	15%

For abbreviations, see Legend on First page of Appendix 2.
For guide to numbering system and directional designations, see Appendix 1.

Salinas River Bridge Updated Inspection Report

TABLE 4
 FLOOR SYSTEM

SPAN	PANEL OR PANEL PT.	COMPONENT	$\begin{array}{\|c\|} \hline 2001 \\ \text { SECTION } \\ \text { LOSS } \end{array}$	2001 COMMENT	2010 SECTION LOSS	2010 COMMENT
			10\%	at 50 " to Lt and Rt of center (under guard timbers)	15\%	Rt
		BF (SF side)	5\%	Lt side (btw Str \& BC)	\checkmark	
			15\%	Rt side (btw Str \& BC)	\checkmark	
			10\%	center (btw stringers)	\checkmark	
		BF (Mty side)	15\%	Lt side (btw Str \& BC)	20\%	
			15\%	Rt side (btw Str \& BC)	20\%	small hole Rt, 5\% SL L5L end
		Web			\checkmark	
2	Panel 6	Stringer (Lt)				
		TF Outbd			5\%	
		TF Inbd			5\%	
		BF Outbd	30\%	at bearing at Pier 2	5\%	usual
		BF Inbd			\checkmark	
		Web			\checkmark	
		End cross frame			10\%	
2	Panel 6	Stringer (Rt)				
		TF Outbd	5\%		\checkmark	
		TF Inbd	5\%		\checkmark	
		BF Outbd	10\%		\checkmark	
		BF Inbd			5\%	
		Web			\checkmark	
2	Panel 6	Str. Top Laterals			\checkmark	
3	Panel 1	Stringer (Lt)				
		TF Outbd			5\%	
		TF Inbd			5\%	
		BF Outbd	20\%	at the bearing at Pier 2	\checkmark	
			10\%	along 3 ft . length of member starting from the bearing	\checkmark	
		BF Inbd			\checkmark	
		Web			\checkmark	
		End cross frame			15\%	
3	Panel 1	Stringer (Rt)				
		TF Outbd	5\%		\checkmark	
		TF Inbd	5\%		\checkmark	
		BF Outbd	10\%		\checkmark	
		BF Inbd			\checkmark	
		Web			\checkmark	
3	Panel 1	Str. Top Laterals			5\%	
3	L1	Floorbeam 1				

Salinas River Bridge Updated Inspection Report

TABLE 4

FLOOR SYSTEM

SPAN	PANEL OR PANEL PT.	COMPONENT	$\begin{gathered} 2001 \\ \text { SECTION } \\ \text { LOSS } \\ \hline \end{gathered}$	2001 COMMENT	$\begin{gathered} 2010 \\ \text { SECTION } \\ \text { LOSS } \\ \hline \end{gathered}$	2010 COMMENT
		TF (SF side)	10\%	at 30 " to Lt and Rt of center (under rails)	\checkmark	
			10\%	at 50 " to Lt and Rt of center (under guard timbers)	\checkmark	
		TF (Mty side)	10\%	at 30 " to $L t$ and $R t$ of center (under rails)	\checkmark	
			10\%	at 50 " to Lt and Rt of center (under guard timbers)	\checkmark	
		BF (SF side)	15\%	Rt side (btw Str \& BC)	\checkmark	5\% SL angle \& middle
		BF (Mty side)	10\%	Rt side (btw Str \& BC)	\checkmark	5\% SL angle \& middle
		Web			\checkmark	
3	Panel 2	Stringer (Lt)				
		TF Outbd	10\%		\checkmark	
		TF Inbd			5\%	
		BF Outbd			5\%	
		BF Inbd			5\%	
		Web			\checkmark	
3	Panel 2	Stringer (Rt)				
		TF Outbd	10\%		\checkmark	
		TF Inbd	10\%		\checkmark	
		BF Outbd	10\%		\checkmark	
		BF Inbd			5\%	
		Web			\checkmark	
3	Panel 2	Str Top Laterals			5\%	
3	L2	Floorbeam 2				
		TF (SF side)	10\%	at 30 " to Lt and Rt of center (under rails)	20\%	15\% SL at Lt end
			10\%	at 50 " to Lt and Rt of center (under guard timbers)	\checkmark	to Rt end
		TF (Mty side)	10\%	at 30 " to Lt and Rt of center (under rails)	\checkmark	
			10\%	at 50 " to Lt and Rt of center (under guard timbers)	\checkmark	
		BF (SF side)	10\%	Lt side (btw Str \& BC)	\checkmark	
			10\%	Rt side (btw Str \& BC)	\checkmark	
			5\%	center (btw stringers)	10\%	
		BF (Mty side)	15\%	Lt side (btw Str \& BC)	\checkmark	
			10\%	Rt side (btw Str \& BC)	\checkmark	
			5\%	center (btw stringers)	10\%	

For abbreviations, see Legend on First page of Appendix 2.
For guide to numbering system and directional

Salinas River Bridge Updated Inspection Report

TABLE 4

FLOOR SYSTEM

SPAN	PANEL OR PANEL PT.	COMPONENT	$\begin{gathered} 2001 \\ \text { SECTION } \\ \text { LOSS } \\ \hline \end{gathered}$	2001 COMMENT	$\begin{array}{\|c\|} \hline 2010 \\ \text { SECTION } \\ \text { LOSS } \\ \hline \end{array}$	2010 COMMENT
		Web	5\%	Lt side (btw Str \& BC)	10\%	
				$\begin{aligned} & 1-1 / 2^{\prime \prime} \times 13 \text { " hole in web at } \\ & \text { top of } \mathrm{Lt} \mathrm{Str} \end{aligned}$	\checkmark	
				$1 " \times 13^{\prime \prime}$ hole in web at top of Rt Str	\checkmark	$\begin{aligned} & \text { 2" } \times 13^{\prime \prime} \text { hole in web at top } \\ & \text { of Rt Str } \end{aligned}$
3	Panel 3	Stringer (Lt)				
		TF Outbd	10\%	along 3 ft . length at both ends of stringer	\checkmark	
		TF Inbd			10\%	L3 end
		BF Outbd			5\%	L2 end only
		BF Inbd			\checkmark	
		Web			5\%	
3	Panel 3	Stringer (Rt)				
		TF Outbd	10\%		\checkmark	
		TF Inbd	10\%		\checkmark	
		BF Outbd	10\%	at horiz leg of angle	\checkmark	
			5\%	at vertical leg of angle	\checkmark	
		BF Inbd			\checkmark	
		Web			\checkmark	
3	Panel 3	Str Top Laterals			5\%	
3	L3	Floorbeam 3				
		TF (SF side)	10\%	at 30 " to Lt and Rt of center (under rails)	\checkmark	
			10\%	at 50 " to Lt and Rt of center (under guard timbers)	\checkmark	
		TF (Mty side)	10\%	at $30^{\prime \prime}$ to Lt and Rt of center (under rails)	\checkmark	
			10\%	at 50 " to Lt and Rt of center (under guard timbers)	\checkmark	to Rt end
		BF (SF side)	10\%	Lt side (btw Str \& BC)	\checkmark	
			10\%	Rt side (btw Str \& BC)	\checkmark	
			5\%	center (btw stringers)	\checkmark	
		BF (Mty side)	5\%	Lt side (btw Str \& BC)	10\%	
			15\%	Rt side (btw Str \& BC)	\checkmark	
			10\%	center (btw stringers)	\checkmark	
		Web		$\begin{aligned} & 1 " \times 13^{\prime \prime} \text { hole in web at top } \\ & \text { of Rt Str } \end{aligned}$	\checkmark	
3	Panel 4	Stringer (Lt)				
		TF Outbd			5\%	
		TF Inbd			5\%	
		BF Outbd			5\%	

For abbreviations, see Legend on First page of Appendix 2.
For guide to numbering system and directional

Salinas River Bridge Updated Inspection Report

TABLE 4
FLOOR SYSTEM

SPAN	PANEL OR PANEL PT.	COMPONENT	$\begin{array}{\|c\|} \hline 2001 \\ \text { SECTION } \\ \text { LOSS } \\ \hline \end{array}$	2001 COMMENT	$\begin{array}{\|c\|} \hline 2010 \\ \text { SECTION } \\ \text { LOSS } \\ \hline \end{array}$	2010 COMMENT
		BF Inbd			\checkmark	
		Web			\checkmark	
3	Panel 4	Stringer (Rt)				
		TF Outbd	10\%		\checkmark	
		TF Inbd	10\%		\checkmark	
		BF Outbd	15\%		\checkmark	
		BF Inbd			\checkmark	
		Web			\checkmark	
3	Panel 4	Str Top Laterals			5\%	
3	L4	Floorbeam 4				
		TF (SF side)	15\%	at 30 " to Lt and Rt of center (under rails)	\checkmark	
			15\%	at 50 to Lt and Rt of center (under guard timbers)	\checkmark	to end Lt \& Rt
		TF (Mty side)	15\%	at 30 " to Lt and Rt of center (under rails)	\checkmark	
			15\%	at 50 " to Lt and Rt of center (under guard timbers)	\checkmark	
		BF (SF side)	5\%	Lt side (btw Str \& BC)	10\%	
			5\%	Rt side (btw Str \& BC)	\checkmark	
		BF (Mty side)	10\%	Lt side (btw Str \& BC)	25\%	
			15\%	Rt side (btw Str \& BC)	20\%	
			10\%	center (btw stringers)	30\%	
		Web	25\%	Lt side (btw Str \& BC) along top of bottom flange angle	\checkmark	5\% SL average
				1" $\times 4$ " hole in web at Lt side, at btm lateral connection angle	\checkmark	2 holes, 1" x 4" hole and 1" diameter hole
				$1-1 / 2^{\prime \prime} \times 13^{\prime \prime}$ hole in web at top of Lt Str	\checkmark	30% SL of $11 / 2^{\prime \prime}$ wide strip above btm angle on Mty side, Lt end
3	Panel 5	Stringer (Lt)				
		TF Outbd			5\%	
		TF Inbd			5\%	
		BF Outbd			5\%	
		BF Inbd			5\%	
		Web			\checkmark	
3	Panel 5	Stringer (Rt)				
		TF Outbd	10\%		\checkmark	
		TF Inbd	10\%		\checkmark	

For abbreviations, see Legend on First page of Appendix 2.
For guide to numbering system and directional designations, see Appendix 1.

Salinas River Bridge Updated Inspection Report

TABLE 4

FLOOR SYSTEM

SPAN	PANEL OR PANEL PT.	COMPONENT	$\begin{gathered} 2001 \\ \text { SECTION } \\ \text { LOSS } \\ \hline \end{gathered}$	2001 COMMENT	$\begin{gathered} 2010 \\ \text { SECTION } \\ \text { LOSS } \\ \hline \end{gathered}$	2010 COMMENT
		BF Outbd	15\%		\checkmark	
		BF Inbd			5\%	
		Web			\checkmark	10% SL in 12 strip at btm both ends
3	Panel 5	Str Top Laterals			5\%	
3	L5	Floorbeam 5				
		TF (SF side)	10\%	at 30" to Lt and Rt of center (under rails)	\checkmark	
			10\%	at 50 " to Lt and Rt of center (under guard timbers)	\checkmark	20\% SL Rt end both SF \& Mty, 10\% SL to Rt end
		TF (Mty side)	10\%	at $30^{\prime \prime}$ to Lt and Rt of center (under rails)	\checkmark	
			10\%	at 50 " to Lt and Rt of center (under guard timbers)	\checkmark	both SF \& Mty, 5% SL to Lt end
		BF (SF side)	5\%	Lt side (btw Str \& BC)	\checkmark	
			10\%	Rt side (btw Str \& BC)	\checkmark	
			5\%	center (btw stringers)	\checkmark	
		BF (Mty side)	10\%	Lt side (btw Str \& BC)	15\%	
			10\%	Rt side (btw Str \& BC)	\checkmark	
			5\%	center (btw stringers)	\checkmark	
		Web			\checkmark	1/2" slot x 30" at top, BF Rt, 5\% SL general
3	Panel 6	Stringer (Lt)				
		TF Outbd			5\%	
		TF Inbd			5\%	
		BF Outbd			5\%	
		BF Inbd			\checkmark	
		Web			\checkmark	
		Strut			5\%	strut 5\% SL, gusset 40\%
		Strut Gusset			40\%	
3	Panel 6	Stringer (Rt)				
		TF Outbd	5\%		\checkmark	
		TF Inbd	5\%		\checkmark	
		BF Outbd	10\%		\checkmark	
		BF Inbd			\checkmark	
		Web			\checkmark	
		End cross frame			10\%	
		Strut			10\%	$\begin{aligned} & \hline \text { strut 10\% SL, gusset 60\% } \\ & \text { SL at truss } \end{aligned}$
		Strut Gusset			60\%	

For abbreviations, see Legend on First page of Appendix 2.
For guide to numbering system and directional

Salinas River Bridge Updated Inspection Report

TABLE 4
 FLOOR SYSTEM

SPAN	PANEL OR PANEL PT.	COMPONENT	$\begin{gathered} 2001 \\ \text { SECTION } \\ \text { LOSS } \\ \hline \end{gathered}$	2001 COMMENT	$\begin{array}{\|c\|} \hline 2010 \\ \text { SECTION } \\ \text { LOSS } \\ \hline \end{array}$	2010 COMMENT
3	Panel 6	Str. Top Laterals			5\%	
4	Panel 1	Stringer (Lt)				
		TF Outbd			5\%	
		TF Inbd			5\%	
		BF Outbd	10\%		\checkmark	
		BF Inbd			10\%	
		Web			\checkmark	
		End cross frame			10\%	
		Strut			5\%	strut 5\% SL, gusset 90\% SL at truss
		Strut Gusset			90\%	
4	Panel 1	Stringer (Rt)				
		TF Outbd	10\%		\checkmark	
		TF Inbd	10\%		\checkmark	
		BF Outbd	10\%		\checkmark	
		BF Inbd			5\%	
		Web			5\%	
		Strut			30\%	strut 30\% SL, gusset 50\% SL at truss, vertical gusset 30\% SL at stringer
		Strut Gusset			50\%	
4	Panel 1	Str Top Laterals			10\%	L0 gusset 100\% SL
4	L1	Floorbeam 1				
		TF (SF side)	15\%	at 30 " to Lt and Rt of center (under rails)	\checkmark	
			15\%	at 50 " to Lt and Rt of center (under guard timbers)	\checkmark	5\% SL Lt, to both ends
		TF (Mty side)	15\%	at $30^{\prime \prime}$ to Lt and Rt of center (under rails)	\checkmark	
			15\%	at 50 to Lt and Rt of center (under guard timbers)	\checkmark	10\% SL Rt, to both ends
		BF (SF side)	10\%	Lt side (btw Str \& BC)	\checkmark	
			15\%	Rt side (btw Str \& BC)		both legs
			5\%	center (btw stringers)	\checkmark	
		BF (Mty side)	10\%	Lt side (btw Str \& BC)	\checkmark	
			15\%	Rt side (btw Str \& BC)	\checkmark	
			10\%	center (btw stringers)	\checkmark	

Salinas River Bridge Updated Inspection Report

TABLE 4

FLOOR SYSTEM

SPAN	PANEL OR PANEL PT.	COMPONENT	$\begin{gathered} 2001 \\ \text { SECTION } \\ \text { LOSS } \\ \hline \end{gathered}$	2001 COMMENT	$\begin{gathered} 2010 \\ \text { SECTION } \\ \text { LOSS } \\ \hline \end{gathered}$	2010 COMMENT
		Web		$1 / 2^{\prime \prime} \times 13^{\prime \prime}$ hole in web at top of Rt stringer	\checkmark	$11 / 2^{\prime \prime} \times 13^{\prime \prime}$ hole in web at top of Rt stringer, 30\% SL of strip 1 " x 30 " at BF, 5% general
4	Panel 2	Stringer (Lt)				
		TF Outbd			5\%	
		TF Inbd			5\%	
		BF Outbd			5\%	
		BF Inbd			\checkmark	
		Web			\checkmark	
4	Panel 2	Stringer (Rt)				
		TF Outbd	10\%		\checkmark	middle
		TF Inbd	10\%		\checkmark	middle
		BF Outbd	15\%		\checkmark	
		BF Inbd			\checkmark	
		Web			\checkmark	
4	Panel 2	Str Top Laterals			5\%	
4	L2	Floorbeam 2				
		TF (SF side)	15\%	at 30 " to Lt and Rt of center (under rails)	\checkmark	
			15\%	at 50 " to Lt and Rt of center (under guard timbers)	\checkmark	5% to both end, both flanges
		TF (Mty side)	15\%	at 30" to Lt and Rt of center (under rails)	\checkmark	
			15\%	at 50 " to Lt and Rt of center (under guard timbers)	\checkmark	
		BF (SF side)	15\%	Lt side (btw Str \& BC)	\checkmark	
			10\%	Rt side (btw Str \& BC)	\checkmark	
			5\%	center (btw stringers)	10\%	
		BF (Mty side)	15\%	Lt side (btw Str \& BC)	\checkmark	
			15\%	Rt side (btw Str \& BC)	\checkmark	
			10\%	center (btw stringers)	\checkmark	
		Web	5\%	Lt side (btw Str \& BC)	\checkmark	
				1 " diameter hole in web at top of Lt stringer	\checkmark	at top of BF Rt side, 3" x $1 / 2^{\prime \prime}$ hole near stringer, 30% SL over 18" Rt side
4	Panel 3	Stringer (Lt)				
		TF Outbd			5\%	
		TF Inbd			5\%	
		BF Outbd			5\%	
		BF Inbd			5\%	

For abbreviations, see Legend on First page of Appendix 2.
For guide to numbering system and directional

Salinas River Bridge

Updated Inspection Report

TABLE 4
 FLOOR SYSTEM

SPAN	PANEL OR PANEL PT.	COMPONENT	$\begin{gathered} 2001 \\ \text { SECTION } \\ \text { LOSS } \\ \hline \end{gathered}$	2001 COMMENT	$\begin{array}{\|c\|} \hline 2010 \\ \text { SECTION } \\ \text { LOSS } \\ \hline \end{array}$	2010 COMMENT
		Web			\checkmark	
4	Panel 3	Stringer (Rt)				
		TF Outbd			10\%	
		TF Inbd			10\%	
		BF Outbd	15\%		\checkmark	
		BF Inbd			5\%	
		Web			\checkmark	10\% SL, 6' at L3 end
4	Panel 3	Str Top Laterals			5\%	
4	L3	Floorbeam 3				
		TF (SF side)	10\%	at 30" to Lt of center (under rail)	\checkmark	
			15\%	at 30" to Rt of center (under rail)	\checkmark	
			10\%	at 50 " to Lt of center (under guard timber)	15\%	
			15\%	at 50 " to Rt of center (under guard timber)	\checkmark	
		TF (Mty side)	10\%	at 30" to Lt of center (under rail)	\checkmark	
			15\%	at 30" to Rt of center (under rail)	\checkmark	
			10\%	at 50" to Lt of center (under guard timber)	15\%	5\% SL to ends, all
			15\%	at 50 " to Rt of center (under guard timber)	\checkmark	
		BF (SF side)	5\%	Lt side (btw Str \& BC)	10\%	
			10\%	Rt side (btw Str \& BC)	\checkmark	
			10\%	center (btw stringers)	\checkmark	
		BF (Mty side)	10\%	Lt side (btw Str \& BC)	\checkmark	
			10\%	Rt side (btw Str \& BC)	\checkmark	
			5\%	center (btw stringers)	10\%	
		Web			\checkmark	5\% SL Rt at BF
4	Panel 4	Stringer (Lt)				
		TF Outbd			10\%	
		TF Inbd			10\%	
		BF Outbd			5\%	
		BF Inbd			\checkmark	
		Web			\checkmark	
4	Panel 4	Stringer (Rt)				
		TF Outbd	5\%		\checkmark	
		TF Inbd	5\%		\checkmark	
		BF Outbd	10\%		\checkmark	
		BF Inbd			\checkmark	

For abbreviations, see Legend on First page of Appendix 2.
For guide to numbering system and directional

Salinas River Bridge

Updated Inspection Report

TABLE 4

FLOOR SYSTEM

SPAN	PANEL OR PANEL PT	COMPONENT	$\begin{array}{\|c\|} \hline 2001 \\ \text { SECTION } \\ \text { LOSS } \\ \hline \end{array}$	2001 COMMENT	$\begin{gathered} 2010 \\ \text { SECTION } \\ \text { LOSS } \\ \hline \end{gathered}$	2010 COMMENT
		Web			\checkmark	
4	Panel 4	Str Top Laterals			5\%	
4	L4	Floorbeam 4				
		TF (SF side)	20\%	at 30 " to Lt of center (under rail)	\checkmark	
			15\%	at 30 " to Rt of center (under rail)	20\%	
			20\%	at 50 to Lt of center (under guard timber)	\checkmark	
			15\%	at 50 to Rt of center (under guard timber)	\checkmark	
		TF (Mty side)	20\%	at 30" to Lt of center (under rail)	\checkmark	
			15\%	at 30" to Rt of center (under rail)	20\%	
			20\%	at 50 " to Lt of center (under guard timber)	\checkmark	
			15\%	at 50 to Rt of center (under guard timber)	\checkmark	
		BF (SF side)	20\%	Lt side (btw Str \& BC)	\checkmark	
			10\%	Rt side (btw Str \& BC)	15\%	
			5\%	center (btw stringers)	10\%	
		BF (Mty side)	20\%	Lt side (btw Str \& BC)	\checkmark	
			10\%	Rt side (btw Str \& BC)	\checkmark	
			5\%	center (btw stringers)	10\%	
		Web		web plate thickness reduced 50% along 1 ft . length of bottom flange angle, starting 1.5 ft . from left end of floorbeam		Rt side: $1 / 2^{\prime \prime} \times 30$ " strip at top of bottom flange, 80% SL of 50% of strip, 100% SL of 50% of strip Lt side: 35% SL of 1 " x 12" strip at top of bottom flange, 10% SL of rest
4	Panel 5	Stringer (Lt)				
		TF Outbd			5\%	
		TF Inbd			5\%	
		BF Outbd	5\%		10\%	
		BF Inbd			\checkmark	
		Web			\checkmark	
4	Panel 5	Stringer (Rt)				
		TF Outbd	10\%		\checkmark	5\% under
		TF Inbd	10\%		\checkmark	
		BF Outbd	10\%		15\%	

For abbreviations, see Legend on First page of Appendix 2.
For guide to numbering system and directional

Salinas River Bridge Updated Inspection Report

TABLE 4

FLOOR SYSTEM

SPAN	PANEL OR PANEL PT.	COMPONENT	$\begin{gathered} 2001 \\ \text { SECTION } \\ \text { LOSS } \end{gathered}$	2001 COMMENT	$\begin{gathered} 2010 \\ \text { SECTION } \\ \text { LOSS } \\ \hline \end{gathered}$	2010 COMMENT
		BF Inbd			\checkmark	
		Web			5\%	
4	Panel 5	Str Top Laterals			5\%	
4	L5	Floorbeam 5				
		TF (SF side)	20\%	at 30" to Lt of center (under rail)	\checkmark	
			15\%	at 30 " to Rt of center (under rail)	20\%	
			20\%	at 50" to Lt of center (under guard timber)	\checkmark	
			15\%	at 50 to Rt of center (under guard timber)	20\%	
		TF (Mty side)	20\%	at 30" to Lt of center (under rail)	\checkmark	5\% to ends all
			15\%	at 30 " to Rt of center (under rail)	20\%	$24 "$ Lt \& Rt of centerline 20% SL
			20\%	at 50 " to Lt of center (under guard timber)	\checkmark	
			15\%	at 50 " to Rt of center (under guard timber)	20\%	
		BF (SF side)	10\%	Lt side (btw Str \& BC)	\checkmark	
			10\%	Rt side (btw Str \& BC)	\checkmark	5\% SL at center
		BF (Mty side)	10\%	Lt side (btw Str \& BC)	20\%	
			15\%	Rt side (btw Str \& BC)	\checkmark	
		Web		$1^{\prime \prime} \times 13^{\prime \prime}$ hole in web at top of Rt stringer	\checkmark	10\% SL above BF Rt \& Lt
4	Panel 6	Stringer (Lt)				
		TF Outbd			5\%	
		TF Inbd			5\%	
		BF Outbd	10\%	at bearing, at Pier 4	5\%	
		BF Inbd			\checkmark	
		Web			\checkmark	
		Strut			5\%	$\begin{aligned} & \text { strut 5\% SL, gusset 80\% } \\ & \text { SL } \end{aligned}$
		Strut Gusset			80\%	
4	Panel 6	Stringer (Rt)				
		TF Outbd	5\%		\checkmark	
		TF Inbd	5\%		\checkmark	
		BF Outbd	10\%		\checkmark	
		BF Inbd			\checkmark	
		Web			\checkmark	10% SL over 3" at L5 end

For abbreviations, see Legend on First page of Appendix 2.
For guide to numbering system and directional

Salinas River Bridge Updated Inspection Report

TABLE 4

FLOOR SYSTEM

SPAN	PANEL OR PANEL PT.	COMPONENT	$\begin{gathered} 2001 \\ \text { SECTION } \\ \text { LOSS } \\ \hline \end{gathered}$	2001 COMMENT	$\begin{array}{\|c\|} \hline 2010 \\ \text { SECTION } \\ \text { LOSS } \\ \hline \end{array}$	2010 COMMENT
		Strut			10\%	strut 10\% SL, gusset 60\% SL, vertical gusset 65\% SL
		Strut Gusset			60\%	
4	Panel 6	Str. Top Laterals			5\%	
5	Panel 1	Stringer (Lt)				
		TF Outbd			\checkmark	
		TF Inbd			\checkmark	
		BF Outbd			5\%	
		BF Inbd			\checkmark	
		Web			\checkmark	
		Strut			5\%	$\begin{aligned} & \text { strut 5\% SL, gusset 90\% } \\ & \text { SL } \end{aligned}$
		Strut Gusset			90\%	
5	Panel 1	Stringer (Rt)				
		TF Outbd	5\%		\checkmark	
		TF Inbd	5\%		\checkmark	
		BF Outbd	30\%	notch in edge of BF at an isolated location just past the sole plate at the fixed bearing	\checkmark	
			15\%	throughout length of member, except as noted above	\checkmark	
		BF Inbd			\checkmark	
		Web			\checkmark	
		Strut			40\%	strut 40\% SL, gusset 40\% SL, vertical gusset 5\% SL
		Strut Gusset			40\%	
5	Panel 1	Str Top Laterals			5\%	
5	L1	Floorbeam 1				
		TF (SF side)	10\%	at 30 " to Lt and Rt of center (under rails)	\checkmark	
			10\%	at 50 " to Lt and Rt of center (under guard timbers)	15\%	
		TF (Mty side)	10\%	at 30" to Lt and Rt of center (under rails)	\checkmark	
			10\%	at 50 " to Lt and Rt of center (under guard timbers)	15\%	
		BF (SF side)	10\%	Rt side (btw Str \& BC)	\checkmark	Lt ok, center 5\% SL

For abbreviations, see Legend on First page of Appendix 2.
For guide to numbering system and directional designations, see Appendix 1.

Salinas River Bridge

Updated Inspection Report
TABLE 4
FLOOR SYSTEM

SPAN	PANEL OR PANEL PT.	COMPONENT	$\begin{gathered} 2001 \\ \text { SECTION } \\ \text { LOSS } \\ \hline \end{gathered}$	2001 COMMENT	$\begin{array}{\|c\|} \hline 2010 \\ \text { SECTION } \\ \text { LOSS } \\ \hline \end{array}$	2010 COMMENT
		BF (Mty side)	10\%	Lt side (btw Str \& BC)	\checkmark	
			10\%	Rt side (btw Str \& BC)	\checkmark	
			5\%	center (btw stringers)	\checkmark	
		Web			5\%	15\% SL strip at BF
5	Panel 2	Stringer (Lt)				
		TF Outbd			10\%	
		TF Inbd			10\%	
		BF Outbd			5\%	
		BF Inbd			\checkmark	
		Web			\checkmark	
5	Panel 2	Stringer (Rt)				
		TF Outbd	10\%		\checkmark	
		TF Inbd	10\%		\checkmark	
		BF Outbd	5\%		\checkmark	
		BF Inbd			\checkmark	
		Web			\checkmark	
5	Panel 2	Str Top Laterals			5\%	
5	L2	Floorbeam 2				
		TF (SF side)	10\%	at 30" to Lt of center (under rail)	\checkmark	
			15\%	at 30" to Rt of center (under rail)	\checkmark	
			10\%	at 50 " to Lt of center (under guard timber)	15\%	
			15\%	at 50 " to Rt of center (under guard timber)	\checkmark	
		TF (Mty side)	10\%	$\begin{aligned} & \text { at 30" to Lt of center } \\ & \text { (under rail) } \end{aligned}$	\checkmark	
			15\%	at 30" to Rt of center (under rail)	\checkmark	
			10\%	at 50 " to Lt of center (under guard timber)	15\%	
			15\%	at 50 " to Rt of center (under guard timber)	\checkmark	
		BF (SF side)	10\%	Lt side (btw Str \& BC)	\checkmark	
			15\%	Rt side (btw Str \& BC)	\checkmark	
			5\%	center (btw stringers)	\checkmark	
		BF (Mty side)	20\%	Lt side (btw Str \& BC)	\checkmark	
			15\%	Rt side (btw Str \& BC)	\checkmark	
			5\%	center (btw stringers)	10\%	

Salinas River Bridge Updated Inspection Report

TABLE 4

FLOOR SYSTEM

SPAN	PANEL OR PANEL PT.	COMPONENT	$\begin{gathered} 2001 \\ \text { SECTION } \\ \text { LOSS } \\ \hline \end{gathered}$	2001 COMMENT	$\begin{array}{\|c\|} \hline 2010 \\ \text { SECTION } \\ \text { LOSS } \\ \hline \end{array}$	2010 COMMENT
		Web		web plate thickness reduced 50% along edge of bottom flange angle, Lt side (btw Str \& BC)	\checkmark	Lt \& Rt side
5	Panel 3	Stringer (Lt)				
		TF Outbd			5\%	
		TF Inbd			5\%	
		BF Outbd			5\%	
		BF Inbd			\checkmark	
		Web			\checkmark	
5	Panel 3	Stringer (Rt)				
		TF Outbd	10\%		\checkmark	
		TF Inbd	10\%		\checkmark	
		BF Outbd	10\%		\checkmark	
		BF Inbd			\checkmark	
		Web			\checkmark	
5	Panel 3	Str Top Laterals			5\%	
5	L3	Floorbeam 3				
		TF (SF side)	15\%	at 30 " to Lt and Rt of center (under rails)	\checkmark	
			15\%	at 50 " to Lt and Rt of center (under guard timbers)	\checkmark	5\% SL to end
			30\%	at 20" to Lt of center	\checkmark	
		TF (Mty side)	15\%	at 30° to Lt and Rt of center (under rails)	\checkmark	
			15\%	at 50 " to Lt and Rt of center (under guard timbers)	\checkmark	10\% SL to end both
			30\%	at 20" to Lt of center		
		BF (SF side)	10\%	Lt side (btw Str \& BC)	\checkmark	
			10\%	Rt side (btw Str \& BC)	\checkmark	
			5\%	center (btw stringers)		
		BF (Mty side)	5\%	Lt side (btw Str \& BC)	10\%	
			10\%	Rt side (btw Str \& BC)	\checkmark	
			10\%	center (btw stringers)	\checkmark	
		Web		web plate thickness reduced by 20% along edge of bottom flange angle, Lt side (btw Str \& BC)	5\%	Rt side 10" hole at bottom flange near stringer, 50\% SL along rest, 5% SL web general
5	Panel 4	Stringer (Lt)				

For abbreviations, see Legend on First page of Appendix 2.

Salinas River Bridge Updated Inspection Report

TABLE 4

FLOOR SYSTEM

SPAN	PANEL OR PANEL PT	COMPONENT	$\begin{array}{\|c\|} \hline 2001 \\ \text { SECTION } \\ \text { LOSS } \\ \hline \end{array}$	2001 COMMENT	$\begin{gathered} 2010 \\ \text { SECTION } \\ \text { LOSS } \\ \hline \end{gathered}$	2010 COMMENT
		TF Outbd			5\%	
		TF Inbd			5\%	
		BF Outbd			5\%	
		BF Inbd			\checkmark	
		Web			\checkmark	
5	Panel 4	Stringer (Rt)				
		TF Outbd	10\%		\checkmark	
		TF Inbd	10\%		\checkmark	
		BF Outbd	10\%		\checkmark	
		BF Inbd			\checkmark	
		Web			\checkmark	
		End cross frame			5\%	
5	Panel 4	Str Top Laterals				
5	L4	Floorbeam 4				
		TF (SF side)	10\%	at 30 " to Lt of center (under rail)	\checkmark	
			5\%	at 30" to Rt of center (under rail)	\checkmark	
			10\%	at 50 " to Lt of center (under guard timber)	15\%	
			5\%	at 50 to Rt of center (under guard timber)	20\%	10\% SL to end
		TF (Mty side)	10\%	at 30 " to Lt of center (under rail)	\checkmark	
			5\%	at 30" to Rt of center (under rail)	\checkmark	
			10\%	at 50 " to Lt of center (under guard timber)	15\%	
			5\%	at 50 " to Rt of center (under guard timber)	20\%	60" of 20% SL, 10% SL to end
		BF (SF side)	5\%	Rt side (btw Str \& BC)	10\%	Lt
		BF (Mty side)	5\%	Lt side (btw Str \& BC)	15\%	
			10\%	Rt side (btw Str \& BC)	\checkmark	
			5\%	center (btw stringers)	\checkmark	
		Web		1" x 13 " hole in web at top of Lt stringer	5\%	Lt end
5	Panel 5	Stringer (Lt)				
		TF Outbd			10\%	
		TF Inbd			10\%	
		BF Outbd			5\%	
		BF Inbd			\checkmark	
		Web			\checkmark	
5	Panel 5	Stringer (Rt)				

For abbreviations, see Legend on First page of Appendix 2.

Salinas River Bridge

 Updated Inspection ReportTABLE 4
FLOOR SYSTEM

SPAN	PANEL OR PANEL PT.	COMPONENT	$\begin{gathered} 2001 \\ \text { SECTION } \\ \text { LOSS } \\ \hline \end{gathered}$	2001 COMMENT	$\begin{array}{\|c\|} \hline 2010 \\ \text { SECTION } \\ \text { LOSS } \\ \hline \end{array}$	2010 COMMENT
		TF Outbd	10\%		\checkmark	
		TF Inbd	10\%		\checkmark	
		BF Outbd	15\%		\checkmark	
		BF Inbd			\checkmark	
		Web			\checkmark	
5	Panel 5	Str Top Laterals			5\%	
5	L5	Floorbeam 5				
		TF (SF side)	10\%	at 30 " to Lt of center (under rail)	\checkmark	
			15\%	at 30" to Rt of center (under rail)	\checkmark	
			10\%	at 50 " to Lt of center (under guard timber)	\checkmark	
			15\%	at 50 " to Rt of center (under guard timber)	\checkmark	
		TF (Mty side)	10\%	at 30 " to Lt of center (under rail)	\checkmark	
			15\%	at $30 "$ to Rt of center (under rail)	\checkmark	
			10\%	at 50 " to Lt of center (under guard timber)	\checkmark	
			15\%	at 50" to Rt of center (under guard timber)	\checkmark	
		BF (SF side)	5\%	Lt side (btw Str \& BC)	\checkmark	
			15\%	Rt side (btw Str \& BC)	\checkmark	
			10\%	center (btw stringers)	\checkmark	
		BF (Mty side)	15\%	Lt side (btw Str \& BC)	20\%	
			10\%	Rt side (btw Str \& BC)	\checkmark	
			10\%	center (btw stringers)	10\%	
		Web			\checkmark	30% SL spot 6" at end one Lt gusset
5	Panel 6	Stringer (Lt)				
		TF Outbd			\checkmark	
		TF Inbd			\checkmark	
		BF Outbd			\checkmark	
		BF Inbd			\checkmark	
		Web			\checkmark	
		Strut				strut ok, gusset 10\% SL
		Strut Gusset			10\%	
5	Panel 6	Stringer (Rt)				
		TF Outbd	10\%		\checkmark	
		TF Inbd	10\%		\checkmark	
		BF Outbd	5\%		\checkmark	

For abbreviations, see Legend on First page of Appendix 2.
For guide to numbering system and directional

Salinas River Bridge

Updated Inspection Report

TABLE 4

FLOOR SYSTEM

SPAN	PANEL OR PANEL PT.	COMPONENT	2001 SECTION LOSS	2001 COMMENT	2010 SECTION LOSS	2010 COMMENT
		BF Inbd			5%	
		Web			\checkmark	
		Strut				strut ok, gusset 5\% SL, vertical gusset 5\% SL
$\mathbf{5}$	Panel 6	Strut Gusset				5%

Salinas River Bridge Updated Inspection Report

TABLE 5
 STRINGER BEARINGS

SPAN	PANEL OR PANEL PT.	COMPONENT	2001 COMMENT	$\begin{gathered} 2010 \\ \text { CHECK } \\ \hline \end{gathered}$	2010 COMMENT
2	L0	Str. Fixed Brg. (Lt)			5\% SL
2	L0	Str. Fixed Brg. (Rt)			5\% SL
2	L6	Str. Exp. Brg. (Lt)	Corrosion at stringer BF, sole plate, shim plate and bed plate, with no visible signs of expansion and contraction (30\% SL in stringer BF, outboard side).	\checkmark	(40\% SL in stringer BF, outboard side)
2	L6	Str. Exp. Brg. (Rt)	Corrosion at stringer BF, sole plate, shim plate and bed plate, with no visible signs of expansion and contraction.	\checkmark	
			End of stringer in contact with stringer of Span 3, Panel 1 (probably due to previously documented movement of substructure caused by an earthquake).	\checkmark	Rt side in contact, Lt side has a 1" gap
3	L0	Str. Fixed Brg. (Lt)	Corrosion at stringer BF, sole plate, shim plate and bed plate.	\checkmark	
3	LO	Str. Fixed Brg. (Rt)	Corrosion at stringer BF, sole plate, shim plate and bed plate.	\checkmark	
			End of stringer in contact with stringer of Span 2, Panel 6 (probably due to previously documented movement of substructure caused by an earthquake).	\checkmark	
3	L6	Str. Exp. Brg. (Lt)	Minor corrosion at shim plate and bed plate.	\checkmark	
3	L6	Str. Exp. Brg. (Rt)	Corrosion at stringer BF, sole plate, shim plate and bed plate with SL along edges of plates and btm flange.	\checkmark	
4	L0	Str. Fixed Brg. (Lt)	Minor corrosion at shim plate and bed plate.	\checkmark	
4	LO	Str. Fixed Brg. (Rt)	Corrosion at stringer BF , sole plate, shim plate and bed plate with minor section loss in Str BF and along edges of plates.	\checkmark	

For abbreviations, see Legend on First page of Appendix 2.
For guide to numbering system and directional designations, see Appendix 1.

Salinas River Bridge Updated Inspection Report

TABLE 5
 STRINGER BEARINGS

SPAN	PANEL OR PANEL PT.	COMPONENT	2001 COMMENT	2010 CHECK	2010 COMMENT
4				10% SL of the end bearing stiffener, outboard side.	\checkmark
4	L6	Str. Exp. Brg. (Lt)	Corrosion at stringer BF, sole plate, shim plate and bed plate with minor section loss in Str BF and along edges of plates.	\checkmark	
5	L0	Str. Fixed Brg. (Lt)			

Salinas River Bridge Updated Inspection Report

TABLE 6
RAIL TIES

SPAN	PANEL OR PANEL PT.	COMPONENT	2001 COMMENT	2010 COMMENT
1	1	Panel Ties	N / A	Fair
1	2	Panel Ties	N / A	Fair
1	3	Panel Ties	N / A	Fair
1	4	Panel Ties	N / A	Fair
1	5	Panel Ties	N / A	Fair
1	6	Panel Ties	N / A	Fair
2	1	Panel Ties	N / A	Fair
2	2	Panel Ties	N / A	Fair
2	3	Panel Ties	N / A	Fair
2	4	Panel Ties	N / A	Fair
2	5	Panel Ties	N / A	Fair
2	6	Panel Ties	N / A	Fair
3	1	Panel Ties	N / A	Fair
3	2	Panel Ties	N / A	Fair
3	3	Panel Ties	N / A	Fair
3	4	Panel Ties	N / A	Fair
3	5	Panel Ties	N / A	Fair
3	6	Panel Ties	N / A	Fair
4	1	Panel Ties	N / A	Fair
4	2	Panel Ties	N / A	Fair
4	3	Panel Ties	N / A	Fair
4	4	Panel Ties	N / A	Fair
4	5	Panel Ties	N / A	Poor
4	6	Panel Ties	N / A	Poor
5	1	Panel Ties	N / A	Poor
5	2	Panel Ties	N / A	Poor
5	3	Panel Ties	N / A	Poor
5	4	Panel Ties	N / A	Poor
5	5	Panel Ties	N/A	Poor
5	6	Panel Ties		Poor

APPENDIX 3

LOAD RATINGS

Appendix 3

Appendix 3

Appendix 3

Appendix 3
Appendix 3

Appendix 3

Appendix 3

SALINAS RIVER

RAILROAD BRIDGE

AS-INSPECTED
LOAD RATING

CALCULATIONS

SALINAS RIVER BRIDGE
AS-INSPECTED LOAD RATING - 31 FT. DEEP TRUSS

MEMBER	2010 CAPACITY (KIPS)	DL (KIPS)	LL (E80-AXLE-KIPS)	DIST.	IMPACT \%	RE \%	LL+I (KIPS)	2010 RF	2010 E-RATING
End Post LOU1	594	84.17	766.62	0.5	21.5	5.882	488.1	1.04	83.6
Bottom Chord (LC1) LOL2	285	50.61	460.85	0.5	21.5	5.882	293.4	0.80	63.9
Bottom Chord (LC2) L2L4	440	91.63	799.53	0.5	21.5	5.882	509.0	0.68	54.7
Bottom Chord (LC1) L4L6	270	50.61	460.85	0.5	21.5	5.882	293.4	0.75	59.8
Top Chord U1U2	464	80.90	715.06	0.5	21.5	5.882	455.3	0.84	67.3
Top Chord U2U3	429	80.90	715.06	0.5	21.5	5.882	455.3	0.77	61.2
Top Chord U3U4	436	80.90	715.06	0.5	21.5	5.882	455.3	0.78	62.4
Top Chord U4U5	466	80.90	715.06	0.5	21.5	5.882	455.3	0.85	67.7
U1L2 Diag. (D1) (ten.)	320	50.38	508.60	0.5	21.5	5.882	323.8	0.83	66.5
L2U3 Diag. (D2) (comp.)	346	17.84	296.01	0.5	21.5	5.882	188.5	1.74	139.2
U3L4 Diag. (D2) (comp.)	300	17.84	296.01	0.5	21.5	5.882	188.5	1.49	119.6
L4U5 Diag. (D1) (ten.)	319	50.38	508.60	0.5	21.5	5.882	323.8	0.83	66.3
L3U3 Hanger (center)	302	18.00	290.80	0.5	39.0	5.882	210.6	1.35	107.9
L1U1	281	16.50	291.20	0.5	39.0	5.882	210.9	1.25	100.3
L2U2	ZERO FORCE MEMBER			0.5	39.0	5.882	0.0	\#VALUE!	\#VALUE!
L4U4	ZERO FORCE MEMBER			0.5	39.0	5.882	0.0	\#VALUE!	\#VALUE!
L5U5	284	16.50	291.20	0.5	39.0	5.882	210.9	1.27	101.5
End Post U5L6	520	84.17	766.62	0.5	21.5	5.882	488.1	0.89	71.4

SALINAS RIVER BRIDGE
AS-INSPECTED LOAD RATING - 31 FT. DEEP TRUSS
RIGHT TRUSS MEMBERS - LOAD CASE A

MEMBER	2010 CAPACITY (KIPS)	DL (KIPS)	LL (E80-AXLE-KIPS)	DIST.	IMPACT \%	RE \%	LL+l (KIPS)	2010 RF	2010 E-RATING
End Post LOU1	604	84.17	766.62	0.5	21.5	5.882	488.1	1.06	85.1
Bottom Chord (LC1) L0L2	252	50.61	460.85	0.5	21.5	5.882	293.4	0.69	54.9
Bottom Chord (LC2) L2L4	492	91.63	799.53	0.5	21.5	5.882	509.0	0.79	62.9
Bottom Chord (LC1) L4L6	230	50.61	460.85	0.5	21.5	5.882	293.4	0.61	48.9
Top Chord U1U2	403	80.90	715.06	0.5	21.5	5.882	455.3	0.71	56.6
Top Chord U2U3	388	80.90	715.06	0.5	21.5	5.882	455.3	0.68	54.0
Top Chord U3U4	406	80.90	715.06	0.5	21.5	5.882	455.3	0.71	57.2
Top Chord U4U5	397	80.90	715.06	0.5	21.5	5.882	455.3	0.69	55.5
U1L2 Diag. (D1) (ten.)	322	50.38	508.60	0.5	21.5	5.882	323.8	0.84	67.1
L2U3 Diag. (D2) (comp.)	298	17.84	296.01	0.5	21.5	5.882	188.5	1.49	119.1
U3L4 Diag. (D2) (comp.)	324	17.84	296.01	0.5	21.5	5.882	188.5	1.62	129.8
L4U5 Diag. (D1) (ten.)	308	50.38	508.60	0.5	21.5	5.882	323.8	0.79	63.6
L3U3 Hanger (center)	267	18.00	290.80	0.5	39.0	5.882	210.6	1.18	94.6
L1U1	291	16.50	291.20	0.5	39.0	5.882	210.9	1.30	104.1
L2U2	ZERO FORCE MEMBER			0.5	39.0	5.882	0.0	\#VALUE!	\#VALUE!
L4U4	ZERO FORCE MEMBER			0.5	39.0	5.882	0.0	\#VALUE!	\#VALUE!
L5U5	288	16.50	291.20	0.5	39.0	5.882	210.9	1.29	103.0
End Post U5L6	588	84.17	766.62	0.5	21.5	5.882	488.1	1.03	82.6

MEMBER	2010 CAPACITY (KIPS)	DL (KIPS)	LL (E80-AXLE-KIPS)	DIST.	IMPACT \%	RE \%	LL+I (KIPS)	2010 RF	2010 E-RATING
End Post LOU1	876	84.17	766.62	0.5	21.5	5.882	488.1	1.62	129.8
Bottom Chord (LC1) L0L2	366	50.61	460.85	0.5	21.5	5.882	293.4	1.08	86.1
Bottom Chord (LC2) L2L4	715	91.63	799.53	0.5	21.5	5.882	509.0	1.23	98.0
Bottom Chord (LC1) L4L6	334	50.61	460.85	0.5	21.5	5.882	293.4	0.97	77.4
Top Chord U1U2	588	80.90	715.06	0.5	21.5	5.882	455.3	1.11	89.1
Top Chord U2U3	566	80.90	715.06	0.5	21.5	5.882	455.3	1.07	85.3
Top Chord U3U4	593	80.90	715.06	0.5	21.5	5.882	455.3	1.12	89.9
Top Chord U4U5	579	80.90	715.06	0.5	21.5	5.882	455.3	1.09	87.5
U1L2 Diag. (D1) (ten.)	468	50.38	508.60	0.5	21.5	5.882	323.8	1.29	103.2
L2U3 Diag. (D2) (comp.)	433	17.84	296.01	0.5	21.5	5.882	188.5	2.20	176.1
U3L4 Diag. (D2) (comp.)	469	17.84	296.01	0.5	21.5	5.882	188.5	2.40	191.7
L4U5 Diag. (D1) (ten.)	448	50.38	508.60	0.5	21.5	5.882	323.8	1.23	98.1
L3U3 Hanger (center)	388	18.00	290.80	0.5	39.0	5.882	210.6	1.76	140.7
L1U1	423	16.50	291.20	0.5	39.0	5.882	210.9	1.93	154.3
L2U2	ZERO FORCE MEMBER			0.5	39.0	5.882	0.0	\#VALUE!	\#VALUE!
L4U4	ZERO FORCE MEMBER			0.5	39.0	5.882	0.0	\#VALUE!	\#VALUE!
L5U5	419	16.50	291.20	0.5	39.0	5.882	210.9	1.91	152.6
End Post U5L6	854	84.17	766.62	0.5	21.5	5.882	488.1	1.58	126.1

Appendix 3
AS-INSPECTED LOAD RATING-31 FT. DEEP TRUSS
LEFT TRUSS MEMBERS - LOAD CASE B

MEMBER	2010 CAPACITY (KIPS)	DL (KIPS)	LL (E80-AXLE-KIPS)	DIST.	IMPACT \%	RE \%	LL+I (KIPS)	WIND	LONGIT.	LATERAL	2010 RF	2010 E-RATING
End Post LOU1	743	84.17	766.62	0.5	21.5	5.882	488.1	10.8	0.0	5.0	1.32	105.3
Bottom Chord (LC1) LOL2	356	50.61	460.85	0.5	21.5	5.882	293.4	49.8	148.0	30.4	0.51	40.9
Bottom Chord (LC2) L2L4	550	91.63	799.53	0.5	21.5	5.882	509.0	66.6	148.0	39.7	0.54	42.9
Bottom Chord (LC1) L4L6	337	50.61	460.85	0.5	21.5	5.882	293.4	49.8	148.0	30.4	0.47	37.4
Top Chord U1U2	580	80.90	715.06	0.5	21.5	5.882	455.3	17.7	0.0	4.8	1.05	83.8
Top Chord U2U3	537	80.90	715.06	0.5	21.5	5.882	455.3	17.7	0.0	4.8	0.95	76.1
Top Chord U3U4	545	80.90	715.06	0.5	21.5	5.882	455.3	17.7	0.0	4.8	0.97	77.5
Top Chord U4U5	583	80.90	715.06	0.5	21.5	5.882	455.3	17.7	0.0	4.8	1.05	84.2
U1L2 Diag. (D1) (ten.)	400	50.38	508.60	0.5	21.5	5.882	323.8	6.5	0.0	4.0	1.05	83.7
L2U3 Diag. (D2) (comp.)	432	17.84	296.01	0.5	21.5	5.882	188.5	2.2	0.0	3.0	2.17	173.7
U3L4 Diag. (D2) (comp.)	374	17.84	296.01	0.5	21.5	5.882	188.5	2.2	0.0	3.0	1.86	149.1
L4U5 Diag. (D1) (ten.)	398	50.38	508.60	0.5	21.5	5.882	323.8	6.5	0.0	4.0	1.04	83.3
L3U3 Hanger (center)	378	18.00	290.80	0.5	39.0	5.882	210.6	3.5	0.0	4.8	1.67	133.4
L1U1	351	16.50	291.20	0.5	39.0	5.882	210.9	3.5	276.0	4.8	0.63	50.5
L2U2	ZERO FORCE MEMBER			0.5	39.0	5.882	0.0	3.5	276.0	4.8	\#VALUE!	\#VALUE!
L4U4	ZERO FORCE MEMBER			0.5	39.0	5.882	0.0	3.5	276.0	4.8	\#VALUE!	\#VALUE!
L5U5	355	16.50	291.20	0.5	39.0	5.882	210.9	3.5	276.0	4.8	0.65	52.0
End Post U5L6	650	84.17	766.62	0.5	21.5	5.882	488.1	10.8	0.0	5.0	1.13	90.1

MAXIMUM RATING												
MEMBER	2010 CAPACITY (KIPS)	DL (KIPS)	LL (E80-AXLE-KIPS)	DIST.	IMPACT \%	RE \%	LL+I (KIPS)	WIND	LONGIT.	LATERAL	2010 RF	2010 E-RATING
End Post LOU1	1078	84.17	766.62	0.5	21.5	5.882	488.1	10.8	0.0	5.0	2.00	160.3
Bottom Chord (LC1) LOL2	518	50.61	460.85	0.5	21.5	5.882	293.4	49.8	148.0	30.4	0.88	70.1
Bottom Chord (LC2) L2L4	800	91.63	799.53	0.5	21.5	5.882	509.0	66.6	148.0	39.7	0.92	73.3
Bottom Chord (LC1) L4L6	491	50.61	460.85	0.5	21.5	5.882	293.4	49.8	148.0	30.4	0.82	65.3
Top Chord U1U2	846	80.90	715.06	0.5	21.5	5.882	455.3	17.7	0.0	4.8	1.63	130.5
Top Chord U2U3	783	80.90	715.06	0.5	21.5	5.882	455.3	17.7	0.0	4.8	1.49	119.4
Top Chord U3U4	795	80.90	715.06	0.5	21.5	5.882	455.3	17.7	0.0	4.8	1.52	121.4
Top Chord U4U5	850	80.90	715.06	0.5	21.5	5.882	455.3	17.7	0.0	4.8	1.64	131.2
U1L2 Diag. (D1) (ten.)	581	50.38	508.60	0.5	21.5	5.882	323.8	6.5	0.0	4.0	1.61	128.6
L2U3 Diag. (D2) (comp.)	627	17.84	296.01	0.5	21.5	5.882	188.5	2.2	0.0	3.0	3.20	256.2
U3L4 Diag. (D2) (comp.)	543	17.84	296.01	0.5	21.5	5.882	188.5	2.2	0.0	3.0	2.76	220.6
L4U5 Diag. (D1) (ten.)	579	50.38	508.60	0.5	21.5	5.882	323.8	6.5	0.0	4.0	1.60	128.1
L3U3 Hanger (center)	549	18.00	290.80	0.5	39.0	5.882	210.6	3.5	0.0	4.8	2.48	198.6
L1U1	511	16.50	291.20	0.5	39.0	5.882	210.9	3.5	0.0	4.8	2.30	184.4
L2U2	ZERO	FORCE ME	MBER	0.5	39.0	5.882	0.0	3.5	0.0	4.8	\#VALUE!	\#VALUE!
L4U4	ZERO	FORCE ME	MBER	0.5	39.0	5.882	0.0	3.5	0.0	4.8	\#VALUE!	\#VALUE!
L5U5	516	16.50	291.20	0.5	39.0	5.882	210.9	3.5	0.0	4.8	2.33	186.5
End Post U5L6	943	84.17	766.62	0.5	21.5	5.882	488.1	10.8	0.0	5.0	1.73	138.2

Appendix 3
AS-INSPECTED LOAD RATING - 31 FT. DEEP TRUSS
RIGHT TRUSS MEMBERS - LOAD CASE B

MEMBER	2010 CAPACITY (KIPS)	DL (KIPS)	LL (E80-AXLE-KIPS)	DIST.	IMPACT \%	RE \%	LL+I (KIPS)	WIND	LONGIT.	LATERAL	2010 RF	2010 E-RATING
End Post LOU1	754	84.17	766.62	0.5	21.5	5.882	488.1	10.8	0.0	5.0	1.34	107.3
Bottom Chord (LC1) LOL2	315	50.61	460.85	0.5	21.5	5.882	293.4	49.8	148.0	30.4	0.42	33.4
Bottom Chord (LC2) L2L4	615	91.63	799.53	0.5	21.5	5.882	509.0	66.6	148.0	39.7	0.63	50.7
Bottom Chord (LC1) L4L6	287	50.61	460.85	0.5	21.5	5.882	293.4	49.8	148.0	30.4	0.35	28.4
Top Chord U1U2	504	80.90	715.06	0.5	21.5	5.882	455.3	17.7	0.0	4.8	0.88	70.4
Top Chord U2U3	485	80.90	715.06	0.5	21.5	5.882	455.3	17.7	0.0	4.8	0.84	67.1
Top Chord U3U4	508	80.90	715.06	0.5	21.5	5.882	455.3	17.7	0.0	4.8	0.89	71.1
Top Chord U4U5	496	80.90	715.06	0.5	21.5	5.882	455.3	17.7	0.0	4.8	0.86	69.0
U1L2 Diag. (D1) (ten.)	402	50.38	508.60	0.5	21.5	5.882	323.8	6.5	0.0	4.0	1.05	84.4
L2U3 Diag. (D2) (comp.)	373	17.84	296.01	0.5	21.5	5.882	188.5	2.2	0.0	3.0	1.86	148.6
U3L4 Diag. (D2) (comp.)	405	17.84	296.01	0.5	21.5	5.882	188.5	2.2	0.0	3.0	2.02	162.0
L4U5 Diag. (D1) (ten.)	385	50.38	508.60	0.5	21.5	5.882	323.8	6.5	0.0	4.0	1.00	80.0
L3U3 Hanger (center)	334	18.00	290.80	0.5	39.0	5.882	210.6	3.5	0.0	4.8	1.46	116.8
L1U1	364	16.50	291.20	0.5	39.0	5.882	210.9	3.5	276.0	4.8	0.70	55.8
L2U2	ZERO FORCE MEMBER			0.5	39.0	5.882	0.0	3.5	276.0	4.8	\#VALUE!	\#VALUE!
L4U4	ZERO FORCE MEMBER			0.5	39.0	5.882	0.0	3.5	276.0	4.8	\#VALUE!	\#VALUE!
L5U5	360	16.50	291.20	0.5	39.0	5.882	210.9	3.5	276.0	4.8	0.69	54.9
End Post U5L6	735	84.17	766.62	0.5	21.5	5.882	488.1	10.8	0.0	5.0	1.30	104.1

MAXIMUM RATING												
MEMBER	2010 CAPACITY (KIPS)	DL (KIPS)	LL (E80-AXLE-KIPS)	DIST.	IMPACT \%	RE \%	LL+I (KIPS)	WIND	LONGIT.	LATERAL	2010 RF	2010 E-RATING
End Post LOU1	1095	84.17	766.62	0.5	21.5	5.882	488.1	10.8	0.0	5.0	2.04	163.1
Bottom Chord (LC1) LOL2	458	50.61	460.85	0.5	21.5	5.882	293.4	49.8	148.0	30.4	0.74	58.9
Bottom Chord (LC2) L2L4	894	91.63	799.53	0.5	21.5	5.882	509.0	66.6	148.0	39.7	1.08	86.1
Bottom Chord (LC1) L4L6	418	50.61	460.85	0.5	21.5	5.882	293.4	49.8	148.0	30.4	0.65	52.1
Top Chord U1U2	735	80.90	715.06	0.5	21.5	5.882	455.3	17.7	0.0	4.8	1.39	111.0
Top Chord U2U3	708	80.90	715.06	0.5	21.5	5.882	455.3	17.7	0.0	4.8	1.33	106.2
Top Chord U3U4	741	80.90	715.06	0.5	21.5	5.882	455.3	17.7	0.0	4.8	1.40	112.0
Top Chord U4U5	724	80.90	715.06	0.5	21.5	5.882	455.3	17.7	0.0	4.8	1.36	109.0
U1L2 Diag. (D1) (ten.)	585	50.38	508.60	0.5	21.5	5.882	323.8	6.5	0.0	4.0	1.62	129.6
L2U3 Diag. (D2) (comp.)	541	17.84	296.01	0.5	21.5	5.882	188.5	2.2	0.0	3.0	2.75	219.8
U3L4 Diag. (D2) (comp.)	587	17.84	296.01	0.5	21.5	5.882	188.5	2.2	0.0	3.0	2.99	239.3
L4U5 Diag. (D1) (ten.)	559	50.38	508.60	0.5	21.5	5.882	323.8	6.5	0.0	4.0	1.54	123.2
L3U3 Hanger (center)	486	18.00	290.80	0.5	39.0	5.882	210.6	3.5	0.0	4.8	2.18	174.4
L1U1	529	16.50	291.20	0.5	39.0	5.882	210.9	3.5	0.0	4.8	2.39	191.3
L2U2	ZERO	FORCE ME	MBER	0.5	39.0	5.882	0.0	3.5	0.0	4.8	\#VALUE!	\#VALUE!
L4U4	ZERO	FORCE ME	MBER	0.5	39.0	5.882	0.0	3.5	0.0	4.8	\#VALUE!	\#VALUE!
L5U5	524	16.50	291.20	0.5	39.0	5.882	210.9	3.5	0.0	4.8	2.37	189.2
End Post U5L6	1067	84.17	766.62	0.5	21.5	5.882	488.1	10.8	0.0	5.0	1.98	158.5

SALINAS RIVER BRIDGE
AS-INSPECTED LOAD RATING - 31 FT. DEEP TRUSS
FLOOR SYSTEM - LOAD CASE A

Appendix 3

SALINAS RIVER BRIDGE
AS-INSPECTED LOAD RATING - 31 FT. DEEP TRUSS
FLOOR SYSTEM - LOAD CASE A

SALINAS RIVER

RAILROAD BRIDGE

AS-INSPECTED
LOAD RATING

CALCULATIONS

SALINAS RIVER BRIDGE
AS-INSPECTED LOAD RATING - 30 FT. DEEP TRUSS

Appendix 3
SALINAS RIVER BRIDGE
AS-INSPECTED LOAD RATING - 30 FT. DEEP TRUSS
RIGHT TRUSS MEMBERS - LOAD CASE A

MEMBER	2010 CAPACITY (KIPS)	DL (KIPS)	LL (E80-AXLE-KIPS)	DIST.	IMPACT \%	RE \%	LL+ (KIPS)	2010 RF	2010 E-RATING
End Post LOU1	623	91.53	775.90	0.5	21.5	5.882	494.0	1.08	86.1
Bottom Chord (BC1) LOL2	294	56.19	476.30	0.5	21.5	5.882	303.3	0.78	62.7
Bottom Chord (BC2) L2L4	507	102.46	826.50	0.5	21.5	5.882	526.2	0.77	61.5
Bottom Chord (BC1) L4L6	286	56.19	476.30	0.5	21.5	5.882	303.3	0.76	60.6
Top Chord U1U2	523	90.99	738.60	0.5	21.5	5.882	470.3	0.92	73.4
Top Chord U2U3	541	90.99	738.60	0.5	21.5	5.882	470.3	0.96	76.6
Top Chord U3U4	537	90.99	738.60	0.5	21.5	5.882	470.3	0.95	75.8
Top Chord U4U5	499	90.99	738.60	0.5	21.5	5.882	470.3	0.87	69.4
U1L2 Diag. (D1) (ten.)	349	56.69	514.80	0.5	21.5	5.882	327.8	0.89	71.3
L2U3 Diag. (D2) (comp.)	376	18.69	299.30	0.5	21.5	5.882	190.6	1.88	150.0
U3L4 Diag. (D2) (comp.)	340	18.69	299.30	0.5	21.5	5.882	190.6	1.69	135.0
L4U5 Diag. (D1) (ten.)	331	56.69	514.80	0.5	21.5	5.882	327.8	0.84	67.1
L3U3 Hanger (center)	208	19.50	290.80	0.5	39.0	5.882	210.6	0.89	71.4
L1U1	204	18.00	291.20	0.5	39.0	5.882	210.9	0.88	70.4
L2U2	ZERO FORCE MEMBER			0.5	39.0	5.882	0.0	\#VALUE!	\#VALUE!
L4U4	ZERO FORCE MEMBER			0.5	39.0	5.882	0.0	\#VALUE!	\#VALUE!
L5U5	217	18.00	291.20	0.5	39.0	5.882	210.9	0.94	75.5
End Post U5L6	642	91.53	775.90	0.5	21.5	5.882	494.0	1.11	89.2

MAXIMUM RATING				
MEMBER	2010 CAPACITY (KIPS)	DL (KIPS)	LL (E80-AXLE-KIPS)	DIST.
End Post LOU1	910	91.53	775.90	0.5
Bottom Chord (BC1) L0L2	427	56.19	476.30	0.5
Bottom Chord (BC2) L2L4	738	102.46	826.50	0.5
Bottom Chord (BC1) L4L6	416	56.19	476.30	0.5
Top Chord U1U2	759	90.99	738.60	0.5
Top Chord U2U3	786	90.99	738.60	0.5
Top Chord U3U4	780	90.99	738.60	0.5
Top Chord U4U5	724	90.99	738.60	0.5
U1L2 Diag. (D1) (ten.)	507	56.69	514.80	0.5
L2U3 Diag. (D2) (comp.)	547	18.69	299.30	0.5
U3L4 Diag. (D2) (comp.)	495	18.69	299.30	0.5
L4U5 Diag. (D1) (ten.)	482	56.69	514.80	0.5
L3U3 Hanger (center)	302	19.50	290.80	0.5
L1U1	296	18.00	291.20	0.5
L2U2	ZERO FORCE MEMBER			
L4U4	ZERO FORCE MEMBER			0.5
L5U5	18.00	291.20	0.5	
End Post U5L6	939	91.53	775.90	0.5

LL+l (KIPS)	2010 RF	2010 E-RATING
494.0	1.66	132.6

 12.9

 | 1.41 |
| :--- | :--- |

Appendix 3
AS-INSPECTED LOAD RATING - 30 FT. DEEP TRUSS
LEFT TRUSS MEMBERS - LOAD CASE B

MEMBER	2010 CAPACITY (KIPS)	DL (KIPS)	LL (E80-AXLE-KIPS)	DIST.	IMPACT \%	RE \%	LL+I (KIPS)	WIND	LONGIT.	LATERAL	2010 RF	2010 E-RATING
End Post LOU1	783	91.53	775.90	0.5	21.5	5.882	494.0	9.5	0.0	2.89	1.38	110.0
Bottom Chord (LC1) LOL2	353	56.19	476.30	0.5	21.5	5.882	303.3	49.2	148.0	29.20	0.48	38.8
Bottom Chord (LC2) L2L4	607	102.46	826.50	0.5	21.5	5.882	526.2	65.5	148.0	37.50	0.60	47.6
Bottom Chord (LC1) L4L6	338	56.19	476.30	0.5	21.5	5.882	303.3	49.2	148.0	29.20	0.45	36.1
Top Chord U1U2	691	90.99	738.60	0.5	21.5	5.882	470.3	16.7	0.0	2.80	1.24	98.8
Top Chord U2U3	629	90.99	738.60	0.5	21.5	5.882	470.3	16.7	0.0	2.80	1.10	88.2
Top Chord U3U4	599	90.99	738.60	0.5	21.5	5.882	470.3	16.7	0.0	2.80	1.04	83.1
Top Chord U4U5	672	90.99	738.60	0.5	21.5	5.882	470.3	16.7	0.0	2.80	1.20	95.6
U1L2 Diag. (D1) (ten.)	425	56.69	514.80	0.5	21.5	5.882	327.8	5.7	0.0	2.30	1.10	88.0
L2U3 Diag. (D2) (comp.)	449	18.69	299.30	0.5	21.5	5.882	190.6	1.9	0.0	1.70	2.24	179.1
U3L4 Diag. (D2) (comp.)	446	18.69	299.30	0.5	21.5	5.882	190.6	1.9	0.0	1.70	2.23	178.0
L4U5 Diag. (D1) (ten.)	414	56.69	514.80	0.5	21.5	5.882	327.8	5.7	0.0	2.30	1.07	85.3
L3U3 Hanger (center)	265	19.50	290.80	0.5	39.0	5.882	210.6	3.0	0.0	2.74	1.14	91.1
L1U1	262	18.00	291.20	0.5	39.0	5.882	210.9	3.0	0.0	2.74	1.13	90.3
L2U2	ZERO FORCE MEMBER			0.5	39.0	5.882	0.0	3.0	0.0	2.74	\#VALUE!	\#VALUE!
L4U4	ZERO FORCE MEMBER			0.5	39.0	5.882	0.0	3.0	0.0	2.74	\#VALUE!	\#VALUE!
L5U5	262	18.00	291.20	0.5	39.0	5.882	210.9	3.0	0.0	2.74	1.13	90.5
End Post U5L6	771	91.53	775.90	0.5	21.5	5.882	494.0	9.5	0.0	2.89	1.35	108.1

Appendix 3
AS-INSPECTED LOAD RATING - 30 FT. DEEP TRUSS
RIGHT TRUSS MEMBERS - LOAD CASE B

MEMBER	2010 CAPACITY (KIPS)	DL (KIPS)	LL (E80-AXLE-KIPS)	DIST.	IMPACT \%	RE \%	LL+I (KIPS)	WIND	LONGIT.	LATERAL	2010 RF	2010 E-RATING
End Post LOU1	779	91.53	775.90	0.5	21.5	5.882	494.0	9.5	0.0	2.89	1.37	109.3
Bottom Chord (LC1) LOL2	367	56.19	476.30	0.5	21.5	5.882	303.3	49.2	148.0	29.20	0.52	41.3
Bottom Chord (LC2) L2L4	634	102.46	826.50	0.5	21.5	5.882	526.2	65.5	148.0	37.50	0.64	50.9
Bottom Chord (LC1) L4L6	358	56.19	476.30	0.5	21.5	5.882	303.3	49.2	148.0	29.20	0.49	39.5
Top Chord U1U2	653	90.99	738.60	0.5	21.5	5.882	470.3	16.7	0.0	2.80	1.15	92.4
Top Chord U2U3	676	90.99	738.60	0.5	21.5	5.882	470.3	16.7	0.0	2.80	1.20	96.3
Top Chord U3U4	671	90.99	738.60	0.5	21.5	5.882	470.3	16.7	0.0	2.80	1.19	95.4
Top Chord U4U5	623	90.99	738.60	0.5	21.5	5.882	470.3	16.7	0.0	2.80	1.09	87.3
U1L2 Diag. (D1) (ten.)	436	56.69	514.80	0.5	21.5	5.882	327.8	5.7	0.0	2.30	1.13	90.6
L2U3 Diag. (D2) (comp.)	470	18.69	299.30	0.5	21.5	5.882	190.6	1.9	0.0	1.70	2.35	188.0
U3L4 Diag. (D2) (comp.)	425	18.69	299.30	0.5	21.5	5.882	190.6	1.9	0.0	1.70	2.11	169.2
L4U5 Diag. (D1) (ten.)	414	56.69	514.80	0.5	21.5	5.882	327.8	5.7	0.0	2.30	1.07	85.3
L3U3 Hanger (center)	259	19.50	290.80	0.5	39.0	5.882	210.6	3.0	0.0	2.74	1.11	88.9
L1U1	254	18.00	291.20	0.5	39.0	5.882	210.9	3.0	0.0	2.74	1.09	87.5
L2U2	ZERO FORCE MEMBER			0.5	39.0	5.882	0.0	3.0	0.0	2.74	\#VALUE!	\#VALUE!
L4U4	ZERO FORCE MEMBER			0.5	39.0	5.882	0.0	3.0	0.0	2.74	\#VALUE!	\#VALUE!
L5U5	271	18.00	291.20	0.5	39.0	5.882	210.9	3.0	0.0	2.74	1.17	93.9
End Post U5L6	803	91.53	775.90	0.5	21.5	5.882	494.0	9.5	0.0	2.89	1.41	113.2

Appendix 3

SALINAS RIVER BRIDGE
AS-INSPECTED LOAD RATING - 30 FT. DEEP TRUSS
FLOOR SYSTEM - LOAD CASE A

Appendix 3

SALINAS RIVER BRIDGE
AS-INSPECTED LOAD RATING - 30 FT. DEEP TRUSS
FLOOR SYSTEM - LOAD CASE A

Salinas River As-Inspected Load Rating, Checked 04_30_10.xls

SALINAS RIVER

RAILROAD BRIDGE

AS-INSPECTED
LOAD RATING

CALCULATIONS

Appendix 3
SALINAS RIVER BRIDGE
AS-INSPECTED LOAD RATING - 30 FT. DEEP TRUSS

MEMBER	2010 CAPACITY (KIPS)	DL (KIPS)	LL (E80-AXLE-KIPS)	DIST.	IMPACT \%	RE \%	LL+I (KIPS)	2010 RF	2010 E-RATING
End Post LOU1	612	91.53	775.90	0.5	21.5	5.882	494.0	1.05	84.3
Bottom Chord (BC1) LOL2	259	56.19	476.30	0.5	21.5	5.882	303.3	0.67	53.5
Bottom Chord (BC2) L2L4	512	102.46	826.50	0.5	21.5	5.882	526.2	0.78	62.3
Bottom Chord (BC1) L4L6	278	56.19	476.30	0.5	21.5	5.882	303.3	0.73	58.6
Top Chord U1U2	551	90.99	738.60	0.5	21.5	5.882	470.3	0.98	78.3
Top Chord U2U3	493	90.99	738.60	0.5	21.5	5.882	470.3	0.86	68.4
Top Chord U3U4	515	90.99	738.60	0.5	21.5	5.882	470.3	0.90	72.1
Top Chord U4U5	513	90.99	738.60	0.5	21.5	5.882	470.3	0.90	71.8
U1L2 Diag. (D1) (ten.)	318	56.69	514.80	0.5	21.5	5.882	327.8	0.80	63.7
L2U3 Diag. (D2) (comp.)	378	18.69	299.30	0.5	21.5	5.882	190.6	1.89	150.9
U3L4 Diag. (D2) (comp.)	355	18.69	299.30	0.5	21.5	5.882	190.6	1.76	141.2
L4U5 Diag. (D1) (ten.)	347	56.69	514.80	0.5	21.5	5.882	327.8	0.89	70.9
L3U3 Hanger (center)	210	19.50	290.80	0.5	39.0	5.882	210.6	0.91	72.5
L1U1	193	18.00	291.20	0.5	39.0	5.882	210.9	0.83	66.3
L2U2	ZERO FORCE MEMBER			0.5	39.0	5.882	0.0	\#VALUE!	\#VALUE!
L4U4	ZERO FORCE MEMBER			0.5	39.0	5.882	0.0	\#VALUE!	\#VALUE!
L5U5	208	18.00	291.20	0.5	39.0	5.882	210.9	0.90	72.3
End Post U5L6	619	91.53	775.90	0.5	21.5	5.882	494.0	1.07	85.5

Appendix 3
SALINAS RIVER BRIDGE
AS-INSPECTED LOAD RATING - 30 FT. DEEP TRUSS
RIGHT TRUSS MEMBERS - LOAD CASE A

MEMBER	2010 CAPACITY (KIPS)	DL (KIPS)	LL (E80-AXLE-KIPS)	DIST.	IMPACT \%	RE \%	LL+ (KIPS)	2010 RF	2010 E-RATING
End Post LOU1	633	91.53	775.90	0.5	21.5	5.882	494.0	1.10	87.6
Bottom Chord (BC1) LOL2	286	56.19	476.30	0.5	21.5	5.882	303.3	0.76	60.6
Bottom Chord (BC2) L2L4	495	102.46	826.50	0.5	21.5	5.882	526.2	0.75	59.7
Bottom Chord (BC1) L4L6	294	56.19	476.30	0.5	21.5	5.882	303.3	0.78	62.7
Top Chord U1U2	551	90.99	738.60	0.5	21.5	5.882	470.3	0.98	78.3
Top Chord U2U3	484	90.99	738.60	0.5	21.5	5.882	470.3	0.83	66.8
Top Chord U3U4	543	90.99	738.60	0.5	21.5	5.882	470.3	0.96	77.0
Top Chord U4U5	540	90.99	738.60	0.5	21.5	5.882	470.3	0.96	76.4
U1L2 Diag. (D1) (ten.)	342	56.69	514.80	0.5	21.5	5.882	327.8	0.87	69.6
L2U3 Diag. (D2) (comp.)	351	18.69	299.30	0.5	21.5	5.882	190.6	1.74	139.4
U3L4 Diag. (D2) (comp.)	318	18.69	299.30	0.5	21.5	5.882	190.6	1.57	125.7
L4U5 Diag. (D1) (ten.)	321	56.69	514.80	0.5	21.5	5.882	327.8	0.81	64.5
L3U3 Hanger (center)	212	19.50	290.80	0.5	39.0	5.882	210.6	0.91	73.1
L1U1	190	18.00	291.20	0.5	39.0	5.882	210.9	0.81	65.1
L2U2	ZERO FORCE MEMBER			0.5	39.0	5.882	0.0	\#VALUE!	\#VALUE!
L4U4	ZERO FORCE MEMBER			0.5	39.0	5.882	0.0	\#VALUE!	\#VALUE!
L5U5	217	18.00	291.20	0.5	39.0	5.882	210.9	0.94	75.5
End Post U5L6	633	91.53	775.90	0.5	21.5	5.882	494.0	1.10	87.6

MAXIMUM RATING

LL+l (KIPS)	2010 RF	2010 E-RATING
494.0	1.69	134.9

Appendix 3
AS-INSPECTED LOAD RATING - 30 FT. DEEP TRUSS
LEFT TRUSS MEMBERS - LOAD CASE B

MEMBER	2010 CAPACITY (KIPS)	DL (KIPS)	LL (E80-AXLE-KIPS)	DIST.	IMPACT \%	RE \%	LL+I (KIPS)	WIND	LONGIT.	LATERAL	2010 RF	2010 E-RATING
End Post LOU1	765	91.53	775.90	0.5	21.5	5.882	494.0	9.5	0.0	2.89	1.34	107.1
Bottom Chord (LC1) LOL2	324	56.19	476.30	0.5	21.5	5.882	303.3	49.2	148.0	29.20	0.42	33.5
Bottom Chord (LC2) L2L4	640	102.46	826.50	0.5	21.5	5.882	526.2	65.5	148.0	37.50	0.64	51.6
Bottom Chord (LC1) L4L6	348	56.19	476.30	0.5	21.5	5.882	303.3	49.2	148.0	29.20	0.47	37.9
Top Chord U1U2	689	90.99	738.60	0.5	21.5	5.882	470.3	16.7	0.0	2.80	1.23	98.4
Top Chord U2U3	617	90.99	738.60	0.5	21.5	5.882	470.3	16.7	0.0	2.80	1.08	86.1
Top Chord U3U4	644	90.99	738.60	0.5	21.5	5.882	470.3	16.7	0.0	2.80	1.13	90.7
Top Chord U4U5	641	90.99	738.60	0.5	21.5	5.882	470.3	16.7	0.0	2.80	1.13	90.3
U1L2 Diag. (D1) (ten.)	397	56.69	514.80	0.5	21.5	5.882	327.8	5.7	0.0	2.30	1.01	81.1
L2U3 Diag. (D2) (comp.)	473	18.69	299.30	0.5	21.5	5.882	190.6	1.9	0.0	1.70	2.36	189.1
U3L4 Diag. (D2) (comp.)	444	18.69	299.30	0.5	21.5	5.882	190.6	1.9	0.0	1.70	2.21	176.9
L4U5 Diag. (D1) (ten.)	434	56.69	514.80	0.5	21.5	5.882	327.8	5.7	0.0	2.30	1.13	90.1
L3U3 Hanger (center)	263	19.50	290.80	0.5	39.0	5.882	210.6	3.0	0.0	2.74	1.13	90.3
L1U1	241	18.00	291.20	0.5	39.0	5.882	210.9	3.0	0.0	2.74	1.03	82.3
L2U2	ZERO FORCE MEMBER			0.5	39.0	5.882	0.0	3.0	0.0	2.74	\#VALUE!	\#VALUE!
L4U4	ZERO FORCE MEMBER			0.5	39.0	5.882	0.0	3.0	0.0	2.74	\#VALUE!	\#VALUE!
L5U5	261	18.00	291.20	0.5	39.0	5.882	210.9	3.0	0.0	2.74	1.12	89.8
End Post U5L6	774	91.53	775.90	0.5	21.5	5.882	494.0	9.5	0.0	2.89	1.36	108.5

Appendix 3
AS-INSPECTED LOAD RATING - 30 FT. DEEP TRUSS
RIGHT TRUSS MEMBERS - LOAD CASE B

MEMBER	2010 CAPACITY (KIPS)	DL (KIPS)	LL (E80-AXLE-KIPS)	DIST.	IMPACT \%	RE \%	LL+I (KIPS)	WIND	LONGIT.	LATERAL	2010 RF	2010 E-RATING
End Post LOU1	791	91.53	775.90	0.5	21.5	5.882	494.0	9.5	0.0	2.89	1.39	111.2
Bottom Chord (LC1) L0L2	358	56.19	476.30	0.5	21.5	5.882	303.3	49.2	148.0	29.20	0.49	39.5
Bottom Chord (LC2) L2L4	619	102.46	826.50	0.5	21.5	5.882	526.2	65.5	148.0	37.50	0.61	49.1
Bottom Chord (LC1) L4L6	367	56.19	476.30	0.5	21.5	5.882	303.3	49.2	148.0	29.20	0.52	41.3
Top Chord U1U2	689	90.99	738.60	0.5	21.5	5.882	470.3	16.7	0.0	2.80	1.23	98.4
Top Chord U2U3	604	90.99	738.60	0.5	21.5	5.882	470.3	16.7	0.0	2.80	1.05	84.0
Top Chord U3U4	679	90.99	738.60	0.5	21.5	5.882	470.3	16.7	0.0	2.80	1.21	96.8
Top Chord U4U5	675	90.99	738.60	0.5	21.5	5.882	470.3	16.7	0.0	2.80	1.20	96.1
U1L2 Diag. (D1) (ten.)	427	56.69	514.80	0.5	21.5	5.882	327.8	5.7	0.0	2.30	1.11	88.5
L2U3 Diag. (D2) (comp.)	438	18.69	299.30	0.5	21.5	5.882	190.6	1.9	0.0	1.70	2.18	174.7
U3L4 Diag. (D2) (comp.)	398	18.69	299.30	0.5	21.5	5.882	190.6	1.9	0.0	1.70	1.97	157.6
L4U5 Diag. (D1) (ten.)	401	56.69	514.80	0.5	21.5	5.882	327.8	5.7	0.0	2.30	1.03	82.2
L3U3 Hanger (center)	265	19.50	290.80	0.5	39.0	5.882	210.6	3.0	0.0	2.74	1.14	91.1
L1U1	237	18.00	291.20	0.5	39.0	5.882	210.9	3.0	0.0	2.74	1.01	80.9
L2U2	ZERO FORCE MEMBER			0.5	39.0	5.882	0.0	3.0	0.0	2.74	\#VALUE!	\#VALUE!
L4U4	ZERO FORCE MEMBER			0.5	39.0	5.882	0.0	3.0	0.0	2.74	\#VALUE!	\#VALUE!
L5U5	271	18.00	291.20	0.5	39.0	5.882	210.9	3.0	0.0	2.74	1.17	93.9
End Post U5L6	791	91.53	775.90	0.5	21.5	5.882	494.0	9.5	0.0	2.89	1.39	111.2

Appendix 3

SALINAS RIVER BRIDGE
AS-INSPECTED LOAD RATING - 30 FT. DEEP TRUSS
FLOOR SYSTEM - LOAD CASE A

Appendix 3

SALINAS RIVER BRIDGE
AS-INSPECTED LOAD RATING - 30 FT. DEEP TRUSS
FLOOR SYSTEM - LOAD CASE A

SALINAS RIVER

RAILROAD BRIDGE

AS-INSPECTED
LOAD RATING

CALCULATIONS

SPAN 4

SALINAS RIVER BRIDGE
AS-INSPECTED LOAD RATING - 30 FT. DEEP TRUSS
LEFT TRUSS MEMBERS - LOAD CASE A

MEMBER	2010 CAPACITY (KIPS)	DL (KIPS)	LL (E80-AXLE-KIPS)	DIST.	IMPACT \%	RE \%	LL+I (KIPS)	2010 RF	2010 E-RATING
End Post LOU1	612	91.53	775.90	0.5	21.5	5.882	494.0	1.05	84.3
Bottom Chord (BC1) LOL2	259	56.19	476.30	0.5	21.5	5.882	303.3	0.67	53.5
Bottom Chord (BC2) L2L4	502	102.46	826.50	0.5	21.5	5.882	526.2	0.76	60.8
Bottom Chord (BC1) L4L6	278	56.19	476.30	0.5	21.5	5.882	303.3	0.73	58.6
Top Chord U1U2	527	90.99	738.60	0.5	21.5	5.882	470.3	0.93	74.2
Top Chord U2U3	524	90.99	738.60	0.5	21.5	5.882	470.3	0.92	73.6
Top Chord U3U4	491	90.99	738.60	0.5	21.5	5.882	470.3	0.85	68.1
Top Chord U4U5	536	90.99	738.60	0.5	21.5	5.882	470.3	0.95	75.7
U1L2 Diag. (D1) (ten.)	340	56.69	514.80	0.5	21.5	5.882	327.8	0.86	69.2
L2U3 Diag. (D2) (comp.)	378	18.69	299.30	0.5	21.5	5.882	190.6	1.89	150.9
U3L4 Diag. (D2) (comp.)	341	18.69	299.30	0.5	21.5	5.882	190.6	1.69	135.4
L4U5 Diag. (D1) (ten.)	326	56.69	514.80	0.5	21.5	5.882	327.8	0.82	65.8
L3U3 Hanger (center)	217	19.50	290.80	0.5	39.0	5.882	210.6	0.94	75.0
L1U1	203	18.00	291.20	0.5	39.0	5.882	210.9	0.88	70.0
L2U2	ZERO FORCE MEMBER			0.5	39.0	5.882	0.0	\#VALUE!	\#VALUE!
L4U4	ZERO FORCE MEMBER			0.5	39.0	5.882	0.0	\#VALUE!	\#VALUE!
L5U5	203	18.00	291.20	0.5	39.0	5.882	210.9	0.88	70.0
End Post U5L6	629	91.53	775.90	0.5	21.5	5.882	494.0	1.09	87.0

MEMBER	2010 CAPACITY (KIPS)	DL (KIPS)	LL (E80-AXLE-KIPS)	DIST.	IMPACT \%	RE \%	LL+1 (KIPS)	2010 RF	2010 E-RATING
End Post L0U1	895	91.43	775.90	0.5	21.5	5.882	494.0	1.63	130.1
Bottom Chord (BC1) L0L2	377	56.19	476.30	0.5	21.5	5.882	303.3	1.06	84.5
Bottom Chord (BC2) L2L4	731	102.46	826.50	0.5	21.5	5.882	526.2	1.19	95.5
Bottom Chord (BC1) L4L6	405	56.19	476.30	0.5	21.5	5.882	303.3	1.15	92.0
Top Chord U1U2	765	90.99	738.60	0.5	21.5	5.882	470.3	1.43	114.7
Top Chord U2U3	761	90.99	738.60	0.5	21.5	5.882	470.3	1.42	114.0
Top Chord U3U4	713	90.99	738.60	0.5	21.5	5.882	470.3	1.32	105.9
Top Chord U4U5	778	90.99	738.60	0.5	21.5	5.882	470.3	1.46	116.9
U1L2 Diag. (D1) (ten.)	495	56.69	514.80	0.5	21.5	5.882	327.8	1.34	106.9
L2U3 Diag. (D2) (comp.)	550	18.69	299.30	0.5	21.5	5.882	190.6	2.79	223.2
U3L4 Diag. (D2) (comp.)	497	18.69	299.30	0.5	21.5	5.882	190.6	2.51	200.6
L4U5 Diag. (D1) (ten.)	475	56.69	514.80	0.5	21.5	5.882	327.8	1.28	102.0
L3U3 Hanger (center)	316	19.50	290.80	0.5	39.0	5.882	210.6	1.41	112.5
L1U1	295	18.00	291.20	0.5	39.0	5.882	210.9	1.31	104.9
L2U2	ZERO FORCE MEMBER			0.5	39.0	5.882	0.0	\#VALUE!	\#VALUE!
L4U4	ZERO FORCE MEMBER			0.5	39.0	5.882	0.0	\#VALUE!	\#VALUE!
L5U5	295	18.00	291.20	0.5	39.0	5.882	210.9	1.31	104.9
End Post U5L6	919	91.53	775.90	0.5	21.5	5.882	494.0	1.68	134.0

Appendix 3
SALINAS RIVER BRIDGE
AS-INSPECTED LOAD RATING - 30 FT. DEEP TRUSS
RIGHT TRUSS MEMBERS - LOAD CASE A

MEMBER	2010 CAPACITY (KIPS)	DL (KIPS)	LL (E80-AXLE-KIPS)	DIST.	IMPACT \%	RE \%	LL+I (KIPS)	2010 RF	2010 E-RATING
End Post LOU1	630	91.53	775.90	0.5	21.5	5.882	494.0	1.09	87.2
Bottom Chord (BC1) LOL2	292	56.19	476.30	0.5	21.5	5.882	303.3	0.78	62.2
Bottom Chord (BC2) L2L4	516	102.46	826.50	0.5	21.5	5.882	526.2	0.78	62.8
Bottom Chord (BC1) L4L6	288	56.19	476.30	0.5	21.5	5.882	303.3	0.76	61.1
Top Chord U1U2	550	90.99	738.60	0.5	21.5	5.882	470.3	0.98	78.1
Top Chord U2U3	534	90.99	738.60	0.5	21.5	5.882	470.3	0.94	75.3
Top Chord U3U4	500	90.99	738.60	0.5	21.5	5.882	470.3	0.87	69.6
Top Chord U4U5	493	90.99	738.60	0.5	21.5	5.882	470.3	0.86	68.4
U1L2 Diag. (D1) (ten.)	340	56.69	514.80	0.5	21.5	5.882	327.8	0.86	69.2
L2U3 Diag. (D2) (comp.)	356	18.69	299.30	0.5	21.5	5.882	190.6	1.77	141.6
U3L4 Diag. (D2) (comp.)	314	18.69	299.30	0.5	21.5	5.882	190.6	1.55	123.9
L4U5 Diag. (D1) (ten.)	335	56.69	514.80	0.5	21.5	5.882	327.8	0.85	67.9
L3U3 Hanger (center)	211	19.50	290.80	0.5	39.0	5.882	210.6	0.91	72.9
L1U1	211	18.00	291.20	0.5	39.0	5.882	210.9	0.92	73.4
L2U2	ZERO FORCE MEMBER			0.5	39.0	5.882	0.0	\#VALUE!	\#VALUE!
L4U4	ZERO FORCE MEMBER			0.5	39.0	5.882	0.0	\#VALUE!	\#VALUE!
L5U5	214	18.00	291.20	0.5	39.0	5.882	210.9	0.93	74.5
End Post U5L6	625	91.53	775.90	0.5	21.5	5.882	494.0	1.08	86.4

MAXIMUM RATING									
MEMBER	2010 CAPACITY (KIPS)	DL (KIPS)	LL (E80-AXLE-KIPS)	DIST.	IMPACT \%	RE \%	LL+l (KIPS)	2010 RF	2010 E-RATING
End Post LOU1	921	91.53	775.90	0.5	21.5	5.882	494.0	1.68	134.3
Bottom Chord (BC1) L0L2	424	56.19	476.30	0.5	21.5	5.882	303.3	1.21	97.2
Bottom Chord (BC2) L2L4	750	102.46	826.50	0.5	21.5	5.882	526.2	1.23	98.4
Bottom Chord (BC1) L4L6	419	56.19	476.30	0.5	21.5	5.882	303.3	1.20	95.7
Top Chord U1U2	799	90.99	738.60	0.5	21.5	5.882	470.3	1.50	120.4
Top Chord U2U3	775	90.99	738.60	0.5	21.5	5.882	470.3	1.45	116.3
Top Chord U3U4	726	90.99	738.60	0.5	21.5	5.882	470.3	1.35	108.0
Top Chord U4U5	716	90.99	738.60	0.5	21.5	5.882	470.3	1.33	106.4
U1L2 Diag. (D1) (ten.)	495	56.69	514.80	0.5	21.5	5.882	327.8	1.34	106.9
L2U3 Diag. (D2) (comp.)	518	18.69	299.30	0.5	21.5	5.882	190.6	2.62	209.7
U3L4 Diag. (D2) (comp.)	457	18.69	299.30	0.5	21.5	5.882	190.6	2.30	183.8
L4U5 Diag. (D1) (ten.)	487	56.69	514.80	0.5	21.5	5.882	327.8	1.31	105.1
L3U3 Hanger (center)	308	19.50	290.80	0.5	39.0	5.882	210.6	1.37	109.4
L1U1	308	18.00	291.20	0.5	39.0	5.882	210.9	1.37	109.8
L2U2	ZERO FORCE MEMBER			0.5	39.0	5.882	0.0	\#VALUE!	\#VALUE!
L4U4	ZERO FORCE MEMBER			0.5	39.0	5.882	0.0	\#VALUE!	\#VALUE!
L5U5	312	18.00	291.20	0.5	39.0	5.882	210.9	1.39	111.5
End Post U5L6	914	91.53	775.90	0.5	21.5	5.882	494.0	1.66	133.2

Appendix 3
AS-INSPECTED LOAD RATING - 30 FT. DEEP TRUSS
LEFT TRUSS MEMBERS - LOAD CASE B

MEMBER	2010 CAPACITY (KIPS)	DL (KIPS)	LL (E80-AXLE-KIPS)	DIST.	IMPACT \%	RE \%	LL+I (KIPS)	WIND	LONGIT.	LATERAL	2010 RF	2010 E-RATING
End Post LOU1	765	91.53	775.90	0.5	21.5	5.882	494.0	9.5	0.0	2.89	1.34	107.1
Bottom Chord (LC1) LOL2	324	56.19	476.30	0.5	21.5	5.882	303.3	49.2	148.0	29.20	0.42	33.5
Bottom Chord (LC2) L2L4	628	102.46	826.50	0.5	21.5	5.882	526.2	65.5	148.0	37.50	0.63	50.1
Bottom Chord (LC1) L4L6	348	56.19	476.30	0.5	21.5	5.882	303.3	49.2	148.0	29.20	0.47	37.9
Top Chord U1U2	659	90.99	738.60	0.5	21.5	5.882	470.3	16.7	0.0	2.80	1.17	93.3
Top Chord U2U3	655	90.99	738.60	0.5	21.5	5.882	470.3	16.7	0.0	2.80	1.16	92.6
Top Chord U3U4	614	90.99	738.60	0.5	21.5	5.882	470.3	16.7	0.0	2.80	1.07	85.6
Top Chord U4U5	670	90.99	738.60	0.5	21.5	5.882	470.3	16.7	0.0	2.80	1.19	95.1
U1L2 Diag. (D1) (ten.)	425	56.69	514.80	0.5	21.5	5.882	327.8	5.7	0.0	2.30	1.10	88.0
L2U3 Diag. (D2) (comp.)	473	18.69	299.30	0.5	21.5	5.882	190.6	1.9	0.0	1.70	2.36	189.1
U3L4 Diag. (D2) (comp.)	427	18.69	299.30	0.5	21.5	5.882	190.6	1.9	0.0	1.70	2.12	169.7
L4U5 Diag. (D1) (ten.)	408	56.69	514.80	0.5	21.5	5.882	327.8	5.7	0.0	2.30	1.05	83.8
L3U3 Hanger (center)	271	19.50	290.80	0.5	39.0	5.882	210.6	3.0	0.0	2.74	1.17	93.4
L1U1	253	18.00	291.20	0.5	39.0	5.882	210.9	3.0	0.0	2.74	1.09	87.0
L2U2	ZERO FORCE MEMBER			0.5	39.0	5.882	0.0	3.0	0.0	2.74	\#VALUE!	\#VALUE!
L4U4	ZERO FORCE MEMBER			0.5	39.0	5.882	0.0	3.0	0.0	2.74	\#VALUE!	\#VALUE!
L5U5	253	18.00	291.20	0.5	39.0	5.882	210.9	3.0	0.0	2.74	1.09	87.0
End Post U5L6	786	91.53	775.90	0.5	21.5	5.882	494.0	9.5	0.0	2.89	1.38	110.5

Appendix 3
AS-INSPECTED LOAD RATING - 30 FT. DEEP TRUSS
RIGHT TRUSS MEMBERS - LOAD CASE B

MEMBER	2010 CAPACITY (KIPS)	DL (KIPS)	LL (E80-AXLE-KIPS)	DIST.	IMPACT \%	RE \%	LL+I (KIPS)	WIND	LONGIT.	LATERAL	2010 RF	2010 E-RATING
End Post LOU1	788	91.53	775.90	0.5	21.5	5.882	494.0	9.5	0.0	2.89	1.38	110.7
Bottom Chord (LC1) LOL2	365	56.19	476.30	0.5	21.5	5.882	303.3	49.2	148.0	29.20	0.51	40.8
Bottom Chord (LC2) L2L4	644	102.46	826.50	0.5	21.5	5.882	526.2	65.5	148.0	37.50	0.65	52.1
Bottom Chord (LC1) L4L6	360	56.19	476.30	0.5	21.5	5.882	303.3	49.2	148.0	29.20	0.50	39.9
Top Chord U1U2	687	90.99	738.60	0.5	21.5	5.882	470.3	16.7	0.0	2.80	1.23	98.1
Top Chord U2U3	667	90.99	738.60	0.5	21.5	5.882	470.3	16.7	0.0	2.80	1.18	94.7
Top Chord U3U4	625	90.99	738.60	0.5	21.5	5.882	470.3	16.7	0.0	2.80	1.09	87.5
Top Chord U4U5	617	90.99	738.60	0.5	21.5	5.882	470.3	16.7	0.0	2.80	1.08	86.1
U1L2 Diag. (D1) (ten.)	425	56.69	514.80	0.5	21.5	5.882	327.8	5.7	0.0	2.30	1.10	88.0
L2U3 Diag. (D2) (comp.)	445	18.69	299.30	0.5	21.5	5.882	190.6	1.9	0.0	1.70	2.22	177.5
U3L4 Diag. (D2) (comp.)	392	18.69	299.30	0.5	21.5	5.882	190.6	1.9	0.0	1.70	1.94	155.3
L4U5 Diag. (D1) (ten.)	419	56.69	514.80	0.5	21.5	5.882	327.8	5.7	0.0	2.30	1.08	86.4
L3U3 Hanger (center)	264	19.50	290.80	0.5	39.0	5.882	210.6	3.0	0.0	2.74	1.13	90.8
L1U1	264	18.00	291.20	0.5	39.0	5.882	210.9	3.0	0.0	2.74	1.14	91.2
L2U2	ZERO FORCE MEMBER			0.5	39.0	5.882	0.0	3.0	0.0	2.74	\#VALUE!	\#VALUE!
L4U4	ZERO FORCE MEMBER			0.5	39.0	5.882	0.0	3.0	0.0	2.74	\#VALUE!	\#VALUE!
L5U5	268	18.00	291.20	0.5	39.0	5.882	210.9	3.0	0.0	2.74	1.16	92.6
End Post U5L6	782	91.53	775.90	0.5	21.5	5.882	494.0	9.5	0.0	2.89	1.37	109.8

MAXIMUM RATING												
MEMBER	2010 CAPACITY (KIPS)	DL (KIPS)	LL (E80-AXLE-KIPS)	DIST.	IMPACT \%	RE \%	LL+I (KIPS)	WIND	LONGIT.	LATERAL	2010 RF	2010 E-RATING
End Post LOU1	1151	91.53	775.90	0.5	21.5	5.882	494.0	9.5	0.0	2.89	2.12	169.6
Bottom Chord (LC1) LOL2	531	56.19	476.30	0.5	21.5	5.882	303.3	49.2	148.0	29.20	0.88	70.1
Bottom Chord (LC2) L2L4	937	102.46	826.50	0.5	21.5	5.882	526.2	65.5	148.0	37.50	1.11	88.8
Bottom Chord (LC1) L4L6	524	56.19	476.30	0.5	21.5	5.882	303.3	49.2	148.0	29.20	0.86	69.0
Top Chord U1U2	998	90.99	738.60	0.5	21.5	5.882	470.3	16.7	0.0	2.80	1.89	151.0
Top Chord U2U3	969	90.99	738.60	0.5	21.5	5.882	470.3	16.7	0.0	2.80	1.82	146.0
Top Chord U3U4	907	90.99	738.60	0.5	21.5	5.882	470.3	16.7	0.0	2.80	1.69	135.6
Top Chord U4U5	896	90.99	738.60	0.5	21.5	5.882	470.3	16.7	0.0	2.80	1.67	133.6
U1L2 Diag. (D1) (ten.)	618	56.69	514.80	0.5	21.5	5.882	327.8	5.7	0.0	2.30	1.69	135.1
L2U3 Diag. (D2) (comp.)	648	18.69	299.30	0.5	21.5	5.882	190.6	1.9	0.0	1.70	3.28	262.5
U3L4 Diag. (D2) (comp.)	571	18.69	299.30	0.5	21.5	5.882	190.6	1.9	0.0	1.70	2.88	230.3
L4U5 Diag. (D1) (ten.)	609	56.69	514.80	0.5	21.5	5.882	327.8	5.7	0.0	2.30	1.66	132.8
L3U3 Hanger (center)	385	19.50	290.80	0.5	39.0	5.882	210.6	3.0	0.0	2.74	1.71	136.5
L1U1	385	18.00	291.20	0.5	39.0	5.882	210.9	3.0	0.0	2.74	1.71	136.9
L2U2	ZERO	FORCE ME	MBER	0.5	39.0	5.882	0.0	3.0	0.0	2.74	\#VALUE!	\#VALUE!
L4U4	ZERO	FORCE ME	MBER	0.5	39.0	5.882	0.0	3.0	0.0	2.74	\#VALUE!	\#VALUE!
L5U5	390	18.00	291.20	0.5	39.0	5.882	210.9	3.0	0.0	2.74	1.74	138.9
End Post U5L6	1142	91.53	775.90	0.5	21.5	5.882	494.0	9.5	0.0	2.89	2.10	168.2

Appendix 3

SALINAS RIVER BRIDGE
AS-INSPECTED LOAD RATING - 30 FT. DEEP TRUSS
FLOOR SYSTEM - LOAD CASE A

Appendix 3

SALINAS RIVER BRIDGE
AS-INSPECTED LOAD RATING - 30 FT. DEEP TRUSS
FLOOR SYSTEM - LOAD CASE A

SALINAS RIVER

RAILROAD BRIDGE

AS-INSPECTED
LOAD RATING

CALCULATIONS

Appendix 3
SALINAS RIVER BRIDGE
AS-INSPECTED LOAD RATING - 30 FT. DEEP TRUSS

MEMBER	2010 CAPACITY (KIPS)	DL (KIPS)	LL (E80-AXLE-KIPS)	DIST.	IMPACT \%	RE \%	LL+l (KIPS)	2010 RF	2010 E-RATING
End Post LOU1	629	91.53	775.90	0.5	21.5	5.882	494.0	1.09	87.0
Bottom Chord (BC1) LOL2	271	56.19	476.30	0.5	21.5	5.882	303.3	0.71	56.6
Bottom Chord (BC2) L2L4	502	102.46	826.50	0.5	21.5	5.882	526.2	0.76	60.7
Bottom Chord (BC1) L4L6	286	56.19	476.30	0.5	21.5	5.882	303.3	0.76	60.6
Top Chord U1U2	497	90.99	738.60	0.5	21.5	5.882	470.3	0.86	69.0
Top Chord U2U3	469	90.99	738.60	0.5	21.5	5.882	470.3	0.80	64.4
Top Chord U3U4	512	90.99	738.60	0.5	21.5	5.882	470.3	0.89	71.6
Top Chord U4U5	524	90.99	738.60	0.5	21.5	5.882	470.3	0.92	73.7
U1L2 Diag. (D1) (ten.)	337	56.69	514.80	0.5	21.5	5.882	327.8	0.85	68.3
L2U3 Diag. (D2) (comp.)	376	18.69	299.30	0.5	21.5	5.882	190.6	1.88	150.0
U3L4 Diag. (D2) (comp.)	349	18.69	299.30	0.5	21.5	5.882	190.6	1.73	138.5
L4U5 Diag. (D1) (ten.)	340	56.69	514.80	0.5	21.5	5.882	327.8	0.86	69.2
L3U3 Hanger (center)	214	19.50	290.80	0.5	39.0	5.882	210.6	0.93	74.0
L1U1	215	18.00	291.20	0.5	39.0	5.882	210.9	0.94	74.9
L2U2	ZERO FORCE MEMBER			0.5	39.0	5.882	0.0	\#VALUE!	\#VALUE!
L4U4	ZERO FORCE MEMBER			0.5	39.0	5.882	0.0	\#VALUE!	\#VALUE!
L5U5	217	18.00	291.20	0.5	39.0	5.882	210.9	0.94	75.5
End Post U5L6	617	91.53	775.90	0.5	21.5	5.882	494.0	1.06	85.1

Appendix 3
SALINAS RIVER BRIDGE
AS-INSPECTED LOAD RATING - 30 FT. DEEP TRUSS
MAXIMUM

2010 E-RATING
133.3
96.4
101.3
94.9

RIGHT TRUSS MEMBERS - LOAD CASE A

MEMBER	2010 CAPACITY (KIPS)	DL (KIPS)	LL (E80-AXLE-KIPS)	DIST.	IMPACT \%	RE \%	LL+ (KIPS)	2010 RF	2010 E-RATING
End Post LOU1	626	91.53	775.90	0.5	21.5	5.882	494.0	1.08	86.6
Bottom Chord (BC1) LOL2	290	56.19	476.30	0.5	21.5	5.882	303.3	0.77	61.7
Bottom Chord (BC2) L2L4	529	102.46	826.50	0.5	21.5	5.882	526.2	0.81	64.8
Bottom Chord (BC1) L4L6	286	56.19	476.30	0.5	21.5	5.882	303.3	0.76	60.6
Top Chord U1U2	511	90.99	738.60	0.5	21.5	5.882	470.3	0.89	71.4
Top Chord U2U3	465	90.99	738.60	0.5	21.5	5.882	470.3	0.80	63.6
Top Chord U3U4	513	90.99	738.60	0.5	21.5	5.882	470.3	0.90	71.8
Top Chord U4U5	502	90.99	738.60	0.5	21.5	5.882	470.3	0.87	69.9
U1L2 Diag. (D1) (ten.)	340	56.69	514.80	0.5	21.5	5.882	327.8	0.86	69.2
L2U3 Diag. (D2) (comp.)	362	18.69	299.30	0.5	21.5	5.882	190.6	1.80	144.3
U3L4 Diag. (D2) (comp.)	357	18.69	299.30	0.5	21.5	5.882	190.6	1.78	142.1
L4U5 Diag. (D1) (ten.)	328	56.69	514.80	0.5	21.5	5.882	327.8	0.83	66.2
L3U3 Hanger (center)	214	19.50	290.80	0.5	39.0	5.882	210.6	0.93	74.0
L1U1	213	18.00	291.20	0.5	39.0	5.882	210.9	0.93	74.1
L2U2	ZERO FORCE MEMBER			0.5	39.0	5.882	0.0	\#VALUE!	\#VALUE!
L4U4	ZERO FORCE MEMBER			0.5	39.0	5.882	0.0	\#VALUE!	\#VALUE!
L5U5	211	18.00	291.20	0.5	39.0	5.882	210.9	0.92	73.4
End Post U5L6	619	91.53	775.90	0.5	21.5	5.882	494.0	1.07	85.4

Appendix 3
AS-INSPECTED LOAD RATING-30 FT. DEEP TRUSS
LEFT TRUSS MEMBERS - LOAD CASE B

MEMBER	2010 CAPACITY (KIPS)	DL (KIPS)	LL (E80-AXLE-KIPS)	DIST.	IMPACT \%	RE \%	LL+I (KIPS)	WIND	LONGIT.	LATERAL	2010 RF	2010 E-RATING
End Post LOU1	786	91.53	775.90	0.5	21.5	5.882	494.0	9.5	0.0	2.89	1.38	110.5
Bottom Chord (LC1) LOL2	338	56.19	476.30	0.5	21.5	5.882	303.3	49.2	148.0	29.20	0.45	36.1
Bottom Chord (LC2) L2L4	628	102.46	826.50	0.5	21.5	5.882	526.2	65.5	148.0	37.50	0.63	50.1
Bottom Chord (LC1) L4L6	358	56.19	476.30	0.5	21.5	5.882	303.3	49.2	148.0	29.20	0.49	39.5
Top Chord U1U2	621	90.99	738.60	0.5	21.5	5.882	470.3	16.7	0.0	2.80	1.08	86.8
Top Chord U2U3	587	90.99	738.60	0.5	21.5	5.882	470.3	16.7	0.0	2.80	1.01	81.0
Top Chord U3U4	640	90.99	738.60	0.5	21.5	5.882	470.3	16.7	0.0	2.80	1.13	90.0
Top Chord U4U5	655	90.99	738.60	0.5	21.5	5.882	470.3	16.7	0.0	2.80	1.16	92.6
U1L2 Diag. (D1) (ten.)	421	56.69	514.80	0.5	21.5	5.882	327.8	5.7	0.0	2.30	1.09	86.9
L2U3 Diag. (D2) (comp.)	470	18.69	299.30	0.5	21.5	5.882	190.6	1.9	0.0	1.70	2.35	188.0
U3L4 Diag. (D2) (comp.)	436	18.69	299.30	0.5	21.5	5.882	190.6	1.9	0.0	1.70	2.17	173.6
L4U5 Diag. (D1) (ten.)	425	56.69	514.80	0.5	21.5	5.882	327.8	5.7	0.0	2.30	1.10	88.0
L3U3 Hanger (center)	268	19.50	290.80	0.5	39.0	5.882	210.6	3.0	0.0	2.74	1.15	92.2
L1U1	269	18.00	291.20	0.5	39.0	5.882	210.9	3.0	0.0	2.74	1.16	93.1
L2U2	ZERO FORCE MEMBER			0.5	39.0	5.882	0.0	3.0	0.0	2.74	\#VALUE!	\#VALUE!
L4U4	ZERO FORCE MEMBER			0.5	39.0	5.882	0.0	3.0	0.0	2.74	\#VALUE!	\#VALUE!
L5U5	271	18.00	291.20	0.5	39.0	5.882	210.9	3.0	0.0	2.74	1.17	93.9
End Post U5L6	771	91.53	775.90	0.5	21.5	5.882	494.0	9.5	0.0	2.89	1.35	108.1

Appendix 3
AS-INSPECTED LOAD RATING - 30 FT. DEEP TRUSS
RIGHT TRUSS MEMBERS - LOAD CASE B

MEMBER	2010 CAPACITY (KIPS)	DL (KIPS)	LL (E80-AXLE-KIPS)	DIST.	IMPACT \%	RE \%	LL+I (KIPS)	WIND	LONGIT.	LATERAL	2010 RF	2010 E-RATING
End Post LOU1	783	91.53	775.90	0.5	21.5	5.882	494.0	9.5	0.0	2.89	1.37	109.9
Bottom Chord (LC1) LOL2	362	56.19	476.30	0.5	21.5	5.882	303.3	49.2	148.0	29.20	0.50	40.2
Bottom Chord (LC2) L2L4	661	102.46	826.50	0.5	21.5	5.882	526.2	65.5	148.0	37.50	0.68	54.0
Bottom Chord (LC1) L4L6	358	56.19	476.30	0.5	21.5	5.882	303.3	49.2	148.0	29.20	0.49	39.5
Top Chord U1U2	638	90.99	738.60	0.5	21.5	5.882	470.3	16.7	0.0	2.80	1.12	89.8
Top Chord U2U3	581	90.99	738.60	0.5	21.5	5.882	470.3	16.7	0.0	2.80	1.00	80.1
Top Chord U3U4	641	90.99	738.60	0.5	21.5	5.882	470.3	16.7	0.0	2.80	1.13	90.3
Top Chord U4U5	628	90.99	738.60	0.5	21.5	5.882	470.3	16.7	0.0	2.80	1.10	88.0
U1L2 Diag. (D1) (ten.)	425	56.69	514.80	0.5	21.5	5.882	327.8	5.7	0.0	2.30	1.10	88.0
L2U3 Diag. (D2) (comp.)	453	18.69	299.30	0.5	21.5	5.882	190.6	1.9	0.0	1.70	2.26	180.8
U3L4 Diag. (D2) (comp.)	446	18.69	299.30	0.5	21.5	5.882	190.6	1.9	0.0	1.70	2.23	178.0
L4U5 Diag. (D1) (ten.)	410	56.69	514.80	0.5	21.5	5.882	327.8	5.7	0.0	2.30	1.05	84.3
L3U3 Hanger (center)	268	19.50	290.80	0.5	39.0	5.882	210.6	3.0	0.0	2.74	1.15	92.2
L1U1	267	18.00	291.20	0.5	39.0	5.882	210.9	3.0	0.0	2.74	1.15	92.2
L2U2	ZERO FORCE MEMBER			0.5	39.0	5.882	0.0	3.0	0.0	2.74	\#VALUE!	\#VALUE!
L4U4	ZERO FORCE MEMBER			0.5	39.0	5.882	0.0	3.0	0.0	2.74	\#VALUE!	\#VALUE!
L5U5	264	18.00	291.20	0.5	39.0	5.882	210.9	3.0	0.0	2.74	1.14	91.2
End Post U5L6	774	91.53	775.90	0.5	21.5	5.882	494.0	9.5	0.0	2.89	1.36	108.5

Appendix 3

SALINAS RIVER BRIDGE
AS-INSPECTED LOAD RATING - 30 FT. DEEP TRUSS
FLOOR SYSTEM - LOAD CASE A

Appendix 3

SALINAS RIVER BRIDGE
AS-INSPECTED LOAD RATING - 30 FT. DEEP TRUSS
FLOOR SYSTEM - LOAD CASE A

Appendix 3
COMPARISON OF LOADING FROM PASSENGER TRAIN TO E-80 LOADING

TRUSS MEMBERS MEMBER L0-U1 L0-L2 L2-L4 U1-U3 U1-L2 L2-U3 HANGER	$\begin{gathered} \text { LL (E-80-LOADING-KIPS) } \\ 775.90 \\ 476.30 \\ 826.50 \\ 738.60 \\ 514.80 \\ 299.30 \\ 290.80 \end{gathered}$	LL (PASSENGER TRAIN-KIPS) 257.49 158.00 272.31 251.84 184.74 107.74 134.33	E-EQUIVALENT PASSENGER 26.55 26.54 26.36 27.28 28.71 28.80 36.95
FLOOR SYSTEM MOMENTS	LL (E-80-LOADING-FT-KIPS)	LL (PASSENGER TRAIN-FT-KIPS)	E-EQUIVALENT PASSENGER
STRINGER FLOORBEAM	$\begin{aligned} & 531.00 \\ & 724.00 \end{aligned}$	$\begin{aligned} & 245.58 \\ & 335.54 \end{aligned}$	$\begin{aligned} & 37.00 \\ & 37.08 \end{aligned}$
SHEAR	LL (E-80-LOADING-FT-KIPS)	LL (PASSENGER TRAIN-FT-KIPS)	E-EQUIVALENT PASSENGER
STRINGER FLOORBEAM	$\begin{aligned} & 108.80 \\ & 145.00 \end{aligned}$	$\begin{aligned} & 54.00 \\ & 67.10 \end{aligned}$	$\begin{aligned} & 39.71 \\ & 37.02 \end{aligned}$

Appendix 3
COMPARISON OF LOADING FROM PASSENGER TRAIN TO E-80 LOADING

TRUSS MEMBERS MEMBER L0-U1 L0-L2 L2-L4 U1-U3 U1-L2 L2-U3 HANGER	LL (E-80-LOADING-KIPS) 766.62 460.85 799.53 715.08 508.60 296.01 290.80	LL (PASSENGER TRAIN-KIPS) 254.33 152.95 263.45 243.76 182.52 106.54 134.33	E-EQUIVALENT PASSENGER 26.54 26.55 26.36 27.27 28.71 28.79 36.95
FLOOR SYSTEM MOMENTS	LL (E-80-LOADING-FT-KIPS)	LL (PASSENGER TRAIN-FT-KIPS)	E-EQUIVALENT PASSENGER
STRINGER FLOORBEAM	$\begin{aligned} & 531.00 \\ & 724.00 \end{aligned}$	$\begin{aligned} & 245.58 \\ & 335.54 \end{aligned}$	$\begin{aligned} & 37.00 \\ & 37.08 \end{aligned}$
SHEAR	LL (E-80-LOADING-FT-KIPS)	LL (PASSENGER TRAIN-FT-KIPS)	E-EQUIVALENT PASSENGER
STRINGER FLOORBEAM	$\begin{aligned} & 108.80 \\ & 145.00 \end{aligned}$	$\begin{aligned} & 54.00 \\ & 67.10 \end{aligned}$	$\begin{aligned} & 39.71 \\ & 37.02 \end{aligned}$

APPENDIX 4

RECOMMENDED REPAIRS

UPDATED RECOMMENDED REPAIRS

Superstructure

1. Realign truss spans moved during Loma Prieta earthquake.
2. Replace truss expansion roller bearings of Spans 1-5 with PTFE sliding bearings, including replacement of: bearing pedestal, segmental rollers, bearing plate above rollers, and anchor bolts.
3. Replace bearing pedestals of truss fixed bearings of Spans $2,3 \& 4$.
4. Replace deteriorated sections of top chord cover plates at the following locations:

Span 1, Panels 2-5, Left \& Right Trusses (50\%-95\% section loss)
Span 2, Panels 3-5, Left Trusses (30\%-50\% section loss)
Span 2, Panel $2 \& 5$, Right Truss (30% \& 60% section loss)
Span 3, Panels 3-5, Left Trusses (50\%-70\% section loss)
Span 3, Panels $3 \& 5$, Right Trusses (80% \& 30% section loss)
Span 4, Panels 2-5, Left Trusses ($40 \%-70 \%$ section loss)
Span 4, Panels 3-5, Right Trusses (30\%-70\% section loss)
Span 5, Panels 2-5, Left \& Right Trusses ($30 \%-80 \%$ section loss)
5. Repair areas of section loss at the following truss members:

Span 1, L6L, End Post (70\% section loss of cover plate)
Span 1 L3L, Hanger (25% \& 40% section loss of inboard flange)
Span 1 L3R, Hanger (20% \& 50% section loss of inboard flange)
Span 1, U2R Post (50% section loss at one side of outboard flange)
Span 1, L2L, Diagonal L2L-U1L (50% section loss of outboard top flange, $40 \% \& 50 \%$ section loss of inboard flanges)
Span 1, L2L, Diagonal L2L-U3L (20% section loss of outboard bottom flange)
Span 1, L2R, Diagonal L2R-U1R ($30 \% \& 50 \%$ section loss of outboard flanges, 50% section loss of inboard top flange)
Span 1, L2R, Diagonal L2R-U3R (30\% \& 50\% section loss of outboard flanges, $25 \% \& 50 \%$ section loss of inboard flanges)
Span 1, L4L, Diagonal L4L-U3L ($25 \% \& 50 \%$ section loss of outboard flanges, $40 \% \& 50 \%$ section loss of inboard flanges)
Span 1, L4L, Diagonal L4L-U5L (50\% section loss of outboard top flange, $20 \% \& 50 \%$ section loss of inboard flanges)
Span 1, L4R, Diagonal L4R-U3R ($40 \% \& 50 \%$ section loss of outboard flanges, 25% section loss of inboard top flange)
Span 1, L4R, Diagonal L4R-U5R (40% \& 60% section loss of outboard flanges, $20 \% \& 40 \%$ section loss of inboard flanges)
Span 1, Panel 1, Bottom Chord, Left Truss, (20% section loss of outboard top flange, 20% section loss of inboard top flange)
Span 1, Panel 1, Bottom Chord, Right Truss, ($50 \% \& 90 \%$ section loss of outboard flanges, 50% section loss of inboard top flange)

Span 1, Panel 2, Bottom Chord, Left Truss, (50% section loss of outboard top flange, 50% section loss of inboard top flange)
Span 1, Panel 2, Bottom Chord, Right Truss, (50% section loss of outboard top flange, $50 \% \& 60 \%$ section loss of inboard flanges)
Span 1, Panel 3, Bottom Chord, Left Truss, ($30 \% \& 50 \%$ section loss of outboard flanges, 50% section loss of inboard top flange)
Span 1, Panel 3, Bottom Chord, Right Truss, (40% section loss of outboard top flange, 50% section loss of inboard top flange)
Span 1, Panel 4, Bottom Chord, Left Truss, ($40 \% \& 50 \%$ section loss of outboard flanges, $30 \% \& 60 \%$ section loss of inboard flanges)
Span 1, Panel 4, Bottom Chord, Right Truss, ($20 \% \& 40 \%$ section loss of outboard flanges, $20 \% \& 60 \%$ section loss of inboard flanges)
Span 1, Panel 5, Bottom Chord, Left Truss, ($30 \% \& 70 \%$ section loss of outboard flanges, 70% section loss of inboard top flange)
Span 1, Panel 5, Bottom Chord, Right Truss, (60% section loss of outboard flange, $30 \% \& 60 \%$ section loss of inboard flanges)
Span 1, Panel 6, Bottom Chord, Left Truss, ($30 \% \& 70 \%$ section loss of outboard flanges, $20 \% \& 50 \%$ section loss of inboard flanges)
Span 1, Panel 6, Bottom Chord, Right Truss, (60% section loss of outboard flange, $30 \% \& 60 \%$ section loss of inboard flanges)
Span 2 L1R, Hanger (25% section loss at one side of outboard flange)
Span 3 L1R, Hanger (30% \& 40% section loss of inboard flanges)
Span 4, L6R, End Post (80% section loss of outboard pin plate \& 30% section loss of gusset plate at bearing pin)
Span 4, U4L Post (35% section loss of outboard flange)
Span 5, L4L, Diagonal L4L-U5L ($30 \% \& 20 \%$ section loss of inboard flanges)
Span 3, Gusset Plate, Hanger L1L-U1L (70\% section loss of inboard gusset plate above flbm)
Span 3, Gusset Plate, Diagonal L2L-U1L (70\% section loss of outboard gusset plate)
Span 4, Gusset Plate, Post L2L-U2L (60\% section loss of inboard \& outboard gusset plate)
Span 4, Gusset Plate, Diagonal L4L-U5L (75\% section loss of inboard \& outboard gusset plate)
6. Repair or replace the following truss bracing components:

Replace all truss top bracing members of Spans 2-5, including replacement of: top lateral bracing, top struts and sway bracing, top connections plates, and top gusset plates for Spans 2-5.

Span 1, Panel $1 \& 6$, Portal diagonal panels (80% SL)
Span 4, Panel 1, (1) Portal angle (40% SL)
Span 4, Panel 1, (1) Portal gusset (90\% SL)
Span 4, Panel 6, (1) Portal bottom angles (40% SL)
Span 1, Panel 2, Bottom Lateral Brace L1L-L2R (50\% SL)
Span 1, Panel 2, Bottom Lateral Brace L1R-L2L (50\% SL)
Span 1, Panel 3, Bottom Lateral Brace L2L-L3R (50% SL)
Span 1, Panel 3, Bottom Lateral Gusset Plate L3R (50% SL)
Span 1, Panel 3, Bottom Lateral Brace L2R-L3L (50% SL)
Span 1, Panel 3, Bottom Lateral Gusset Plate L2R (50\% SL)

Span 1, Panel 4, Bottom Lateral Brace L3L-L4R (60\% SL) Span 1, Panel 4, Bottom Lateral Gusset Plate L3L (90\% SL) Span 1, Panel 4, Bottom Lateral Gusset Plate L3R (70\% SL) Span 1, Panel 4, Bottom Lateral Brace L3R-L4L (70\% SL) Span 1, Panel 4, Bottom Lateral Gusset Plate L4R (50\% SL) Span 1, Panel 4, Bottom Lateral Gusset Plate L4L (80\% SL) Span 1, Panel 5, Bottom Lateral Brace L4L-L5R (60\% SL) Span 1, Panel 5, Bottom Lateral Gusset Plate L4L (60\% SL) Span 1, Panel 5, Bottom Lateral Gusset Plate L4R (60% SL) Span 1, Panel 5, Bottom Lateral Brace L4R-L5L (60\% SL) Span 1, Panel 6, Bottom Lateral Gusset Plate L5L (70\% SL) Span 1, Panel 6, Bottom Lateral Gusset Plate L5R (70\% SL) Span 1, Panel 6, Bottom Lateral Brace L5R-L6L (50\% SL) Span 1, Panel 6, Bottom Lateral Gusset Plate L6R (70\% SL) Span 1, Panel 6, Bottom Lateral Gusset Plate L6L (80\% SL)

Span 2, Panel 2, Bottom Lateral Gusset Plate L1L (40% SL) Span 2, Panel 2, Bottom Lateral Gusset Plate L1R (70\% SL) Span 2, Panel 4, Bottom Lateral Gusset Plate L3R (60% SL) Span 2, Panel 4, Bottom Lateral Gusset Plate L4R (50\% SL) Span 2, Panel 5, Bottom Lateral Gusset Plate L4R (40\% SL) Span 2, Panel 5, Bottom Lateral Gusset Plate L4L (50\% SL) Span 2, Panel 6, Bottom Lateral Gusset Plate L6L (50\% SL) Span 2, Panel Point L6, Stringer Strut Gusset Plate L6L (90\% SL) Span 2, Panel Point L6, Stringer Strut Gusset Plate L6R (70\% SL)

Span 3, Panel Point L0, Stringer Strut Gusset Plate L0R (40\% SL) Span 3, Panel Point L0, Stringer Strut Gusset Plate L0L (90\% SL) Span 3, Panel 1, Bottom Lateral Gusset Plate L0L (60% SL) Span 3, Panel 2, Bottom Lateral Gusset Plate L1L (40% SL) Span 3, Panel 2, Bottom Lateral Gusset Plate L1R (40% SL) Span 3, Panel 3, Bottom Lateral Gusset Plate L2R (60% SL) Span 3, Panel 3, Bottom Lateral Gusset Plate L3R (50% SL) Span 3, Panel 5, Bottom Lateral Gusset Plate L4R (90\% SL) Span 3, Panel 6, Bottom Lateral Gusset Plate L5R (50% SL)

Span 4, Panel 2, Bottom Lateral Gusset Plate L1R (40\% SL) Span 4, Panel 3, Bottom Lateral Gusset Plate L3L (50\% SL) Span 4, Panel 3, Bottom Lateral Gusset Plate L3R (50\% SL) Span 4, Panel 3, Bottom Lateral Gusset Plate L2R (70\% SL) Span 4, Panel 4, Bottom Lateral Gusset Plate L4L (50\% SL) Span 4, Panel 5, Bottom Lateral Gusset Plate L4R (60% SL) Span 4, Panel 5, Bottom Lateral Gusset Plate L5R (60% SL) Span 4, Panel 6, Bottom Lateral Gusset Plate L6L (50\% SL) Span 4, Panel 6, Bottom Lateral Gusset Plate L5R (40\% SL) Span 4, Panel 6, Bottom Lateral Gusset Plate L6L (90\% SL)

Span 5, Panel 1, Bottom Lateral Gusset Plate L0L (40\% SL) Span 5, Panel 2, Bottom Lateral Gusset Plate L1R (50% SL) Span 5, Panel 3, Bottom Lateral Gusset Plate L2R (50% SL)
7. Replace deteriorated lacing bars of the following truss members:

Span 1, Panel 1, Left Truss, Bottom Chord Span 1, Panel 2, Left Truss, Bottom Chord Span 1, Panel 3, Left Truss, Bottom Chord Span 1, Panel 4, Left Truss, Bottom Chord Span 1, Panel 5, Left Truss, Bottom Chord Span 1, Panel 5, Right Truss, Bottom Chord Span 1, Panel 6, Left Truss, Bottom Chord Span 1, Panel 6, Right Truss, Bottom Chord
Span 1, Panel 2, Left Truss, Diagonal Span 1, Panel 2, Right Truss, Diagonal Span 1, Panel Point L2, Left Truss, Post Span 1, Panel Point L2, Right Truss, Post Span 1, Panel 3, Right Truss, Diagonal Span 1, Panel 4, Left Truss, Diagonal Span 1, Panel 4, Right Truss, Diagonal Span 1, Panel Point L4, Left Truss, Post Span 1, Panel Point L4, Right Truss, Post Span 1, Panel 5, Left Truss, Diagonal Span 1, Panel 5, Right truss, Diagonal
Span 2, Panel 2, Right Truss, Bottom Chord Span 2, Panel 5, Left Truss, Bottom Chord Span 2, Panel 3, Left Truss, Diagonal
Span 3, Panel 5, Right Truss, Bottom Chord Span 3, Panel 6, Left Truss, Bottom Chord Span 3, Panel 1, Left Truss, End Post Span 3, Panel 1, Right Truss, End Post Span 3, Panel 3, Left Truss, Diagonal Span 3, Panel 3, Right Truss, Diagonal Span 3, Panel 4, Right Truss, Diagonal
Span 4, Panel 1, Left Truss, Bottom Chord Span 4, Panel 1, Right Truss, Bottom Chord Span 4, Panel 2, Left Truss, Bottom Chord Span 4, Panel 2, Right Truss, Bottom Chord Span 4, Panel 6, Left Truss, Bottom Chord
Span 4, Panel 1, Left Truss, End Post
Span 4, Panel 1, Right Truss, End Post
Span 4, Panel 3, Left Truss, Diagonal
Span 4, Panel 3, Right Truss, Diagonal
Span 5, Panel 1, Left Truss, Bottom Chord Span 5, Panel 2, Left Truss, Bottom Chord Span 5, Panel 2, Right Truss, Bottom Chord

Span 5, Panel 5, Right Truss, Bottom Chord
Span 5, Panel 1, Left Truss, End Post
Span 5, Panel 1, Right Truss, End Post
Span 5, Panel 3, Right Truss, Diagonal
Span 5, Panel 4, Left Truss, Diagonal
Span 5, Panel 4, Right Truss, Diagonal
8. Repair or replace the following floor system components:

Span 1, at L0L, End Post-to Floorbeam connection plate (50\% SL)
Span 1, at L0R, End Post-to Floorbeam connection plate (70\% SL)
Span 1, at Floorbeam 0, Left Stringer Bracket top flange angles (95\% \& 70\% SL)
Span 1, at Floorbeam 0, Right Stringer Bracket top flange outboard angle (30% SL)
Span 1, Panel 3, Stringer Top Lateral Right Gusset, Mty end (40% SL)
Span 1, at Floorbeam 3, Left Floorbeam Bracket connection angles (50\% SL)
Span 1, at Floorbeam 3, Right Floorbeam Bracket connection angles (60\% SL)
Span 1, Panel 4, Stringer Top Lateral (2) diagonals ($50 \% \mathrm{SL}$)
Span 1, at Floorbeam 4, Left Floorbeam Bracket connection angles (40\% SL)
Span 1, at Floorbeam 4, Right Floorbeam Bracket connection angles (40% SL)
Span 1, at Floorbeam 5, Left Floorbeam Bracket plate (40% SL)
Span 1, at Floorbeam 5, Left Floorbeam Bracket connection angles (75\% SL)
Span 1, at Floorbeam 5, Right Floorbeam Bracket plate (30\% SL)
Span 1, at Floorbeam 5, Right Floorbeam Bracket connection angles (90\% SL)
Span 1, Floorbeam 6, Floorbeam bottom flange angles (70% \& 40\% SL)
Span 1, at L6L, End Post-to-Floorbeam connection plate (80\%)
Span 1, at L6R, End Post-to-Floorbeam connection plate (100% SL)
Span 1, at Floorbeam 6, Left Stringer Bracket top flange angles (80% \& 70\% SL)
Span 1, at Floorbeam 6, Right Stringer Bracket top flange (100% \& 80\% SL)
Span 2, Panel 6, Left Stringer bottom flange (30\% SL)
Span 3, Panel 1, Left Stringer bottom flange (20\% SL)
Span 3, Panel 6, Left Stringer strut gusset (40% SL)
Span 3, Panel 6, Right Stringer strut gusset (60% SL)
Span 4, Panel 1, Left Stringer strut gusset (90\% SL)
Span 4, Panel 1, Right Stringer strut (30\% SL)
Span 4, Panel 1, Right Stringer strut gusset (50% SL)
Span 4, Panel 1, Stringer Top Lateral L0 Gusset (100% SL)
Span 4, Panel 6, Left Stringer strut gusset (80% SL)
Span 4, Panel 6, Right Stringer strut gusset (65\% SL)
Span 5, Panel 1, Left Stringer strut gusset (90\% SL)
Span 5, Panel 1, Right Stringer strut (40% SL)
Span 5, Panel 1, Right Stringer strut gusset (40% SL)
Span 5, Panel 1, Right Stringer bottom flange (30% SL)
Span 5, Floorbeam 3, Floorbeam top flange (30\% SL)
9. Rehabilitate stringer expansion bearings at Spans 2, 3, 4, and north end of Span 5 including replacement of sole plates and shim plates, and replacement or re-surfacing bed plates. Replace (2) broken/bent anchor bolts at panel L6 stringer expansion bearing left and right side.
10. Replace all timber ties and spacers. Timber ties will need to be bored and dapped prior to being treated.
11. Clean and overcoat all bridge members and seal corrosion hole pockets

Substructure

12. Repair crack in Abutment No. 1 at right truss bearing

APPENDIX F

Updated Bridge Rehabilitation \& Replacement Cost Estimates
 Salinas River Bridge No. 113.46

> | Parsons Transportation Group |
| :---: |
| May 3, 2010 |

TABLE OF CONTENTS

1) Salinas River Replacement Bridge
General Plan 1
New Bridge Typical Sections 2
2) Salinas River Bridge-cost estimate
Existing Bridge Rehabilitation 3
Existing Bridge Rehabilitation with substructure retrofit 4
Existing Bridge Rehabilitation with Span 1 Replacement. 5
Replace Bridge on new alignment-Concrete 6
Replace Bridge on new alignment-Steel 7
Replace Bridge on existing alignment-Steel 8

	GENERAL PLAN ESTIMATE		X	ADVANCE PLANNING ESTIMATE		
		RCVD BY:			IN EST:	
					OUT EST:	
BRIDGE:	SALINAS RIVER BRIDGE (retrofit including substructure)	BR. No.:	MP 113.46		DISTRICT:	
TYPE:	STEEL THROUGH TRUSS				RTE:	
CU:					CO:	
EA:					PM:	
	LENGTH:	715.00	WIDTH:	20.00	AREA (SF)=	14,300

	GENERAL PLAN ESTIMATE		X	ADVANCE PLANNING ESTIMATE		
		RCVD BY			IN EST:	
					OUT EST:	
BRIDGE:	SALINAS RIVER BRIDGE (replace span 1)	BR. No.:	MP 113.46		DISTRICT:	
TYPE:	STEEL THROUGH TRUSS/STEEL DECK PLATE GIRDER			RTE:		
CU:					CO:	
EA:					PM:	14,300
	LENGTH:	715.00	WIDTH:	20.00	AREA (SF)=	

[^0]: *Where passenger equipment is operated on a line with freight equipment, the FRA requires that the passenger equipment meet certain crash worthiness requirements. This equipment is referred to as compliant. Conversely non-compliant equipment is that which is operated on a line solely dedicated to passenger operations.

[^1]: MAXIMUM RATING

[^2]: SRB:CAR:DNM/srb

[^3]:

[^4]: 'This report assesses the Salinas River Bridge, and nothing further. Therefore, the results of the record's search are included in this section, but do not directly impact the review of the potential historical character of the bridge itselt, as it was not identified during the records search as having previously been evaluat ed.

