COMMUTER RAIL EXTENSION TO MONTEREY COUNTY PASSENGER PAJARO RAIL STATION

TRAFFIC IMPACT ANALYSIS

June 2011 Revised December 2011

Prepared for:

Transportation Agency of Monterey County 55-B Plaza Circle

Salinas, California

Prepared by:

PARSONS

100 San Fernando Street, Suite 450 San Jose, California

COMMUTER RAIL EXTENSION TO MONTEREY COUNTY PASSENGER PAJARO RAIL STATION

TRAFFIC IMPACT ANALYSIS

PARSONS

June 2011 Revised December 2011

Contents

	Pa	ge
Ex	xecutive Summary	
1.	Project Components	1 3 3 4 5
2.	Base Year Conditions	3 2 2
3.	Background (No Project) Conditions	3
4.	Project Conditions	0 2 2 5
5.	Conclusion	9
AF	PPENDIX A: Proposed Modifications to the Pajaro Station Area PPENDIX B: Turning Movement Counts and Tube Counts PPENDIX C: Level of Service Calculations PPENDIX D: Traffic Signal Warrant Analysis	

Contents (continued)

Figure		Page
1	Pajaro Valley Station Location	6
2	Salinas Road Railroad Grade Crossings (Two-way Volumes)	
3		
	Lewis Road Railroad Grade Crossings (Two-way Volumes)	
4	Existing (Baseline) Traffic Volumes during Network Peak Hours	. 13
5	Existing (Baseline) Traffic Volumes during Station Peak Hours	14
6	Background Traffic Volumes during Network Peak Hours	18
7	Background Traffic Volumes during Station Peak Hours	19
8	Trip Distribution to and from Pajaro Valley Station	23
9	Project Trip Assignment: Pajaro Valley Long-Term Scenario	24
10	Project Traffic Volumes during Network Peak	26
11	Project Traffic Volumes during Station Peak	27
Table		Page
1	Intersection Level of Service Definitions	7
2	Base Year Intersection Levels of Service	15
3	Background Intersection Levels of Service	17
4	Trip Generation Estimates	22
5	Background and Project Intersection Levels of Service (2020)	28

Executive Summary

This report provides technical data to the addendum to the *Commuter Rail Extension to Monterey Environmental Impact Report*. That document, in turn, is an addendum to the *Environmental Impact Report for the Caltrain Extension to Monterey County Passenger Rail Stations Project*, currently known as the Commuter Rail Extension to Monterey County Project. These changes are a result of new information or requirements resulting from coordination among the County of Monterey, Transportation Agency for Monterey County (lead agency), and design modifications necessary to accommodate commuter rail coaches at the Pajaro Passenger Station.

The Commuter Rail Extension to Monterey County Project is a 37-mile long passenger rail project that will extend commuter rail service from the existing terminus in Gilroy to Monterey County, including stations in Pajaro, Castroville and Salinas. At its inception, the service would consist of two or three round trips per weekday running from Salinas to Gilroy and would be increased to four or more round trips after five years or as passenger demands require. The proposed project would require the expansion of the Salinas Intermodal Transportation Center, construction of two new stations, a train layover facility in Salinas, minor track improvements, and limited equipment acquisitions.

The *Environmental Impact Report* considered two location options for the construction of the Pajaro Station. Site 1 was proposed to be located at the Watsonville Junction within an area bordered by Salinas Road on the west, Lewis Road on the south, and Railroad Avenue on the north. This location was identified in the Environmental Impact Report as the locally preferred alternative.

Since preparation and adoption of the Environmental Impact Report, a number of minor changes to various project components have become necessary. These changes include the following: rail passenger loading platforms would be 800 feet by 20 feet instead of 700 feet by 20 feet and a signal would be installed at the Salinas Road/Lewis Road intersection rather than at the Salinas Road/Railroad Avenue intersection.

The development of the proposed station entails construction of rail passenger loading platforms, platform shelters, bus or shuttle berths and shelters, parking, bicycle facilities, sidewalks, and

circulation roadways. Regional access to the station is proposed via two driveways on Salinas Road

To assess traffic impacts, traffic volumes were counted at key intersections adjacent to or near the proposed station site. The traffic counts were conducted in 2011 and these volumes were increased by a growth factor of one (1) percent per year to represent future conditions when the commuter rail service was projected to be operating. For the purpose of this assessment, traffic operating conditions were analyzed without the project (termed background conditions) and with the project (project conditions) for the year 2020. Traffic operations were also assessed for the year of the traffic counts (2011).

AM and PM peak-hour operations of the study intersections were evaluated for the following scenarios:

Scenario 1: Baseline Conditions. Peak-hour volumes for 2011, for the projected peak

hours of both the commuter rail station and the surrounding roadway

network.

Scenario 2: Background Conditions. Baseline conditions plus projected peak-hour

volumes from future growth. Background conditions were evaluated for the peak hours of both the commuter rail station operations and the surrounding roadway network, under a long-term (ten-year horizon) scenario. The background conditions are those conditions caused by existing traffic and future growth. The background analysis represents the

"no project" condition.

Scenario 3: Project Conditions. Background conditions plus estimated project-

generated traffic. Project conditions were evaluated for the peak hours of both the commuter rail station operations and the surrounding roadway network, under a long-term (ten-year horizon with a daily service of four

trains) scenario.

A total of four (4) intersections were evaluated for this project using SYNCHRO software. Existing intersection traffic volumes were obtained by performing manual turning-movement counts at the study intersections in March 2011. Cycle lengths are commonly-used default values. Project trip generation is based on methodology reported in *Ridership Estimates for Caltrain Extension*. In addition, 7-day, 24-hour counts were conducted at two locations in the project vicinity. Two proposed driveways on Salinas Road were analyzed for the project conditions

The results of the level of service analysis for all intersections during all conditions are presented in the table at the end of this executive summary.

Base Year Conditions

The results of the level of service analysis indicate that under base year conditions, one study intersection in Pajaro does not operate at an acceptable level of service and with excess capacity during the network peak hour (Salinas Road at Railroad Avenue). The stop-controlled approach

of Railroad Avenue at Salinas Road operates at LOS F during the existing PM network peak hour.

Background Conditions

In the background scenario, traffic operations will occur with slightly increased delay but relatively close to the same levels of service as during the base year scenario. Due to the growth rate applied to the base year traffic volumes, the delays may increase causing some levels of service to decline. Where this decline occurs is at Porter Drive and San Juan Road during the network AM peak, Salinas Road and Railroad Avenue during the network AM peak and Salinas Road and Lewis Road during the network PM peak.

Project Conditions

In conjunction with the development of a passenger rail station at the locally preferred site, installation of signalized traffic control at the Salinas Road/Lewis Road intersection is proposed. The traffic signal would be required solely as a result of this station project, whereby the westerly yard lead track is moved closer to Salinas Road.

In the project scenario, almost all Pajaro Valley intersections will continue to operate at the preproject levels projected by the background scenario or better during all peak periods with the exception of Salinas Road at Railroad Avenue during the station PM peak.

Intersection Level of Service Summary

					Conditi	on		
Intersection	Peak	Peak Hour	Baseline LOS	Delay, sec ^a	10-Year Background LOS	Delay, sec ^a	10-Year Project LOS	Delay sec ^a
Pajaro Valley								
Porter Drive at San Juan Road	Train AM	5:30-6:30	В	15.9	В	10.8	В	10.8
	Network AM	7:15-8:15	В	19.8	С	20.5	В	15.6 ^b
	Train PM	5:45-6:45	С	20.6	С	21.8	С	21.8
	Network PM	4:30-5:30	С	20.5	В	19.3	В	19.3
Salinas Road at Matiasevich Lane	Train AM	5:30-6:30	Α	3.5	Α	3.5	А	3.8
	Network AM	7:15-8:15	Α	7.4	Α	8.8	Α	7.6 ^b
	Train PM	5:45-6:45	Α	4.9	Α	5.6	Α	4.0 b
	Network PM	4:30-5:30	Α	7.3	Α	5.8	Α	5.3 b
Salinas Road at Railroad Avenue	Train AM	5:30-6:30	В	10.4	В	10.7	В	11.9
(westbound leg)	Network AM	7:15-8:15	С	25.0	D	32.7	D	28.7 b
	Train PM	work PM 4:30-5:30 C 20.5 B 19.3 ain AM 5:30-6:30 A 3.5 A 3.5 work AM 7:15-8:15 A 7.4 A 8.8 ain PM 5:45-6:45 A 4.9 A 5.6 work PM 4:30-5:30 A 7.3 A 5.8 ain AM 5:30-6:30 B 10.4 B 10.7 work AM 7:15-8:15 C 25.0 D 32.7 ain PM 5:45-6:45 C 16.9 C 19.0 work PM 4:30-5:30 F 55.1 F — ain AM 5:30-6:30 N/A N/A N/A work PM 4:30-5:30 N/A N/A N/A	D	28.0				
	Network PM	4:30-5:30	F	55.1	F	_	F	_
Salinas Road at Station Driveway 1	Train AM	5:30-6:30					В	12.2
(westbound leg)	Network AM	7:15-8:15	N1/A		NI/A		С	22.8
	Train PM	5:45-6:45	IN/A		IN/A		D	29.1
	Network PM	4:30-5:30					B B C B A A A A D D F B C C	28.1
Salinas Road at Station Driveway 2	Train AM	5:30-6:30					Α	9.7
(westbound leg)	Network AM	7:15-8:15	N1/A		NI/A		С	18.0
	Train PM	5:45-6:45	N/A		N/A		С	19.9
	Network PM	4:30-5:30						21.5
Salinas Road at Lewis Road ^c	Train AM	5:30-6:30	В	10.5	В	10.7	Α	5.9
	Network AM	7:15-8:15	С	20.2	С	23.8	Α	9.0
	Train PM	5:45-6:45	В	13.8	В	14.8	Α	7.4
	Network PM	5:00-6:00	В	13.9	С	15.1	Α	9.3

Source: Parsons

Notes:

Observations at these intersections indicate that spillback conditions sometimes bring traffic flow to a standstill, reducing traffic flow and the resulting counts. This condition can result in analysis results that do not accurately reflect conditions.

^aDelay in seconds. This number represents the average intersection delay at signalized intersections and the approach delay at unsignalized intersections.

b Some slight reductions may occur in delay between scenarios as a result of minor signal timing changes and small adjustments in operations from intersection to intersection. Clevel of service results are based upon unsignalized conditions for the Baseline and Background scenarios for the westbound leg of the intersection. For the Project Long-Term scenario, intersection signalization was assumed for project purposes. This is reflected in the level of service calculations.

1.

Introduction

This document provides technical detail to the addendum to the *Commuter Rail Extension to Monterey Environmental Impact Report*. That document, in turn, is an addendum to the *Environmental Impact Report* (EIR) for the Caltrain Extension to Monterey County Passenger Rail Stations Project, currently known as the Commuter Rail Extension to Monterey County Project. It has been prepared to address minor technical changes or additions associated with the project (see discussion below), per the requirements of the California Environmental Quality Act (CEQA). These changes are a result of new information or requirements resulting from coordination among the County of Monterey, Transportation Agency for Monterey County (lead agency), and design modifications necessary to accommodate commuter rail coaches at the Pajaro Passenger Station.

Background and Need for Addendum

CEQA Guidelines Section 15162 indicates the following:

- (a) When an EIR has been certified or a negative declaration adopted for a project, no subsequent EIR shall be prepared for that project unless the lead agency determines, on the basis of substantial evidence in the light of the whole record, one or more of the following:
 - (1) Substantial changes are proposed in the project which will require major revisions of the previous EIR or negative declaration due to the involvement of new significant environmental effects or a substantial increase in the severity of previously identified significant effects;
 - (2) Substantial changes occur with respect to the circumstances under which the project is undertaken which will require major revisions of the previous EIR or Negative Declaration due to the involvement of new significant environmental

¹Note: The *Environmental Impact Report* was certified by the Transportation Agency for Monterey County Board of Directors (local Lead Agency) on August 23, 2006.

TANC TRANSPORTATION AGENCY

Monterey County Commuter Rail Stations TRAFFIC IMPACT ANALYSIS

effects or a substantial increase in the severity of previously identified significant effects; or

- (3) New information of substantial importance, which was not known and could not have been known with the exercise of reasonable diligence at the time the previous EIR was certified as complete or the Negative Declaration was adopted, shows any of the following:
 - (A) The project will have one or more significant effects not discussed in the previous EIR or negative declaration;
 - (B) Significant effects previously examined will be substantially more severe than shown in the previous EIR;
 - (C) Mitigation measures or alternatives previously found not to be feasible would in fact be feasible, and would substantially reduce one or more significant effects of the project, but the project proponents decline to adopt the mitigation measure or alternative; or
 - (D) Mitigation measures or alternatives which are considerably different from those analyzed in the previous EIR would substantially reduce one or more significant effects on the environment, but the project proponents decline to adopt the mitigation measure or alternative.
- (b) If changes to a project or its circumstances occur or new information becomes available after adoption of a negative declaration, the lead agency shall prepare a subsequent EIR if required under subdivision (a). Otherwise the lead agency shall determine whether to prepare a subsequent negative declaration, an addendum, or no further documentation.

CEQA Guidelines Section 15164 further states the following:

- (a) The lead agency or responsible agency shall prepare an addendum to a previously certified EIR if some changes or additions are necessary but none of the conditions described in Section 15162 calling for preparation of a subsequent EIR have occurred.
- (b) An addendum to an adopted negative declaration may be prepared if only minor technical changes or additions are necessary or none of the conditions described in Section 15162 calling for the preparation of a subsequent EIR or negative declaration have occurred.
- (c) An addendum need not be circulated for public review but can be included in or attached to the final EIR or adopted negative declaration.
- (d) The decision making body shall consider the addendum with the final EIR or adopted negative declaration prior to making a decision on the project.
- (e) A brief explanation of the decision not to prepare a subsequent EIR pursuant to Section 15162 should be included in an addendum to an EIR, the lead agency's findings on the

project, or elsewhere in the record. The explanation must be supported by substantial evidence.

Project Description and Station Locale

The Commuter Rail Extension to Monterey County Project (the Project) is a 37 mile-long passenger rail project that will extend commuter rail² service from the existing terminus in Gilroy to Monterey County, including stations in Pajaro, Castroville, and Salinas. At its inception, the service would consist of two or three round trips per weekday running from Salinas to Gilroy and would be increased to four or more round trips after five years or as passenger demands require. The proposed project would require the expansion of the Salinas Intermodal Transportation Center, construction of two new stations, a train layover facility in Salinas, minor track improvements, and limited equipment acquisition.

The *Environmental Impact Report* considered a number of location options and configurations for the proposed stations and Intermodal Transportation Center, respectively. A brief description of those selected for analysis in the *Environmental Impact Report* and subsequently developed during the preliminary and final engineering stages are described below.

The *Environmental Impact Report* considered two location options for construction of the Pajaro Station. Site 1 was proposed to be located at the Watsonville Junction within an area bordered by Salinas Road on the west, Lewis Road on the south, and Railroad Avenue to the north. Site 1 was identified in the *Environmental Impact Report* as the locally preferred alternative. Site 2 was proposed to be located along Lewis Road approximately one-quarter mile east of Site 1. This site was identified as considered, but rejected as a viable alternative in the *Environmental Impact Report* and no further analysis was conducted.

Project Components

The following project components are applicable to the Pajaro Passenger Station:

- Platform shelters, lighting, furniture and fixtures, ticket vending machines, information displays and landscaping
- Signing and striping
- Construction/relocation of station track, turnouts, track removals, and railroad signaling, as may be required
- Site drainage, lighting, and landscaping
- ROW acquisition and roadway improvements
- Rail passenger loading platform (700 feet by 20 feet)

²Caltrain is a commuter rail service that runs between Gilroy and San Francisco. Caltrain operates weekday trains between San Francisco and San Jose, with commute-hour service to Gilroy. Weekend service is offered from San Francisco to San Jose. The service extension may alternatively be provided by the Capitol Corridor rail service, which currently runs between San Jose and Auburn, California.

- Intertrack fencing
- Bus, shuttle, and van loading/unloading berths, shelters, information displays
- Parking:
 - A total of 416 parking spaces and a bus turnout area would be provided.
 - Bicycle facilities, sidewalks, and circulation roadways.

Summary of the Proposed Minor Revisions to the Adopted Project

Since preparation and adoption of the *Environmental Impact Report*, a number of minor changes to various project components have become necessary. These changes were not previously known at the time of conceptual engineering and include proposed roadway and station modifications and property acquisitions. The sections below contain a brief discussion of the project components as they were described in the *Environmental Impact Report*, the proposed modifications that are now operative (station and roadway elements), the changes in property acquisitions that are now required, and a brief overview of associated construction activities.

Proposed Station Modifications

Section 2.0 (Project Description) of the *Environmental Impact Report* noted that the rail passenger loading platforms would be 700 feet by 20 feet. However, the platforms need to be lengthened by 100 feet in order to accommodate commuter rail trains operated by the Capitol Corridor Joint Powers Agency. Additionally, the number of parking spaces would be 409, rather than 416, as a result of refinements to the design.

Proposed Roadway Modifications

Section 3.14 (Traffic & Circulation) of the *Environmental Impact Report* indicated that the westbound stop-controlled approach of Railroad Avenue at Salinas Road would decline to level of service (LOS) D during the morning peak hour of station activity under the 10-year project scenario. In addition, the stop-controlled leg of Driveway 1 would operate at LOS F during the evening peak hour of commuter rail operations. To address this, the *Environmental Impact Report* proposed the installation of a traffic signal at Salinas Road and Railroad Avenue to mitigate impacts.

Since certification of the *Environmental Impact Report*, preliminary engineering indicates that due to track geometry requirements, the track nearest Salinas Road needs to be relocated to the west, thereby reducing the available storage capacity of Lewis Road between the relocated track and the stop bar at Salinas Road. Subsequent roadway design analysis and consultation with the California Public Utilities Commission determined that the proposed signal should be moved to Lewis Road (approximately 0.3 miles south of its previously proposed location) to ensure that vehicles traveling from Lewis Road will not block the track crossing, due to inadequate gaps in traffic on Salinas Road.

TANC TRANSPORTATION AGENCY

Monterey County Commuter Rail Stations TRAFFIC IMPACT ANALYSIS

At this location, Salinas Road narrows from four lanes to three lanes between Lewis Road and the Santa Cruz branch line at-grade railroad crossing just south of Railroad Avenue. The County of Monterey has requested that the Salinas Road improvements associated with the project not preclude the potential for restriping of the roadway to accommodate four lanes at some time in the future. In addition, they have also requested that the Transportation Agency for Monterey County evaluate the merits of striping Salinas Road as four lanes initially in order to increase roadway capacity. Appendix A contains the location of the proposed minor modifications associated with this station area.

This report presents the results of the traffic impact analysis conducted for the proposed commuter rail facility. The purpose of this study is to evaluate the impacts of the proposed development on the transportation system in the vicinity of the site. The traffic analysis is based on peak-hour levels of service for four key intersections and 7-day, 24-hour counts at two locations adjacent to the proposed station site.

Pajaro Valley

The proposed facility is located at the Union Pacific Railroad Watsonville Junction in the southeast corner of the intersection of Salinas Road and Railroad Avenue. The station will include a rail passenger loading platform, platform shelters, bus or shuttle berths and shelters, parking, bicycle facilities, sidewalks, and circulation roadways. The station will be accessed via two driveways on Salinas Road. Four key intersections were analyzed:

- Porter Drive at San Juan Road
- Salinas Road at Railroad Avenue (westbound leg)
- Salinas Road at the Pajaro School entrance
- Salinas Road at Lewis Road (westbound leg)

In addition, 7-day, 24-hour tube counts were conducted at the following locations:

- Lewis Road just north of Salinas Road
- Salinas Road near the entrance to the proposed station location

See Appendix B for the peak-hour turning-movement and the 7-day, 24-hour count sheets.

Figure 1 shows the project site location, surrounding roadway network, and study intersections/count locations.

Figure 1
Pajaro Valley Station Location

Source: Parsons

Traffic conditions during both AM and PM peak periods were evaluated under the following scenarios for the study intersections:

- **Scenario 1:** *Baseline Conditions.* Peak-hour volumes for 2011, for the projected peak hours of both the commuter rail station and the surrounding roadway network.
- **Scenario 2:** *Background Conditions*. Baseline conditions plus projected peak-hour volumes from future growth. Background conditions were evaluated for the peak hours of both the commuter rail station operations and the surrounding roadway network, under a long-term (ten-year horizon) scenario. The background conditions are those conditions caused by existing traffic and future growth. The background analysis represents the "no project" condition.

Scenario 3: *Project Conditions*. Background conditions plus estimated project-generated traffic. Project conditions were evaluated for the peak hours of both the commuter rail station operations and the surrounding roadway network, under a long-term (ten-year horizon with a daily service of four trains) scenario.

Intersection Analysis

Both the signalized and unsignalized study intersections were analyzed using SYNCHRO (version 6.0), a traffic engineering analysis software program that calculates intersection level of service based on *Highway Capacity Manual* methodology. Level of service is both a quantitative and qualitative description of an intersection's operation, ranging from LOS A, or free-flow conditions, to LOS F, or highly congested conditions. The correlation between average stopped vehicular delay and level of service is shown in Table 1.

Table 1
Intersection Level of Service Definitions

Level of Service	Description	Control Delay per Vehicle (sec)
Signaliz	ed Intersections	
Α	Free flow; minimal to no delay	≤10
В	Stable flow, but speeds are beginning to be restricted by traffic condition; slight delays.	>10 and ≤20
С	Stable flow, but most drivers can not select their own speeds and feel somewhat restricted, acceptable delays.	>20 and ≤35
D	Approaching unstable flow, and drivers have difficulty maneuvering; tolerable delays.	>35 and ≤55
Е	Unstable flow with stop and go; delays.	>55 and ≤80
F	Total breakdown; congested conditions with excessive delay.	>80
Unsigna	alized Intersections	
Α	Free flow; minimal to no delay	≤10
В	Stable flow, but speeds are beginning to be restricted by traffic condition; slight delays.	>10 and ≤15
С	Stable flow, but most drivers cannot select their own speeds and feel somewhat restricted, acceptable delays.	>15 and ≤25
D	Approaching unstable flow, and drivers have difficulty maneuvering; tolerable delays.	>25 and ≤35
Е	Unstable flow with stop and go; delays.	>35 and ≤50
F	Total breakdown; congested conditions with excessive delay.	>50

Source: 2000 Highway Capacity Manual

Report Organization

This report is divided into five chapters. **Chapter 2** describes base year conditions regarding the project site, including traffic volumes, traffic operations of nearby intersections, transit service provisions, and bicycle/pedestrian access. **Chapter 3** describes the intersection operations for background conditions. The methods used to estimate project conditions and impacts on the transportation system and parking are described in **Chapter 4**. **Chapter 5** presents the general conclusions resulting from the traffic analysis and an identification of project mitigations, if any.

2. Base Year (Existing) Conditions

This chapter provides a description of the base year conditions including roadway network facilities and operations, pedestrian/bicycle access, transit services, and intersection levels of service.

Existing Roadway Network

Pajaro Valley

Regional access to the proposed commuter rail station would be provided via two driveways on Salinas Road. The local roadways included in the traffic analysis are San Juan Road, Railroad Avenue, and Lewis Road. The roadway network serving the site is shown on Figure 1.

Salinas Road is a minor arterial roadway oriented generally in a north/south direction. Salinas Road begins at State Highway 1 to the southwest of Pajaro and runs eastward as a two-lane facility approximately one and one-half miles before turning north and becoming County Road G12. From its junction with Elkhorn Road to Railroad Avenue, a distance of 0.9 miles, Salinas Road is a four-lane facility. Less than one mile north of the project site, Salinas Road turns due north and becomes Porter Drive. At the signalized intersection of Porter Drive and San Juan Road, Porter Drive northbound has one exclusive left-turn lane, two through lanes, and one rightturn lane. At this intersection, southbound Porter Drive has two exclusive left-turn lanes, one through lane, and one shared through/right-turn lane. At the signalized intersection of Salinas Road and the entrance to Pajaro Middle School, Salinas Road has one exclusive left-turn lane, and one shared through/right-turn lane in each direction. At its unsignalized intersection with Railroad Avenue, Salinas Road has one lane in each direction separated by a two-way-left-turn lane. (Railroad Avenue traffic turning onto Salinas Road is controlled by a stop sign.) At its unsignalized intersection with Lewis Road, Salinas Road has one through lane and one shared through/right-turn lane in the northbound direction and one exclusive left-turn lane and two through lanes in the southbound direction. The northbound and southbound lanes are separated by a small median. Lewis Road traffic turning onto Salinas Road is controlled by a stop sign.

A seven-day, 24-hour tube counter was placed on Salinas Road between Lewis Road and Railroad Avenue in March of 2011. (See Appendix B for tube count volumes.) Weekday

Monterey County Commuter Rail Stations TRAFFIC IMPACT ANALYSIS

volumes average $\pm 17,000$ passenger car equivalents per day. The highest hourly volumes occur between 7:00 and 9:00 a.m. and from 11:00 a.m. to 6:00 or 7:00 p.m.. See Figure 2 for a table and graph depicting the volumes. The methods for computing level of service for rural highway segments do not address two-lane highways with signalized intersections since traffic signals control the traffic flow along this roadway segment. Utilizing the methodology and procedures for urban highway analysis (segments less than two miles and with traffic signals) would also not be applicable. A general level of service planning analysis is possible using daily volume thresholds based on planning applications of the Highway Capacity Manual. Based upon this methodology, this roadway typically operates at LOS D during peak hours. Additionally, the counts conducted were passenger vehicle equivalent counts, which means the tube counter counts axles and divides this number by two (which purports an assumption that each vehicle is a passenger car). Depending upon the number of trucks with more than two axles traveling through this study area on a daily basis, the 24 hour total count shown on Figure 2 could potentially be lower by more than ten (10) percent.

San Juan Road (County Road G11) is a two-lane roadway that runs predominantly in an east/west direction. It begins at Porter Drive just north of the project site and runs generally southeast for approximately 10 miles before ending at U.S. Highway 101. At its signalized intersection with Porter Drive (Salinas Road), the westbound leg of San Juan Road has two exclusive right turn lanes and one shared through/left-turn lane. The eastbound leg has one exclusive left-turn lane, one through lane, and one exclusive right-turn lane.

Matiasevich Lane (opposite the entrance to Pajaro Middle School) is a loop roadway that begins at Salinas Road, heads to the west for approximately 100 feet, turns to the north for approximately 350 feet and then heads back to the east to reconnect with Salinas Road. At its signalized intersection with Salinas Road (the southernmost connection) the eastbound leg serves as a driveway leaving Pajaro Middle School. This leg has one exclusive left-turn lane and a shared through/right-turn lane. The westbound leg also has an exclusive left-turn lane and a shared through/right-turn lane.

Railroad Avenue is a two-lane roadway that runs in an east/west direction, beginning at Salinas Road and running eastward for approximately one mile before it ends. At its stop-controlled intersection with Salinas Road, the westbound leg of Railroad Avenue has one exclusive left-turn lane and one exclusive right-turn lane.

Lewis Road is a two-lane road that begins at Salinas Road and crosses the Union Pacific railroad tracks before turning immediately northward to follow the curve of the tracks to the easternmost edge of the Watsonville Junction yard. At that point, Lewis Road turns south and travels approximately three miles before ending at San Miguel Canyon Road. At its stop-controlled intersection with Salinas Road, Lewis Road has one shared left-turn/right-turn lane.

A 7-day, 24-hour tube count was conducted in March 2011 on Lewis Road just north of Salinas Road. (See Appendix B for volume sheets.) This road serves $\pm 2,000$ passenger car equivalents (2-axle vehicles) per day. See Figure 3 for the volumes in table and graph format. Sunday is typically the day with the lowest hourly volumes. Based upon the Highway Capacity Manual methodology described above, Lewis Road typically operates at LOS A during the roadway peak hours.

Figure 2
Salinas Road Railroad Grade Crossings (Two-way Volumes)*

	60-Minute Period																								
		AM											PM												24 Hour
3/9-15/2011	0:00	1:00	2:00	3:00	4:00	5:00	6:00	7:00	8:00	9:00	10:00	11:00	12:00	13:00	14:00	15:00	16:00	17:00	18:00	19:00	20:00	21:00	22:00	23:00	Total
Monday	42	53	41	69	284	461	1,036	1,150	946	844	919	1,039	1,011	1,119	1,244	1,382	1,463	1,159	847	647	479	303	140	81	16,759
Tuesday	36	28	43	94	304	494	1,001	1,051	828	807	942	1,020	978	1,051	1,345	1,370	1,573	1,296	838	661	482	244	123	68	16,677
Wednesday	43	35	43	42	119	333	641	1,189	1,114	898	856	908	1,028	1,045	1,126	1,300	1,386	1,368	1,294	895	664	489	310	124	17,250
Thursday	78	39	45	54	72	333	609	1,069	1,038	891	787	840	913	995	1,092	1,303	1,392	1,435	1,188	811	629	463	285	130	16,491
Friday	78	46	43	46	91	397	845	1,297	1,068	860	868	920	1,024	1,079	1,093	1,204	1,236	1,277	1,212	953	610	477	420	195	17,339
Saturday	145	81	62	59	55	232	443	513	682	908	935	1,013	1,140	1,211	1,172	1,170	1,189	1,202	1,108	946	691	619	436	262	16,274
Sunday	157	101	97	72	155	145	217	399	591	809	931	1,039	1,260	1,150	1,219	1,248	1,007	848	826	702	504	322	182	79	14,060
7-Day Total	579	383	374	436	1,080	2,395	4,792	6,668	6,267	6,017	6,238	6,779	7,354	7,650	8,291	8,977	9,246	8,585	7,313	5,615	4,059	2,917	1,896	939	114,850
7-Day Avg	83	55	53	62	154	342	685	953	895	860	891	968	1,051	1,093	1,184	1,282	1,321	1,226	1,045	802	580	417	271	134	16,407
Highest Count	157	101	97	94	304	494	1,036	1,297	1,114	908	942	1,039	1,260	1,211	1,345	1,382	1,573	1,435	1,294	953	691	619	436	262	20,044
Lowest Count	36	28	41	42	55	145	217	399	591	807	787	840	913	995	1,092	1,170	1,007	848	826	647	479	244	123	68	12,400
Fri-Sun Avg	127	76	67	59	100	258	502	736	780	859	911	991	1,141	1,147	1,161	1,207	1,144	1,109	1,049	867	602	473	346	179	15,891
Mon-Thur Avg	50	39	43	65	195	405	822	1,115	982	860	876	952	983	1,053	1,202	1,339	1,454	1,315	1,042	754	564	375	215	101	16,794

^{*}Passenger car equivalents of 2 axles per vehicle

Figure 3
Lewis Road Railroad Grade Crossings (Two-way Volumes)*

	60-Minute Period																								
						ΑN	1						PM											24 Hour	
3/9-15/2011	0:00	1:00	2:00	3:00	4:00	5:00	6:00	7:00	8:00	9:00	10:00	11:00	12:00	13:00	14:00	15:00	16:00	17:00	18:00	19:00	20:00	21:00	22:00	23:00	Total
Monday	11	4	24	6	26	52	140	129	110	95	114	138	165	158	171	171	171	144	100	71	52	31	15	26	2,124
Tuesday	15	17	27	21	53	65	137	138	94	111	143	138	141	129	149	189	216	148	85	69	54	28	26	27	2,220
Wednesday	6	15	15	9	17	39	91	169	124	115	106	104	148	152	163	205	149	157	157	93	87	49	26	18	2,214
Thursday	24	9	17	34	13	32	107	133	133	102	102	106	120	132	174	191	165	182	153	80	79	49	25	36	2,198
Friday	23	2	14	19	17	32	139	153	160	126	119	138	190	174	179	173	218	158	152	91	71	50	44	24	2,466
Saturday	12	9	13	15	4	25	80	74	92	119	105	144	132	156	124	151	137	134	110	80	79	56	39	24	1,914
Sunday	26	14	7	8	6	18	47	55	80	89	100	100	113	107	114	103	76	90	86	61	46	28	37	10	1,421
7-Day Total	117	70	117	112	136	263	741	851	793	757	789	868	1,009	1,008	1,074	1,183	1,132	1,013	843	545	468	291	212	165	14,557
7-Day Avg	17	10	17	16	19	38	106	122	113	108	113	124	144	144	153	169	162	145	120	78	67	42	30	24	2,080
Highest Count	26	17	27	34	53	65	140	169	160	126	143	144	190	174	179	205	218	182	157	93	87	56	44	36	2,725
Lowest Count	6	2	7	6	4	18	47	55	80	89	100	100	113	107	114	103	76	90	85	61	46	28	15	10	1,362
Fri-Sun Avg	20	8	11	14	9	25	89	94	111	111	108	127	145	146	139	142	144	127	116	77	65	45	40	19	1,934
Mon-Thur Avg	14	11	21	18	27	47	119	142	115	106	116	122	144	143	164	189	175	158	124	78	68	39	23	27	2,189

^{*}Passenger car equivalents of 2 axles per vehicle

Transit System

Bus service in the study areas is provided by Monterey–Salinas Transit the Santa Cruz Metropolitan Transit District, Greyhound Lines, and Amtrak Thruway Motor Coach.

Pajaro Valley

Monterey–Salinas Transit operates Routes 28 and 29, which pass by the proposed Pajaro Valley Rail Station on Salinas Road. Both routes run between Watsonville and Salinas. Route 27 could also potentially be rerouted to serve the proposed station.

The Santa Cruz Metropolitan Transit District, otherwise known as METRO, operates seven routes that serve the Watsonville Transit Center, located at 475 Rodriguez Street: Route 69A Capitola Road/Watsonville via Airport B; 69W Capitola Road/Cabrillo/Watsonville; Route 71 Watsonville/Santa Cruz; Route 72 Corralitos; Route 74 Ohlone Parkway/Rolling Hills; Route 75 Green Valley; Route 79 East Lake; and Route 91x Commuter Express Santa Cruz/Watsonville.

Bicycle and Pedestrian System

Sidewalks are generally provided along Salinas Road between Porter Drive and Railroad Avenue. Utility poles located within these sidewalks reduce their effective width. Sidewalks are not provided along Railroad Avenue or Lewis Road. No sidewalks front the proposed station site along Salinas Road.

No bicycle lanes, paths, or routes are provided within the immediate vicinity of the proposed station site.

Existing Intersection Volumes

Traffic data were obtained for key study area intersections by conducting manual turning-movement counts during AM and PM peak periods of peak traffic flows and during the hours when passenger trains are expected to arrive at and depart from the stations. Traffic counts were conducted in March 2011. (See Appendix B for turning-movement volumes.) Existing traffic signal cycle lengths used for the analysis are commonly-used default values. (See Appendix C for level of service calculation sheets.) Figure 4 shows the existing volumes at the study intersections during the peak hours of **network** traffic. Figure 5 shows existing volumes during the projected peak hours of **station** traffic.

Figure 4
Existing (Baseline) Traffic Volumes during Network Peak Hours

xx (xx) = AM (PM) peak hour traffic volumes

Figure 5
Existing (Baseline) Traffic Volumes during Station Peak Hours

xx (xx) = AM (PM) peak hour traffic volumes

The results of the level of service analysis indicate that under base year conditions, all study intersection in Pajaro operate at an acceptable level of service, except one (Salinas Road and Railroad Avenue) and with excess capacity during the network peak hour. The stop-controlled approach of Railroad Avenue at Salinas Road operates at LOS F during the existing PM network peak hour.

Table

Base Year Intersection Levels of Service

2

Intersection Peak **Peak Hour Baseline LOS** Delay, sec† Pajaro Porter Drive at San Juan Road Train AM 5:30-6:30 В 15.9 Valley Network AM 7:15-8:15 В 19.8 С Train PM 5:45-6:45 20.6 С Network PM 4:30-5:30 20.5 Salinas Road at Matiasevich Lane/ Train AM 5:30-6:30 Α 3.5 Pajaro School entrance Network AM 7:15-8:15 Α 7.4 Train PM Α 4.9 5:45-6:45 Network PM 7.3 4:30-5:30 Α Salinas Road at Railroad Avenue В 10.4 Train AM 5:30-6:30 (westbound leg) С Network AM 7:15-8:15 25.0 С Train PM 5:45-6:45 16.9 F Network PM 4:30-5:30 55.1 Salinas Road Lewis Road Train AM 5:30-6:30 В 10.5 at (westbound leg) Network AM 7:15-8:15 С 20.2 В Train PM 5:45-6:45 13.8 Network PM 5:00-6:00 В 13.9

[†] Delay in seconds. This number represents the average intersection delay at signalized intersections and the approach delay at unsignalized intersections.

3. Background (No Project) Conditions

Background conditions are those conditions caused by existing traffic and future growth. The background analysis represents the "No Project" condition.

In the station vicinity, no additional planned developments were included in this analysis.

To account for likely but unspecified growth, a one (1) percent annual increase in traffic (growth rate) was applied to base year volumes to project ten-year (2020) Background Condition. This is one-half the annual rate of growth used by Caltrans in its Traffic Operational Analysis for Route 156 from Route 183 to Meridian Road and is based on Department of Finance population projections for the region and the AMBAG traffic model. The 1 percent annual growth rate was deemed reasonable based upon the current economy as well as the 2011 turning-movement counts when compared with the turning-movement counts collected for the 2005 edition of this traffic impact report. Geometry and signal timing for the background conditions were not changed from that of the existing conditions. The results of the background intersection level of service analysis are presented in Table 3. (See Appendix C for level of service calculation sheets.) Figure 6 shows the background volumes at the study intersections during the peak hours of **network** traffic. Figure 7 shows background volumes during the projected peak hour of **station** traffic.

In the background scenario, traffic operations in Pajaro will continue to occur with slightly increased delay but at the same levels of service as during the base year scenario, with three exceptions. The AM network peak hour level of service declines from B to C at the Porter Drive and San Juan Road intersection. The stop-controlled approach of Railroad Avenue at Salinas Road declines from LOS C to LOS D during the morning peak hour of network traffic. Also, the stop-controlled approach of Lewis Road at Salinas Road declines from LOS B to LOS C during the PM peak hour of network traffic.

Table 3
Background Intersection Levels of Service

	_			С	ondition	
			Baseline	Delay,	10-Year	Delay,
Intersection	Peak	Peak Hour	LOS	sec†	Background LOS	sec†
Pajaro Valley						
Porter Drive at San Juan	Train AM	5:30-6:30	В	15.9	В	10.8
Road	Network AM	7:15-8:15	В	19.8	С	20.5
	Train PM	5:45-6:45	С	20.6	С	21.8
	Network PM	4:30-5:30	С	20.5	В	19.3
Salinas Road at	Train AM	5:30-6:30	Α	3.5	Α	3.5
Matiasevich Lane/Pajaro	Network AM	7:15-8:15	Α	7.4	Α	8.8
School entrance	Train PM	5:45-6:45	Α	4.9	Α	5.6
	Network PM	4:30-5:30	Α	7.3	Α	5.8
Salinas Road at Railroad	Train AM	5:30-6:30	В	10.4	В	10.7
Avenue (westbound leg)	Network AM	7:15-8:15	С	25.0	D	32.7
	Train PM	5:45-6:45	С	16.9	С	19.0
	Network PM	4:30-5:30	F	55.1	F	_
Salinas Road at Lewis	Train AM	5:30-6:30	В	10.5	В	10.7
Road (westbound leg)	Network AM	7:15-8:15	С	20.2	С	23.8
	Train PM	5:45-6:45	В	13.8	В	14.8
	Network PM	5:00-6:00	В	13.9	С	15.1

Observations at these intersections indicate that spillback conditions sometimes bring traffic flow to a standstill, reducing traffic flow and the resulting counts. This condition can result in analysis results that do not accurately reflect conditions.

[†]Delay in seconds. This number represents the average intersection delay at signalized intersections and the approach delay at unsignalized intersections.

Figure 6
Background Traffic Volumes during Network Peak Hours

xx (xx) = AM (PM) peak hour traffic volumes

Figure 7
Background Traffic Volumes during Station Peak Hours

xx (xx) = AM (PM) peak hour traffic volumes

4. **Project Conditions**

The methodology for assessing project traffic impacts involves examining trips generated or attracted to the station, the distribution of where these trips come from or are destined to, and the routes motorists use to access the station.

Trip Generation

Daily ridership estimates were forecast for the proposed commuter rail station based on the methodology reported in *Ridership Estimates for Caltrain Extension*. Estimates were performed for the ten-year scenario. The ten-year scenario considered operation of four round trip trains per day and 2020 background conditions as the basis of analysis.

The percentage of total ridership arriving and departing via automobile was estimated based on the 2001 Caltrain passenger origin and destination survey and knowledge of each station's market area. It is projected that 86 percent of riders will arrive by automobile in Pajaro.

The ridership totals resulting from these percentages were multiplied by two for park-and-ride boardings (one entering trip in the morning and one exiting trip in the evening) or by four for kiss-and-ride boardings (one entering and one exiting trip in the morning plus one entering and one exiting trip in the evening).

These totals were divided by two to separate the morning's departing riders and the evening's arriving riders.

The resulting totals for morning and evening were multiplied by 60 percent to represent the number of riders that would arrive during the single peak hour of the morning or evening station-generated traffic (based on boarding patterns at the Gilroy Caltrain station).

The single peak 60 minutes for Caltrain ridership, in most cases, will not coincide with the peak hour observed on the adjacent street network. In those cases, the 60-minute time slice during the morning and evening periods that would represent the ridership peak—and therefore the trip generation peak—was assumed to be the 60 minutes in the morning when the last scheduled train

would depart and the 60 minutes in the evening when the first scheduled train would arrive¹. In cases where this peak 60 minute time slice did not fall within the observed peak hour on the adjacent network, the 60-minute time slice that was closest to the network peak (while still containing a scheduled Caltrain arrival or departure) was selected. This resulted in a "worst-case" analysis scenario in which as much of the Caltrain peak traffic as possible overlaps with the network peak traffic.

In cases in which there was partial overlap between the Caltrain peak 60-minute time slice of traffic generation and the network peak hour, a judgment was made regarding the percentage of peak 60-minute time slice project trips that would take place within the network peak hour.

- Traffic volumes on the roadway network peak from 7:15 a.m. to 8:15 a.m. in the morning and from 4:30 to 6:00 p.m. in the evening.
- The peak 60 minutes of morning station activity is projected to take place from 5:30 to 6:30 a.m., assuming that most riders will take the last train at 6:34 a.m. In the project scenario, the next-latest train leaves at 6:00 a.m. With four trains arriving over a two-hour period in the morning, 60 percent of riders are projected to use the station during the 5:30 to 6:30 a.m. hour.
- None of the peak 60-minute time slice Caltrain trips are projected to take place within the adjacent roadway network peak hour of 7:15 to 8:15 a.m. at any of the study intersections. This assumes that the riders on the 6:34 train will stop arriving at the station by 6:30 a.m.
- The peak 60 minutes of evening station activity is projected to take place from 5:45 to 6:45 p.m., assuming that most riders will take the first train and arrive at 6:10 p.m. Kiss-and-ride drivers are assumed to begin to arrive 15 minutes prior to the arrival of the train. The second train arrives at 7:03 p.m. in the project scenario.
- In the project scenario, none of the peak Caltrain trips are projected to take place within the network peak hour of 4:30 to 5:30 p.m. at the intersections of San Juan Road and Porter Drive, Salinas Road and Railroad Avenue, and Salinas Road at the entrance to Pajaro School. Ten northbound and ten southbound bus trips have been added to the traffic projections however, to reflect increased Monterey–Salinas Transit and Santa Cruz Metropolitan Transit District service to Pajaro. At the intersection of Salinas Road at Lewis Road, in both scenarios, 50 percent of the peak Caltrain trips are projected to take place from 5:45 to 6:15 p.m., coinciding with the network peak hour of 5:00 to 6:00 p.m.

Table 4 outlines the trip generation estimate methodology.

¹ On August 1, 2005, Caltrain updated its service with faster trains and a new schedule which included three trains instead of four serving the south end of the San Francisco to San Jose/Gilroy line. For the purposes of this study, the new schedule was compared to the previous schedule upon which this analysis was based to ensure that the results were still comparable. Parsons' proposed schedule for the capacity study for northbound trains involved the utilization of four trains from Salinas to San Francisco. The proposed utilization for the southbound direction also included four trains. The revised Caltrain schedule was reviewed and during the AM and PM peak periods, the arrival and departure times at the proposed Salinas station will be within the same window of time as those analyzed for this study. Therefore, the peak hour traffic volumes that were used for the level of service calculations are still applicable with the new Caltrain schedule.

Trip Distribution

The project trip distribution pattern was estimated based on the roadway network and the surrounding land uses. Geographic information system software was used to determine population patterns in the station catchment areas and to calculate the percentage of riders within each market area that would approach the station from each major approach.

Table 4
Trip Generation Estimates

Project Scenario (10-Year, 4-Train)	Pajaro Valley
Projected Daily Riders	570
Estimated park-and-ride share	73%
Number park-and-ride riders	416
Park-and-ride trips generated (riders x 2)	832
Estimated kiss-and-ride share	13%
Number kiss-and-ride	74
Kiss-and-ride trips generated (riders × 4)	296
Daily total of trips	1128
AM and PM total trips (total × ½)	564
Peak AM and PM Hour Trips (AM and PM Totals × 60%)	338

Source: Parsons

The major directions of approach and departure to and from the project site are:

- 85 percent on Main Street/Porter Road/Salinas Road to and from the northwest
- 2 percent on San Juan Road to and from the northeast
- 2 percent on Railroad Avenue to and from the east and northeast
- 2 percent on Lewis Road to and from the southeast
- 9 percent on Salinas Road to and from the southwest

Trip Assignment

The trips generated by the proposed station were assigned to specific roadways and turning movements were estimated based on the trip distribution patterns discussed above.

The proposed project would have two entrances on Salinas Road. The primary entrance will have a center left-turn lane provided on Salinas Road. The other entrance, several hundred feet south of the first, will be right-in/right-out only, with a median preventing access to or from southbound Salinas Road.

The estimated directions of approach and departure for the station site are presented on Figure 8. Figure 9 depicts the assignment of project trips to the Pajaro Valley Station.

PARSONS

Figure 9 Project Trip Assignment: Pajaro Valley Long-Term Scenario

Project Intersection Level of Service Analysis

The results of the analysis indicate that the addition of project volumes to the study intersections will not generally cause a decline in traffic level of service from the background condition during any of the peak periods except for the PM peak hour of station traffic at the Salinas Road/Railroad Avenue intersection. TAMC requested that a traffic signal warrant analysis be conducted for the intersection of Salinas Road at Railroad Avenue. The results indicate that a new traffic signal is not warranted at this intersection. See Appendix D for the warrant analysis sheet.

In conjunction with the development of a passenger rail station at this site, installation of signalized traffic control at the Salinas Road/Lewis Road intersection is proposed. The traffic signal would be required solely as a result of this station project, whereby the westerly yard lead track is moved closer to Salinas Road. TAMC requested that a traffic signal warrant analysis be conducted for the intersection of Salinas

In addition, a lane modification is proposed on Salinas Road which will have no impact on project conditions. Currently, northbound Salinas Road narrows from two lanes to one lane just south of Railroad Avenue. The proposed modification would be to move the lane drop site to a location approximately 600 feet south of the Salinas Road/Lewis Road intersection. This alteration is proposed in order to remove potential vehicular conflict involving lane changes/merging near the proposed realigned trackage as well as the proposed project driveways.

The commuter rail service would function as an extension of existing Caltrain commuter rail service, but it may be operated by the Peninsula Corridor Joint Powers Board or the Capitol Corridor Joint Powers Authority. Caltrain commuter rail service runs between San Francisco and Gilroy. Caltrain operates daily trains between San Francisco and San Jose, with weekday commute-hour service from Gilroy in the AM peak and to Gilroy in the PM peak. Capitol Corridor passenger rail service runs daily between Auburn, Sacramento and San Jose. If the Capitol Corridor were to operate the extension of service to Salinas, the time slots would be oriented to commuters coming from Monterey County into the Silicon Valley for work. No matter which agency operates the service (via subcontract to Amtrak in either case), the schedule would still be oriented to commuter traffic between Salinas and Silicon Valley and the service would still be functionally an extension of the Caltrain commuter service in the San Francisco Bay Area.

The service would start with two or three round-trips, eventually expanding to four round-trips as demand warrants. The project utilizes 37 miles of existing Union Pacific Coast main line track between Gilroy and Salinas. No change in the number of trains operated or authorized by existing agreements with Union Pacific between San Jose and Gilroy is proposed.

The peak hour traffic volumes that were used for the level of service calculations would still be applicable with the new train schedule. Figure 10 shows the project volumes at the study intersections during the peak hours of **network** traffic. Figure 11 shows project volumes during the projected peak hour of **station** traffic.

The results of the project intersection level of service analysis are presented in Table 5. (See Appendix C level of service calculation sheets.)

Site Access, Circulation, and Parking

For the proposed station, patronage forecasts coupled with mode of arrival assumptions indicate that approximately 450 parking spaces will be required in the long-term. The preliminary engineering plans for the station propose 409 spaces at Pajaro Valley.

Figure 10
Project Traffic Volumes during Network Peak Hours

xx (xx) = AM (PM) peak hour traffic volumes

Figure 11
Project Traffic Volumes during Station Peak Hours

xx (xx) = AM (PM) peak hour traffic volumes

Table 5
Background and Project Intersection Levels of Service (2020)

					Conditi	on		
Intersection	Peak	Peak Hour	Baseline LOS	Delay, sec ^a	10-Year Background LOS	Delay, sec ^a	10-Year Project LOS	Delay, sec ^a
Pajaro Valley								
Porter Drive at San Juan Road	Caltrain AM	5:30-6:30	В	15.9	В	10.8	В	10.8
	Network AM	7:15-8:15	В	19.8	С	20.5	В	15.6 ^b
	Caltrain PM	5:45-6:45	С	20.6	С	21.8	С	21.8
	Network PM	4:30-5:30	С	20.5	В	19.3	В	19.3
Salinas Road at Matiasevich Lane/Pajaro	Caltrain AM	5:30-6:30	Α	3.5	А	3.5	Α	3.8
School entrance	Network AM	7:15-8:15	Α	7.4	Α	8.8	Α	7.6 ^b
	Caltrain PM	5:45-6:45	Α	4.9	Α	5.6	Α	4.0 b
	Network PM	4:30-5:30	Α	7.3	A	5.8	Α	5.3 ^b
Salinas Road at Railroad Avenue	Caltrain AM	5:30-6:30	В	10.4	В	10.7	В	11.9
(westbound leg)	Network AM	7:15-8:15	С	25.0	D	32.7	D	28.7 b
	Caltrain PM	5:45-6:45	С	16.9	С	19.0	D	28.0
	Network PM	4:30-5:30	F	55.1	F	_	F	_
Salinas Road at Station Driveway 1	Caltrain AM	5:30-6:30					В	12.2
(westbound leg)	Network AM	7:15-8:15	N1/A				С	22.8
	Caltrain PM	5:45-6:45	N/A		N/A		D	29.1
	Network PM	4:30-5:30					D	28.1
Salinas Road at Station Driveway 2	Caltrain AM	5:30-6:30					Α	9.7
(westbound leg)	Network AM	7:15-8:15					С	18.0
	Caltrain PM	5:45-6:45	N/A		N/A		С	19.9
	Network PM	4:30-5:30					С	21.5
Salinas Road at Lewis Road (westbound	Caltrain AM	5:30-6:30	В	10.5	В	10.7	А	5.9
leg) ^c	Network AM	7:15-8:15	С	20.2	С	23.8	Α	9.0
	Caltrain PM	5:45-6:45	В	13.8	В	14.8	Α	7.4
	Network PM	5:00-6:00	В	13.9	С	15.1	Α	9.3

Source: Parsons

Notes:

Observations at these intersections indicate that spillback conditions sometimes bring traffic flow to a standstill, reducing traffic flow and the resulting counts. This condition can result in analysis results that do not accurately reflect conditions.

^aDelay in seconds. This number represents the average intersection delay at signalized intersections and the approach delay at unsignalized intersections.

b Some slight reductions may occur in delay between scenarios as a result of minor signal timing changes and small adjustments in operations from intersection to intersection.

^cLevel of service results are based upon unsignalized conditions for the Baseline and Background scenarios for the westbound leg of the intersection. For the Project Long-Term scenario, intersection signalization was assumed for project purposes. This is reflected in the level of service calculations.

5. Conclusion

In Pajaro Valley, the proposed commuter rail station is projected to attract 1,128 daily trips in the ten-year, four train scenario. Three hundred thirty-eight (338) of those trips will occur during each of the AM and PM station peak hours in the ten-year scenario. Total parking supply designed for the station will meet 91 percent of the long-range demand.

The signalized intersection of Porter Drive at San Juan Road is not significantly impacted by the project.

The stop-controlled approach of Railroad Avenue at Salinas Road operates at LOS F during the evening network peak under baseline, background and project conditions. While the project will add some volume to this intersection and slightly impact operations, it is not projected to have a significant adverse impact.

At the stop-controlled approach of Lewis Road to Salinas Road, traffic operates at acceptable levels of service during all analysis scenarios and times of day. To address railroad crossing safety needs, the project proposes to install a traffic signal at this location. This signal will additionally ease traffic operations at Station Driveway 1 by allowing gaps in traffic for vehicles exiting the station.

At Driveway 1, the station's northernmost access point, southbound traffic exiting the station is projected to encounter delay during the evening peak hour under the ten-year scenario. This exit driveway will be stop-controlled and will accommodate left turns out of the driveway, resulting in delays for southbound exiting traffic. Northbound exiting traffic should not be significantly delayed. This situation will be mitigated through the installation of traffic signal control at Lewis Road which will create gaps in northbound traffic flows that will permit southbound exiting traffic to access the center turn/refuge lane along Salinas Road. Driveway 2, which will be right-in/ right-out only for the section of Salinas Road adjacent to the driveway, is not projected to experience delays during any of the peak periods.

TANC TRANSPORTATION AGENCY FOR MONIFERY COUNTY FOR MONIFERY COUNTY

Monterey County Commuter Rail Stations TRAFFIC IMPACT ANALYSIS

The overall results of this traffic impact analysis indicate that traffic generated by the proposed commuter rail station will not cause a significant decline in operating conditions on the adjacent street networks. Operations in most cases are not projected to diminish at all. In the locations and hours where project-related declines are projected, the resulting levels of service will remain within the range of acceptable operations and delays.

Insofar as lane striping on Salinas Road, the project proposes to extend the lane striping which exists north of Railroad Avenue approximately 700 feet toward the south to Lewis Road. The resulting lane configuration will provide one lane per direction plus a center turn and refuge lane. The center turn lane will permit vehicles accessing the proposed station, and adjacent roadside businesses, to do so safely. The four lane section of Salinas Road, running from Lewis Road to Elkhorn Road, a distance of 0.9 miles, will continue as existing.

Daily traffic volumes using Salinas Road operate on the cusp of level of service C/D conditions for a two-lane roadway. Approved (entitled) land development will not significantly increase traffic demands along Salinas Road, nor will the construction of an interchange at Highway 1. Nevertheless, the project proposes to provide striping and temporary median construction that will allow for restriping the roadway to four lanes at a later date should traffic volumes warrant.

APPENDIX A Proposed Modifications to the Pajaro Station Area

APPENDIX B Turning Movement Counts and Tube Counts

CITY OF PAJARO

File Name: 11-7083-001 SALINAS-LEVVIS Site Code: 000000000 Start Date: 3/9/2011 Page No: 1

	Ann Total Int Total	0			0 0					0 133	0 92		0 0			0 763	-		0 377		0 1283		***************************************		203		100	
Fasthound	Ť		· C	· c	o	0		0	0	0		> 0	o c	o	· C	0	0	0	0	0	0	c	o c	o c	o c	0	c	,
Fact	Thru	0	C	· C	0	0	,	0	0	0	0	o	o c	· c	· C	0	0	0	0	0	0	C	o c	, c) C	0	c	,
	fje)	0	0	0	0		0	0	0	0	o c	o c	0	0	0	0	0	0	0	0	c	· c	0	· C	0	C	,
	App. Total	-	17	Ø	27	999		on	21	44	47		9	16	108	305	128	187	219	142	929	144	117	136	132	529	109	
SALINAS RD. Northbound	Right	0	0	0	4	-	(0	0	2	2	+ +	- m	9	60	18	7	2	က	3	5	4	4	2	· -	=	m	ı
SALINAS RE Northbound	Thru	6	17	თ	20	55	(න	21	45	45	42	i 09	82	100	287	126	185	216	139	999	140	113	134	131	518	106	
	Left	0	0	0	0	0	(>	0	0	0) c	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	App. Total		0	4	က	00	Ċ	n	က	12	70	; "	13	12	20	28	23	35	19	21	86	17	12	22	16	29	17	_
S KD.	Right	0	0	က	က	9	c	-	က	∞ (ر 4	σ	6	10	∞	36	16	20	15	17	89	12	12	16	13	53	_	
Westbound	Thru	0	0	0	0	0	C	ο ,	0	0 (ماد	C	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	Left	-	0	_	0	2	ç	n (7 .	4 (41	4	4	2	12	22	7	15	4	4	30	S	0	9	m	14	9	
	App. Total	7	თ	7	20	47		4 (64	//	22.4	<u>~</u>	87	133	66	400	106	130	139	134	509	115	103	125	93	436	66	
Southbound	Right	0	0	0	0	0	c	> 0	o ()	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	(
Southbound	Thru	7	თ	7	19	46	7	- 6	3 63	-	211	7.7	75	118	87	357	96	121	130	125	472	106	6	117	81	394	87	Č
	Left	0	0	0	_	_	*	- 4	- (o c	10	4	12	15	12	43	10	တ	თ	6	37	6	13	∞	12	42	12	4
	Start Time	04:00	04:15	04:30	04:45	Total	05:00		05:13	05:30	Total	06:00	06:15	06:30	06:45	Total	00:20	07:15	02:30	07.45	Total	08:00	08:15	08:30	08:45	Total	00:60	

CITY OF PAJARO

File Name: 11-7083-001 SALINAS-LEWIS Site Code: 000000000 Start Date: 3/9/2011 Page No: 2

		Southbound	Southbound			Westbound	RD. und			SALINAS RD	(S RD.	•		Factbound	70		
16:00 16:15 16:30	Left	Thru	Right	App. Total	Left	Thru	E	App. Total	Left	Thru	뉟	App. Total	Left	Thru	Ħ	App. Total	Int. Total
16:15 16:30 16:45	18	175	0	193	m	0	4	17	c	600	œ	747	c	c	c	c	0.00
16:30	21	180	0	201	2	Ċ	ر. ادر	17) C	150	> <	7	O	> <	o c	0	4 66
16:45	20	178	0	198	ıω	0	<u>ნ</u>	25) C	149	t es	4 6	> C) C)	 	3/2
	20	179	0	199	ო	0	16	19	0	142	တ	48	o c	o c	o c	0 0	6/0 986
lotal	79	712	0	791	14	0	64	82	0	579	19	598	0	0	0	0	1467
17:00	22	203	0	225	0	0	12	12	0	136	10	146	c	c	c	C	203
17:15	24	187	0	211	۳	0	25	56	0	145	i ru	150	o c	> C	o c) C	000
17:30	25	161	0	186	4	0	21	25	0	157	4	19	· -	o c	o c	5 6	373
17:45	23	150	0	173	4	0	8	22	0	177	· ∞	185	· c	· c	o c	o C	380
Total	94	701	0	795	6	0	76	85	0	615	27	642	0	0	0	0	1522
18:00	6	159	0	168	2	0	9	23	0	117	m	120	c	c	c	<u> </u>	211
18:15	14	138	0	152	ო	0	80	-	0	116	4	120		· c	· c	0 0	- 600
18:30	24	137	0	161	က	0	7	14	0	130	- 4	3 5	· c) C	o c	> <	202
18:45	14	127	0	141	2	0	œ	10	0	119	Ψ.	120	, c	· c	o c) C	200
Total	61	561	0	622	15	0	43	58	0	482	6	491	0	0	0	0	1171
19:00	13	101	0	114	2	0	æ	10	0	101	0	101	c	C	C	G	225
19:15	o	108	0	117	0	0	10	10	0	06	0	65		, c) C	, c	240
19:30	13	83	0	102	۳-	0	5	9	0	84		1 8	, C) C	· c	o c	207
	ထ	108	0	116	-	0	9		0	83	· ←		o c	> c	o c	> <	200
Total	43	406	0	449	4	0	29	33	0	357	3	360	0	0	0	00	842
	12	84	0	96	0	0	ဖ	9	C	73	c	75	c	c	c	č	,
	13	98	0	66	m	0	· «c	7	· c	4.0	1 C		o c	> <	> c		
Grand Total 4	460	4201	0	4661	133	0	426	. n	o c	3001	9 0	1100	o c	> <	> c	→ (122
		90.1	0		23.8	0	76.2	}	~	67.3	5 6) - -	> <	> <	5 6	5	9320
Total % 4	4.9	45.1	0	20	4.	0	5. 4.	Œ) C	5 C	. · ·	7	> <	5 0	> 0	•	

CITY OF PAJARO

File Name: 11-7083-001 SALINAS-LEWIS Site Code: 00000000 Start Date: 3/9/2011 Page No: 3

Eastbound	Thru Right App Total Int Total			0 0 0	728 0 0 0	762 0 0 0	722 0 0 0	0 0 0 1305	0	
	Left			0	0	. 0	. 0	0	0	
	App. Total			187	219	142	144	692		
S RD.	Right	,		7	m	က	4	12	1.7	
SALINAS RD Northbound	Thru			185	216	139	140	680	98.3	
	Left			0	0	0	0	0	0	
	App. Total			35	19	7,1	17	92	•	
WIS RD. stbound	Right Ap			20	15	17	12	64	9.69	000
LEWIS RD Westbound	Thru			0	0	0	0	0	0	000
	Left			5	4	4	ည	28	30.4	101
	\pp. Total	-		130	139	134	115	518		CCC
S RD. Jund	Right App. Total	Peak 1 of 1	07:15	0	0	0	0	0	0	000
SALINAS RD. Southbound	Thru	to 09:15 - I	Begins at	121	130	125	106	482	93.1	7.00
	Left	om 04:00 t	nersection	თ	თ	ග	თ	36	6.9	000
THE THE THE THE TABLE	Start Time	Peak Hour Analysis From 04:00 to 09:15 - Peak 1 of 1	Peak Hour for Entire Intersection Begins at 07:15	07:15	02:30	07:45	08:00	Total Volume	% App. Total	2

File Name: 11-7083-001 SALINAS-LEWIS Site Code: 000000000 Start Date: 3/9/2011 Page No: 4

CITY OF PAJARO

File Name: 11-7083-001 SALINAS-LEWIS Site Code: 000000000 Start Date: 3/9/2011 Page No: 5

		SALINAS RD.	4S RD.			LEWIS RD	S RD.			SALINAS RD	S RD.						
		Southbound	punoc			Westbound	punc			Northbound	und			Easthound	pund		
Start Time	Left	Thru	Thru Right App. Total	p. Total	Left	Thru	Right A	App. Total	Leff	Thru	Right	Right Ann Total	#4	Than	Right App Total	Total	Int Total
Peak Hour Analysis From 16:00 to 20:15 - Peak 1 of 1	rom 16:00	to 20:15 -	Peak 1 of 1				0				B	1515		3	11.5	р Оlаг	1/11. Olai
Peak Hour for Entire Intersection Begins at 17:00	ntersection	າ Begins a	t 17:00														
17:00	22	203	0	225	0	0	7	12	0	136	10	146	C	c	c	C	283
17:15	24	187	0	211	4	0	25	26	C	145	ı LC	150) C	~ C	0 0	0 0	364
17:30	25	161	0	186	4	C	2	25	, c	157	> ¬	20,0	o c	> <	0 0		301
17:45	23	150	0	173	4	0	<u></u>	22	, o	177	rα	185	o c	0 0	, c	- c	380
Total Volume	94	701	0	795	6	0	76	85	0	615	27	642	0	0	o	o C	1522
% App. Total	11.8	88.2	0		10.6	0	89.4		0	95.8	4.2	 !	0	· c) C)	770
PHF	.940	.863	000'	.883	.563	000	.760	.817	000	.869	.675	.868	000	000	OOD	000	083

CITY OF PAJARO

~	-
•	٠
Š	*
0)
Č	
G	3

			Int. Total	20	20	33	58	131	7.	2001	100 145	133	450	124	193	231	217	765	280	322	397	365	1364	309	263	293	268	1133	250	226	476
	NCE		App. Total	0	0	0	0	0			> <	· ·	0	0	0	0			7	5	24	31	62	4	0			9	2	4	9
	PAJARO SCHOOL ENTRANCE	nud	Right A	0	0	0	0	0	c	> <	0 0	0	0	0	0	0	0	0	0		9	6	16	0	0	0	0	0	7	-	3
	RO SCHO	Eastbound	Thru	0	0	0	0	0	c	> <	o c	, 0	0	0	0	0	0	0	0	0			2	0	0	0	0	0	0	0	0
	PAJA		Left	0	0	0	0	0	c	0 0	o c	0	0	0	0	0	_]	2	4	17	21	44	ব	0	_	-	9	0	m	3
			App. Total	01	12	12	20	54	22	33	2, 4,	40	142	45	70	102	107	324	143	181	198	150	672	168	145	147	154	614	130	116	246
	AS RD.	onnd	Right		0	0	0	0	C	· c	o c	. 7	2		-	æ	_	9	кЛ	-	-	7	7	4	4	2	∞	18	2	0	2
	SALINAS RD	Northbound	Thru	10	12	12	20	54	22	1 2	48	38	140	44	89	66	106	317	137	177	191	146	651	164	141	143	146	594	128	115	243
shifted			Left	0	0	0	0	0	C	· c	0	0	0	0	-	0	0		ć.	3	9	2	14	0	0	7	0	2	0	-	
Groups Printed- Unshifted	1		App. Total	2	0	0	3	5	2	1 4	r m	ζ.	14		10	10	10	37	14	9	10	6	39	10	5	4.	9	35	13	7	20
Groups	TCH LAN	pun	Right		0	0	2	33	2	٠,	·	т	6	4	6	∞	6	30	10	7	4	∞	24	6	_	10	4	24	∞	5	13
	MATIASEVICH LANE	Westbound	Thru	0	0	0	0	0	0	· c	0	0	0	0	0	0	0	0	0	_	0	0		0	0	0	0	0	0	0	0
	X		Left	-	0	0	1	7	0	. –	. 73	7	5	ъ	-	7	1	7	4	۲'n	9	П	14	y 4	4	4	2	Π	۶۷.	7	7
			App. Total	8	∞	21	35	72	48	4	94	88	294	72	113	119	66	403	121	130	165	175	591	127	113	131	107	478	105	66	204
	AS RD.		Right	0	0	0	0	0	0	0	0	_	1	0	0			2	m	11	27	19	09	2		7		9	2	,	3
-	SALINAS RD.	Southbound	Thru	8	∞	21	31	89	42	63	87	18	273	99	100	111	92	369	109	113	131	145	498	120	105	121	100	446	101	95	196
			Left	0	0	0	4	4	9	,	7	9	20	9	13	7	9	32	6	9	7	11	33	Š	7	∞;	9	26	2	m	5
			Start Time	04:00	04:15	04:30	04:45	Total	02:00	05:15	05:30	05:45	Total	00:90	06:15	06:30	06:45	Total	00:00	07:15	02:20	07:45	Total	08:00	08:15	08:30	08:45	Total	00:60	09:15	Total

CITY OF PAJARO

		Southbound	SALINAS KD. Southbound	************	Z	MATIASEV	SEVICH LANE	E3		SALINAS RD	S RD.		PAJA	PAJARO SCHOOL ENTRANCE	OC ENT	RANCE	
Start Time	1 eft	Thm	the	Ann Total	T A I	Thei	*45.	Ama Total	T of	Northbound	1	, v	10.1	Eastbound	ound		-
	1100	-	1	Capp. Lotai	ייייייייייייייייייייייייייייייייייייייי	TITT	Ngar	App. Total	ren	Turn	Kugmi	App. 10tal	Lett	Thru	Right	App. Total	Int. Total
•									,								
16:00	7	173	0	175	က	0	4	7	_	202	3	206	14	~	-	16	404
15	4	179	2	185	4	0	3	7	0	164	3	167	7	0	0	2	361
.30 .30	7	196	7	200		0	9	7	-	183	33	187	0	0		-	395
16:45	7	231	0	238	3	0	9	6	7	165	0	167	4	0		ν.	419
Total	15	477	4	798	11	0	19	30	4	714	6	727	20		3	24	1579
7:00	2	221	٥	223	m	0	10	13	2	169	7	173		C	C	_	410
7:15	m	234		238		0	£	4	0	177	2	179	4		· C	. 4	475
17:30	7	187	0	189	0	0	4	4	0	186	. —	187	. 2	· c	· c	, ,	382
7:45	-	174	0	175	0	0	4	4	0	181	0	181		0	2) ("	363
Total	∞	816	-	825	4	0	21	25	2	713	5	720	00	0	2	10	1580
18:00	6	211	0	220	т	0	∞	11	0	154	\$*** *C	155	m	O	C	'n	389
:15	7	165		173	2	0	7	6	0	165		166			· -	, ,	350
30	12	189	0	201	_	0	6	10	0	190		191	. 0	0	. 0	1 0	402
18:45	∞	143	1	152	7	0	9	∞	0	150		151	0	0	0	0	311
Total	36	708	2	746	∞	0	30	38	0	629	4	699	4	0			1452
19:00	10	162	0	172	-	0	9(12	0	122		123	7	0	0	2	309
1.15	12	123	2	137	7	0	6		0	145		146	2	0	0	2	296
- 057	9	123	_	130	4	0	9	10	0	96	0	96	-	0	° C	ı -	237
19:45	6	103	0	112	-	0	7	· •	0	98	0	98	• •	· c	· c	· C	206
Total	37	511	3	551	∞	0	33	41	0	449	2	451	5	0	0	5	1048
20:00	12	93	0	105	0	0	10	10	0	2/2	0	16	C	0	c	0	101
20:15	9	126	_	133	0	0	4	4	0	77	-	78	. –	· C	· c	· -	716
Grand Total	234	4883	83	5200	77		220	298	24	4687	. 56	4767	4	· ~	3,5	120	10385
Apprch %	4.5	93.9	1.6		25.8	0.3	73.8		0.5	98.3	17		76.7	2.5	30 g	071	COCAT
%	23	47	0	- 09	1	•	·		,			_			2		

CITY OF PAJARO

CITY OF PAJARO

		SALINAS RI Southbound	SALINAS RD. Southbound		W.	ATIASEVICE Westhound	MATIASEVICH LANE Westhound			SALINAS RD	S RD.		PAJA	RO SCHOOL	PAJARO SCHOOL ENTRANCE	E	
Start Time	Left	Thru	Thru Right App. Total	App. Total	Left	Тяпі	Right Ann Total	nn Total	T eff	Then.	Dioht	Dight Ann Total	4~ 7	Casto	onno.		
olvois Eron	Doal Hour Analysis Erom 16.00 to 20.15 Back 1.2.1	10.15 Per	1.1.2.1	Tr. variation			tree in	Pp. rotar	1177	nm	Ngm	App. Total	reit	Innu	Kignt App. 10tal	logal	Int. Iotal
nary sis 110E	1 10.00 10.	20.13 - Fee	ak 1 01 1														
Peak Hour for Entire Intersection Begins at 16:30	rsection Be	egins at 16	5:30														
16:30	7	961	~1	200	-	0	9	7		183	(r)	187	0	~	***		305
16:45	7	231	0	238	ю.	0	9	0	7	165	, C	167) ব	· ¢		- W	017
17:00	7	22.1	0	223	m	0	10	<u> </u>	6	691	,	173		> <	√ ⊂	٦ -	F 5
17:15	m	234	, .	238		0	'n	4	ı C	177	۰ ۲	179	- 4	> <	0 0	- 4	410
Total Volume	14	882	3	668	8	0	25	33	5	694	7	706	6	C	2		1649
% App. Total	1.6	98.1	0.3		24.2	0	75.8		0.7	98.3	-		× ×	, с	. × ×	•	
PHF	.500	.942	.375	944	299	000	509	529	509	978	502	7770	653	000	005	City	000

CITY OF PAJARO

	Int Total	21	33	47	, 4	149	60	7 [136	369	708	216	312	403	367	1298	418	513	642	619	2192	482	450	462	430	1824	440	358
	App. Total	0	0	-	, 0	1			2 0	7	7	9	6	16	6	40	11	12	13	6	45		7	41	, o	48	23	13
AN RD.	Right	0	0	0	0	0	c	0	0	0	0	7	7	0	_	5	_	4	0	0	5	-	7) (m	0	9	7	7
SAN JUAN RD. Eastbound	Thu	0	0	0	0	0		· O	0	_	2	yeard	0	3	0	4	7	_		₩	5	,	m	. 71	_	7	2	
	Left	0	0	_	0	_	2	1 71	0	,(ç	æ	7	13	∞	31	90	_	12	∞	35	0	0	6	∞	35	14	10
	App. Total	8	10	14	13	45	19	23	37	87	166	20	79	107	118	354	140	173	210	161	684	164	166	140	144	614	134	119
PORTER DR. Northbound	Right	0	0	0		1	0	0	0			m	0	2	0	'n	7	0	-	0	60	4	4	33	2	13	œ	ν.
PORTER D Northbound	Thru	8	10	14	12	44	19	23	37	98	165	47	79	105	117	348	137	172	209	161	629	159	160	137	139	595	125	113
	Left	0	0	0	0	0	0	0	0	0	0	0	0	0	_	1	_		0	0	2		7	Ф	٣	9	+4	
	App. Total		y(6	10	35	21	25	18	71	135	48	82	98	85	301	126	130	187	178	621	121	66	120	108	448	108	83
AN RD. und	Right	S	11	6	10	35	20	23	18	69	130	46	75	84	81	286	117	119	176	170	582	114	95	111	102	422	76	9/
SAN JUAN RD. Westbound	Thru	0	0	0	0	0	0	0	0	0	0	,	0	0	0	1	0	7	0	0	7	\$776	0	-	2	4	-	7
	Left	0	0	0	0	0		7	0	2	? 0	-	7	5	4	4	6	6	Π	œ	37	9	4	∞	4	22	10	5
	App. Total	8	12	23	25	89	49	61	81	209	400	112	142	194	155	603	141	198	232	271	842	186	171	188	169	714	175	143
FOR LER DR. Southbound	Right	0	0	0	0	0	,,	0	2	2	S	2	7	'n	9	13		1	4	12	24	5	10	9	9	27	6	11
FOR LER D Southbound	Thru	8	9	12	17	38	36	45	63	172	316	72	92	110	93	367	86	134	155	186	573	132	113	126	110	481	1117	06
	Left	5	9	11	8	30	12	91	16	35	79	38	48	 80	56	223	42	27	73	73	245	49	48	26	53	206	49	42
	Start Time	04:00	04:15	04:30	04:45	Total	00:50	05:15	05:30	05:45	Total	00:90	06:15	06:30	06:45	Total	00:00	07:15	07:30	07:45	Total	08:00	08:15	08:30	08:45	Total	00:60	09:15

CITY OF PAJARO

****		Southhound	PORTER DR. Scatthhairid			SAN JUAN R	JUAN RD.			PORTER DR	R DR.			SAN JUAN RD	AN RD.		
Start Time	Left	Thru	Right	App. Total	Left	Thru	ih.	App. Total	Left	Thru	eht	Ann Total	I eff	Thui Ri	Right	Ann Total	Int Total
			NAME OF THE PARTY				j				-			1	mger	App. Actai	TITLE TO
16:00	68	207	24	320	12	2	119	133	6	217	ų,	124	y	۲۰	٧	7	1.57
16:15	92	210	29	331	13	ťΩ	98	102	י ירי	149		153	3 %) r	o v	7	1 5
16:30	75	222	18	315	6	4	66	112	· "	186	. 61	161	35) V	י ע	44	664
16:45	100	221	30	351	=	7	102	115	5	182	_	188	52	· 4	2	2 %	7.
Total	356	860	101	1317	45		406	462	13	734	6	756	155	16	8.1	189	2724
17:00	114	213	31	358	17	7	104	128	т	150	,,,,,	154	32	9	00	46	89
17:15	94	231	37	362	6	9	120	135	0	189	2	191	33	· —	· V	39	.22
17:30	96	222	22	340	11	4	98	101	_	159	7	162	24	· w	9	33	636
17:45	87	181	49	317	11	3	77	91	2	175	æ	180	61	∞	7	71	65
Total	391	847	139	1377	48	20	387	455	9	673	∞	289	150	18	21	189	2708
18:00	72	221	57	350	10	∞	69	87		133	4	138	19	2		64	639
18:15	72	132	11	281	17	9	9/	66	4	146	5	155	42	23	6	74	609
18:30	92	204	53	339	7	9	11	06	4	158	9	168	51	т	7	61	658
18:45	93	202	52	347	~	4	09	72	3	152	m	158	27	7	ς.	39	616
Total	313	759	245	1317	42	24	282	348	12	589	18	619	181	35	22	238	2522
19:00	87	198	48	333	11	7	72	06	3	148	5	156	42	12	4	58	637
19:15	8	178	42	301	6	S	69	83	5	158	ĸ	166	34	15	6	58	809
19:30	69	151	38	258	4	9	54	25	2	134	m	139	28	4	S	37	498
19:45	51	132	41	224	8	9	48	62	-	127		129	14	6	7	30	445
Total	288	629	169	1116	32	24	243	299	11	567	12	290	118	40	25	183	2188
20:00	42	86	35	175	9	5	34	45	3	112	0	115	6	ις	,	14	35
20:15	38	81	27	146	S	4	36	45	_	94	_	96	1.1	νς.	ı c	23	310
Grand Total	2302	5286	805	8393	271	86	3016	3385	57	4838	84	4979	761	141	, ;;	1015	TTT
Apprch %	27.4	63	9.6		∞	2.9	89.1		1.1	97.2	1.7		75	13.9	11.1	2	
Total %	13	29.7	4.5	47.2	5	90	1.7	2	ć	,	į) I			

CITY OF PAJARO

		PORTER DR.	ER DR.			SAN 3U/	YUAN RD.	-		PORTER DR.	R DR.			SAN JUAN RD	AN RD.		
		Southbound	punc			Westbound	pun			Northbound	pun			Eastbound	pund	err errer e	
Start Time	Left	Thru	Right /	Right App. Total	Left	Thru	Right A	App. Total	Left	Thru	Right	Right App. Total	Left	Thru	Right	Right App. Total	Int. Total
Peak Hour Analysis From 04:00 to 09:15 - Peak I of I	04:00 to C	9:15 - Pea	k 1 of 1)	-			,	11	
Peak Hour for Entire Intersection Begins at 07:15	section Be	gins at 07:	:15														
07:15	57	134	7	198	6	ч	119	130	_	172	0	173	7		**	12	513
07:30	73	155	4	232	11	0	176	187	0	209		210	13		0	13	642
07:45	73	186	17	271	∞	0	170	178	0	161	0	161	∞	, ,	0	6	619
08:00	49	132	S	186	9	94	114	121		159	4	164	δ		_	I	482
Total Volume	252	209	28	887	34	33	579	616	2	701	5	708	36	4	5	45	2256
% App. Total	28.4	68.4	3.2		5.5	0.5	94		0.3	66	0.7		80	8.9	11.1		
PHF	.863	.816	.583	.818	.773	.375	.822	.824	.500	.839	.313	.843	.750	1.000	.313	.865	879

CITY OF PAJARO

Left Thru Right App	yp. Total Left	Westbound		•		PORTER DR	t DR.			SAN JUAN RD	AN RD.		
Right App. T of 1 of 1 37		7,50	pun			Northbound	pu pu			Eastbound	pun		
of 1 18 30 37		111111	ght	App. Total	Left	Thru	Right App. Total	pp. Total	Left	Thn	Right Ann Total	n Total	Int Total
18 30 31 37							3				4.	James J.J.	1000
75 222 18 100 221 30 114 213 31 94 231 37													
100 221 30 114 213 31 94 231 37	315 9	4	66	112	ю	186	7	191	35	9	٠,	46	664
114 213 31 94 231 37	351 11	2	102	115	un	182	,	188	25	4	. 74	- ec	712
94 231 37	358 17	7	104	128	ĸĵ	150	3(154	32	• 9	oc	46	989
100	362 9	9	120	135	0	189	7	191	33	•1	٠ ٧	39	727
Total Volume 383 887 116 1386	1386 46	19	425	490	11	707	9	724	152	17	20	189	2789
% App. Total 27.6 64 8.4	9.4	3.9	86.7	•	1.5	7.76	8.0		80.4	6	10.6		
PHF .840 .960 .784 .957	929. 756.	629.	.885	706.	.550	.935	.750	.948	.731	.708	.625	.815	.959

Start	North	ad between I bound	Hour	Totals	South	bound	Hour	Totals	Combine	d Totals
Time	Morning	Afternoon	Morning	Afternoon	Morning	Afternoon	Morning	Afternoon	Morning	Afterno
12:00	4	128			6	120				
12:15	3	122			6	115				
12:30	7	132			9	143				
12:45	6	144	20	526	2	124	23	502	43	10
1:00	6	135			4	116		002	70	,,
1:15	1	117			3	133				
1:30	4	127			8	141				
1:45	7	126	18	505	2	150	17	E 40	٥٠	
2:00	5	122	10	303		4	17	540	35	10
2:15					4	158				
	8	130			3	138				
2:30	8	159	00	500	2	128				
2:45	7	149	28	560	6	142	15	566	43	11
3:00	4	154			1	174				
3:15	6	156			1	137		i		
3:30	8	151			8	180				
3:45	9	175	27	636	5	173	15	664	42	13
4:00	15	183			15	168				
4:15	13	178			13	168]		
4:30	20	160			12	174				
4:45	16	171	64	692	15	184	55	694	119	13
5:00	26	138		l	23	210		i		
5:15	13	135		-	47	193				
5:30	27	144		1	65	209				
5:45	51	171	117	588	81	168	216	780	333	13
6:00	55	165	. , ,	000	43	161	210	,00	000	13
6:15	59	151		Ì	84	191		Ī		
6:30	75	137				1				
6:45	97	150	286	603	90	172	255	204	0.14	4.0
			200	603	138	167	355	691	641	12
7:00	109	132			104	128		į		
7:15	144	100			112	143		į		
7:30	202	116			132	100				
7:45	243	64	698	412	143	112	491	483	1189	8
8:00	162	62		ļ	134	91				
8:15	160	59		1	117	89				
8:30	132	52		•	126	117				
8:45	156	50	610	223	127	144	504	441	1114	6
9:00	148	39			103	108				
9:15	127	44		i	101	100				
9:30	102	30			101	81	0			
9:45	120	31	497	144	96	56	401	345	898	4
10:00	117	38			103	59			000	-71
10:15	114	33		ļ	93	48				
10:30	102	36			88	39				
10:45	127	25	460	132	112	32	396	170	956	2.
11:00	123	20	400	102	96	21	390	178	856	3
11:15	107	16		and the same of th						
11:15		- 1			106	25		1		
	122	4	404		105	17				
11:45	129	7	481	47	120	14	427	77	908	1;
Total	3306	5068	3306	5068	2915	5961	2915	5961	6221	110
nbined	837	'4	837	' 4	887	76	887	'6	1725	50
Total			997			_	001	-	1725	
1 Peak	7:30 AM				7:30 AM					
Vol.	767				526					
P.H.F.	0.789				0.920					
1 Peak		3:45 PM				4:45 PM				
Vol.		696				796				
P.H.F.		0.975				0.948				
		3.510				0.540				
entage	39.5%	60.5%			32.8%	67.2%				

Start	Salinas Roa Northi		Hour		South	agund	Hour	Totalo	Canabia	od Tokolo
Time	Morning	Afternoon	Morning	Afternoon	Morning	Afternoon	Morning	Afternoon	Combine Morning	ad Fotals Afterno
12:00	10	113			13	116		1 1101110011	Monning	7 (101110
12:15	8	116			14	130		İ		
12:30	5	113			11	105				
12:45	8	125	31	467	9	95	47	446	78	9
1:00	4	108			6	119		, , ,	. 0	·
1:15	5	119			11	128		1		
1:30	3	113			3	130				
1:45	4	137	16	477	3	141	23	518	39	9
2:00	4	130			2	120		0,0		0.
2:15	7	133			8	128				
2:30	4	157			6	108				
2:45	10	182	25	602	4	134	20	490	45	109
3:00	5	168	-0	002	8	157	2.0	750	40	; U:
3:15	9	134		1	3	158		1		
3:30	4	151		ı	8	169		l		
3:45	9	187	27	640	8	179	27	663	54	130
4:00	9	172	۲۱	070	4	188	4.1	003	14	130
4:15	12	163			8	196				
4:30	11	151		I	6	175		-		
4:45	12	159	44	645	10	188	28	747	70	400
5:00	28	163	7-7	040	21	207	20	(4/	72	139
5:15	25	128			41	199				
5:30	27	157			63	219		ļ		
5:45	47	170	127	618	81	192	206	017	222	4.41
6:00	62	150	141	010	43	190	200	817	333	14:
6:15	42	140		ļ	69	1		1		
6:30	71	151			101	171 129				
6:45	106	121	281	562			200	200	000	
7:00	113	129	201	302	115	136	328	626	609	118
7:00 7:15	144	61			80	121				
7:30	176	82			95	131				
			644	252	112	118	100			_
7:45	208	81	641	353	141	88	428	458	1069	81
8:00	172	58			127	93				
8:15	148	58			99	99				
8:30	138	70	500	0.47	108	98				
8:45	135	61	593	247	111	92	445	382	1038	62
9:00	143	51		***************************************	101	70				
9:15	124	48			91	63				
9:30	115	55			88	59	0	ĺ		
9:45	120	52	502	206	109	65	389	257	891	46
10:00	106	36			95	48				
10:15	97	36			103	44				
10:30	93	30			87	33		1		
10:45	114	33	410	135	92	25	377	150	787	28
11:00	97	15			103	31		1		
11:15	88	13		1	86	14				
11:30	110	15		1	106	15		!		
11:45	141	12	436	55	109	15	404	75	840	13
Total	3133	5007	3133	5007	2722	5629	2722	5629	5855	1063
bined	814	0	814	.0	835	1	835	1	104	31
Total		•	014	•		,	035	1	164	7
Peak	7:30 AM				7:30 AM					
Vol.	704				479					
'.H.F.	0.846				0.849					
Peak		3:30 PM				5:00 PM				
Vol.		673				817				
H.F.		0.912				0.933				

32.6%

67.4%

Percentage

38.5%

61.5%

0.980

63.4%

36.6%

Vol.

P.H.F.

Percentage

0.909

60.9%

39.1%

Percentage

32.9%

67.1%

Start	Northb		Hour	Totais	South	bound	Hour T	otals	Combine	ed Total:
Time		Afternoon	Morning	Afternoon	Morning	Afternoon	Morning	Afternoon	Morning	Aftern
12:00	22	143			26	155				
12:15	16	121			27	149				
12:30	17	148			10	120				
12:45	11	154	66	566	16	150	79	574	145	1
1:00	9	158			13	145				
1:15	11	161			8	159				
1:30	.6	160			9	159				
1:45	10	140	36	619	15	129	45	592	81	12
2:00	5	132			10	156				
2:15	9	125			11	155				
2:30	6	145			11	147				
2:45	6	173	26	575	4	139	36	597	62	11
3:00	7	127			8	151				
3:15	9	132			7	164				
3:30	6	142	•		6	176				
3:45	7	129	29	530	9	149	30	640	59	1
4:00	6	141			2	181				
4:15	8	149			3	148				
4:30	10	136	00	=04	7	161		000		
4:45	8	135	32	561	11	138	23	628	55	1
5:00	12	147		1	12	132				
5:15	20	139			29	182				
5:30	16	142	74	ECO	61	163	4.50	0.40	000	
5:45	26	134	74	562	56	163	158	640	232	12
6:00	38	143		İ	34	143				
6:15	38	131		-	46	121				
6:30 6:45	61 58	124 159	195	557	65 103	159 128	248	551	440	
7:00	73	161	190	337	50	129	240	331	443	1.
7:15	7.5 54	101			61	124				
7:30	76	108			65	109				
7:45	76	110	279	480	58	103	234	466	513	ç
8:00	95	78	270	700	65	72	204	400	. 915	•
8:15	105	87		-	62	114		i		
8:30	91	84		4	70	83				
8:45	116	88	407	337	78	85	275	354	682	6
9:00	120	76	-107	007	83	81	270	004	002	,
9:15	133	79		I	97	80				
9:30	112	97			116	65	0			
9:45	148	66	513	318	99	75	395	301	908	6
10:00	119	70		3.5	108	65	000	551	000	`
10:15	126	52		ļ	107	59				
10:30	124	47		-	104	40				
10:45	133	49	502	218	114	54	433	218	935	4
11:00	127	44		[101	34		5		
11:15	117	32			127	35				
11:30	129	35			133	30				
11:45	141	28	514	139	138	24	499	123	1013	2
Total	2673	5462	2673	5462	2455	5684	2455	5684	5128	111
bined Total	813		813		813		813		162	
Peak	11:45 AM				11:30 AM					
Vol.	553				575					
VOI. P.H.F.	0.934				0.927					
Peak	0.004	12:45 PM			0.041	3:15 PM				
Vol.		633				5.15 FW 670				
P.H.F.		0.984				0.925				

30.2%

69.8%

Time	nbined Tota	00,1101;		Hour	วดเเทต	South	Totals	Hour	bound	North	Start
12:00		Morning									
12:15	711(011	on								27	
12:30							i			17	12:15
12:45											
1:00	157 1	157	624	70	- 1		636	78			
1:15	197	157	024	19			030	70			
1:30			-								
1.45			-								
2:00			[40			574	F.F.			
2:15	101 1	101	5/9	46	1		5/1	55			
2:30 8 153 5 629 7 128 42 590 2:45 11 159 55 629 7 128 42 590 3:00 6 136			i								
2:45											
3:00 6 136											
3:15	97 1	97	590	42			629	55			
3:30			1		171		-				
3:45			-		166	12					
4:00			1		155	14			165	4	3:30
4:00	72 1	72	663	43	171	12	585	29	144	12	3:45
4:15									143	15	4:00
4:30							1		131		4:15
4:45 14 124 37 524 43 111 118 483 5:00 27 124 16 114 500 101 9 102 500 101 9 102 500 101 9 102 500 101 9 102 500 101 9 102 500 101 9 102 500 101 9 102 500 </td <td></td> <td></td> <td>ļ</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>- 1</td> <td>4</td> <td>4:30</td>			ļ						- 1	4	4:30
5:00 27 124 16 114 8 114	55 1	155	483	118			524	37			
5:15 20 101 9 102 5:30 11 99 13 96 5:45 28 128 86 452 21 84 59 396 6:00 18 119 16 80 66 60 66 80 66 80 66 80 66 80 66 80 66 80 66 80 66 80 66 80 66 80 66 80 66 80 66 80 60 80	100	100	700	110			921	•			
5:30 11 99 86 452 21 84 59 396 6:00 18 119 16 80 60 <							i				
5:45 28 128 86 452 21 84 59 396 6:00 18 119 16 80 60											
6:00	4.5	4.45	200	50			452	9.9			
6:15 32 117 26:30 38 101 214 462 30 102 93 364 26:45 36 125 124 462 30 102 93 364 26:45 36 125 124 462 30 102 93 364 26:45 30 50 83 33 96 7:15 44 74 31 97 7:30 67 71 34 109 7:45 72 75 233 303 68 97 166 399 38:00 79 55 5 54 80 8:15 85 76 8:30 82 51 8:45 83 56 329 238 91 51 262 266 8:45 8:30 82 51 8:45 83 56 329 238 91 51 262 266 8:45 9:00 105 45 117 56 9:15 103 35 93 44 9:30 106 36 9:45 92 40 406 156 86 27 403 166 8:45 10:45 10:45 10:45 10:45 139 19 483 86 127 18 448 96 19:45 10:45 139 19 483 86 127 18 448 96 19:45 11:45 128 10 547 37 146 9 492 42 10:45 10:66 70:66	45	145	396	28			452	00			
6:30							ĺ				
6:45							***				
7:00 50 83 33 96 7:15 444 74 31 97 31 97 7:30 67 71 344 109 7:45 72 75 233 303 68 97 166 399 38:00 79 55 662 64 8:30 82 51 55 71 8:45 83 56 329 238 91 51 262 266 9:00 105 45 117 56 9:15 103 35 93 44 9:30 106 36 9:45 92 40 406 156 86 27 403 166 89:45 92 40 406 156 86 27 403 166 810:00 110 33 108 24 10:15 106 15 106 15 102 32 10:30 128 19 111 22 10:45 139 19 483 86 127 18 448 96 11:15 137 9 10:45 139 19 483 86 127 18 448 96 19 11:15 137 9 11:15 137 9 11:15 137 9 11:15 137 9 11:15 137 9 11:15 137 9 11:15 137 9 11:15 137 9 11:15 137 9 11:15 137 9 11:15 137 9 11:15 137 9 107 17 11:15 137 9 11:15 137 9 11:15 137 9 107 17 11:15 137 9 107 17 11:15 137 9 11:15 137 9 107 17 17 17 17 17 17 17 17 17 17 17 17 17											
7:15	217	217	364	93			462	124			
7:30 67 71 34 109 7:45 72 75 233 303 68 97 166 399 30 8:00 79 55 5 5 54 80 8:15 85 76 62 64 8:30 82 51 845 83 56 329 238 91 51 262 266 9:00 105 45 9:15 103 35 99:30 106 36 9:45 92 40 406 156 86 27 403 166 810:00 110 33 108 24 10:15 106 15 106 15 1030 128 19 101:15 137 9 11:15 137 9 11:15 137 9 11:15 137 9 11:30 143 1 1 134 9 11:45 128 10 547 37 146 9 492 42 10 10:15 10:16 128 128 10 547 37 146 9 492 42 10:16 10:16 10:16 128 10 547 37 146 9 492 42 10:16 10:16 10:16 128 10 547 37 146 9 492 42 10:16 10:16 10:16 128 10 547 37 146 9 492 42 10:16 10:16 10:16 128 10 547 37 146 9 492 42 10:16 10:16 10:16 128 10 547 37 146 9 492 42 10:16 10:16 10:16 128 10 547 37 146 9 492 42 10:16 10:16 10:16 128 10 547 37 146 9 492 42 10:16 10:16 10:16 10:16 128 10 547 37 146 9 492 42 10:16 10											
7:45			i		97	31			74	44	
8:00 79 55 8:15 85 76 68:30 82 51 829 238 91 51 262 266 89:00 105 45 117 56 9:15 103 35 93 44 99:30 106 36 10:00 110 33 10:15 10:15 10:6 15 10:30 128 19 10:45 139 19 483 86 127 18 448 96 11:15 137 9 11:15 137 9 11:15 137 9 11:15 128 10 547 37 146 9 492 42 10:15 10:16 128 10 547 37 146 9 492 42 10:16 10:16 124 128 10 547 37 146 9 492 42 10:16 10:16 124 128 10 547 37 146 9 492 42 10:16 10:16 124 128 10 547 37 146 9 492 42 10:16 10:16 124 128 10 547 37 146 9 492 42 10:16 10:16 124 128 10 547 37 146 9 492 42 10:16 10:16 10:16 124 124 125 128 10 547 37 146 9 492 42 10:16 10:16 10:16 124 124 125 128 10 547 37 146 9 492 42 10:16 10:16 10:16 124 124 125 128 10 547 37 146 9 492 42 10:16 10:					109	34	İ		71	67	7:30
8:00 79 55 8:15 85 76 8:15 85 76 82 62 64 80 8:15 85 76 82 51 829 238 91 51 262 266 89:00 105 45 9:15 103 35 93 44 99:30 106 36 107 39 0 9:45 92 40 406 156 86 27 403 166 810:00 110 33 108 24 10:15 106 15 106 15 102 32 10:30 128 19 1048 100 129 111 22 10:45 139 19 483 86 127 18 448 96 11:15 137 9 11:15 137 9 11:15 137 9 11:15 137 9 11:30 143 1 1 134 9 11:45 128 10 547 37 146 9 492 42 10 10:15 108 2462 4679 2462 4679 2251 4668 2251 4668 47 10:16 10	99	399	399	166	97	68	303	233	75	72	7:45
8:30 82 51 329 238 91 51 262 266 9:00 105 45 9:15 103 35 93 44 9:30 106 36 107 39 0 9:45 92 40 406 156 86 27 403 166 810:15 106 15 102 32 10:30 128 19 1111 22 10:45 139 19 483 86 127 18 448 96 11:15 137 9 11:15 137 9 11:30 143 1 11:45 128 10 547 37 146 9 492 42 10 Total 7141 7141 6919 6919			-		80	54	Į.		55	79	8:00
8:30 82 51 329 238 91 51 262 266 69:00 105 45 117 56 9:15 103 35 93 44 99:30 106 36 107 39 0 9:45 92 40 406 156 86 27 403 166 810:00 110 33 108 24 10:15 106 15 102 32 10:30 128 19 10:45 139 19 483 86 127 18 448 96 11:00 139 17 11:15 137 9 1007 17 11:15 137 9 1007 17 11:30 143 1 1130 143 1 1145 128 10 547 37 146 9 492 42 10 Total 70tal 7141 7141 6919 6919			1		64	62			76	85	8:15
8:45 83 56 329 238 91 51 262 266 9:00 105 45 9:15 103 35 93 44 9:30 106 36 107 39 0 9:45 92 40 406 156 86 27 403 166 80 10:15 106 15 102 32 10:30 128 19 111 22 10:45 139 19 483 86 127 18 448 96 11:15 137 9 10:15 137 9 10:15 137 9 11:30 143 1 11:30 143 1 11:45 128 10 547 37 146 9 492 42 10:15 128 128 10 547 37 146 9 492 42 10:15 128 128 10 547 37 146 9 492 42 10:15 10:16 1246 4679 2462 4679 2251 4668 2251 4668 47 10:16 10:1										82	8:30
9:00	91	591	266	262			238	329			
9:15		001	200								
9:30					I .						
9:45 92 40 406 156 86 27 403 166 8 10:00 110 33 166 15 10:15 106 15 102 32 10:30 128 19 111 22 10:45 139 19 483 86 127 18 448 96 11:00 139 17 105 7 11:15 137 9 107 17 11:15 137 9 107 17 11:30 143 1 1 134 9 11:45 128 10 547 37 146 9 492 42 10 Total 2462 4679 2462 4679 2251 4668 2251 4668 47 Total 7141 6919 6919							1				
10:00	00	900	400				156	AUE			
10:15	09	809	100	403			100	700			
10:30											
10:45			Ì								
11:00 139 17 105 7 11:15 137 9 107 17 11:30 143 1 134 9 11:45 128 10 547 37 146 9 492 42 10 Total 2462 4679 2261 4668 2251 4668 47 nbined Total 7141 7141 6919 6919			[400			
11:15 137 9 107 17 11:30 143 1 134 9 11:45 128 10 547 37 146 9 492 42 10 Total 2462 4679 2462 4679 2251 4668 2251 4668 47 nbined Total 7141 7141 6919 6919	31	931	96	448	18		86	483			
11:30 143 1 134 9 11:45 128 10 547 37 146 9 492 42 10 Total 2462 4679 2462 4679 2251 4668 2251 4668 47 nbined Total 7141 7141 6919 6919											
11:45 128 10 547 37 146 9 492 42 10 Total 2462 4679 2251 4668 2251 4668 47 mbined Total 7141 7141 6919 6919 6919			Į.						1		
Total 2462 4679 2462 4679 2251 4668 2251 4668 47 mbined 7141 7141 6919 6919 Total 7141 7141 6919 6919											
Total 2462 4679 2462 4679 2251 4668 2251 4668 47 mbined 7141 7141 6919 6919 Total	39	1039	42	492	9						
nbined 7141 7141 6919 6919 Total		4713		2251	4668	2251	4679	2462	4679	2462	Total
lotar					0	204	11	71.4	11	71.	nbined
	14060	140	19	691	ਬ	697	+ 1	7.14	• 1	/ 12	Total
						11:45 AM				11:45 AM	
Vol. 623 603											
P.H.F. 0.856 0.842											
					2-00 014	u.0 4 2			12:00 DM	0.000	
P.H.F. 0.930 0.969					0.969				0.930		г.П.Г.
entage 34.5% 65.5% 32.5% 67.5%					67.5%	32.5%			65.5%	34.5%	entage

Start		bound		and Railroad Totals		bound	Hour "	Totals	Combine	ed Totals
Time	Morning	Afternoon	Morning	Afternoon	Morning	Afternoon	Morning	Afternoon	Morning	Afterno
12:00	6	121			0	132				
12:15	3	110			5	116				
12:30	7	128			10	131				
12:45	6	129	22	488	5	144	20	523	42	10
1:00	8	123			8	148		020	-1.2	10
1:15	8	121			7	123				
1:30	6	157			6	148				
1:45	5	170	27	571	5	129	26	548	Eo	44
2:00	4	146		0,,	6	131	20	540	53	11
2:15	4	124		i	4	153				
2:30	4	152				1				
2:45			20	507	9	201	4.0			
	10	165	22	587	0	172	19	657	41	124
3:00	6	169			4	171				
3:15	6	164			5	202				
3:30	14	145			9	195				
3:45	17	153	43	631	8	183	26	751	69	138
4:00	33	165		-	11	199		İ		
4:15	15	158		i	34	223				
4:30	21	168			55	204				
4:45	44	179	113	670	71	167	171	793	284	146
5:00	46	161			29	164				
5:15	37	135		Į	51	161				
5:30	57	120		-	62	164				
5:45	89	114	229	530	90	140	232	629	461	115
6:00	98	112		000	85	122	202	029	401	113
6:15	106	94			110	126		1		
6:30	162	88		İ	87	116		1		
6:45	247	87	613	381			400	400	1000	
	179		013	201	141	102	423	466	1036	84
7:00		78			147	93				
7:15	163	61			127	108				
7:30	155	61			128	93		Į		
7:45	137	64	634	264	114	89	516	383	1150	64
8:00	159	42			121	84		[
8:15	128	49		-	120	70		İ		
8:30	127	48		1	97	75				
8:45	101	38	515	177	93	73	431	302	946	47
9:00	111	32			96	55		-		
9:15	119	33			90	56		1		
9:30	114	38			100	35	0			
9:45	121	24	465	127	93	30	379	176	844	30
10:00	101	19			114	28		.,,	011	
10:15	119	6			95	23				
10:30	117	20		i	115	22				
10:45	125	13	462	58	133	9	457		040	
11:00	150	16	402	30			457	82	919	14
		7			113	11				
11:15	125			1	135	7		ļ		
11:30	142	12	554		95	17		1		
11:45	134	3	551	38	145	8	488	43	1039	. 8
Total	3696	4522	3696	4522	3188	5353	3188	5353	6884	987
nbined	821	8	821	8	854	.1	854	1	1675	sa .
Total		•			00 1		,	•	107	70
1 Peak	6:30 AM				6:45 AM					
Vol.	751				543					
P.H.F.	0.760				0.923					
l Peak		4:00 PM				3:45 PM				
Vol.		670				809				
P.H.F.		0.981				0.907				
		0.00 ‡				0.807				
entage	45.0%	55.0%			37.3%	62.7%				

Start	Northi	bound	Hour 1	otals	South	bound	Hour	Totals	Combine	ed Totals
Time	Morning	Afternoon	Morning	Afternoon	Morning	Afternoon	Morning	Afternoon	Morning	Afterno
12:00	1	143			1	120				
12:15	3	116			10	139				
12:30	5	111			4	108				
12:45	7	113	16	483	5	128	20	495	36	9
1:00	3	113		į	3	129				
1:15	2	140			2	125				
1:30	4	146			7	121				
1:45	2	133	11	532	5	144	17	519	28	10
2:00	8	167			4	174				
2:15	2	154			4	143				
2:30 2:45	6	157	24	ece	5	181	40			
3:00	8 15	188 155	24	666	6	181	19	679	43	134
3:15	14	156			4	151				
3:30	13	195			6	170				
3:45	15	159	57	665	16	195	0.7	705		40.
4:00	27	174	57	000	11 15	189	37	705	94	137
4:00 4:15	20	171			34	207 247				
4:30	29	160			57	234		-		
4:45	44	166	120	671	78	214	184	902	204	45
5:00	52	158	120	071	35	196	104	902	304	151
5:15	31	144			50	211		İ		
5:30	68	115			83	187				
5:45	86	109	237	526	89	176	257	770	494	129
6:00	104	108	201	020	100	109	201	,,,,	454	123
6:15	115	89			84	107		4		
6:30	142	111			95	113				
6:45	233	104	594	412	128	97	407	426	1001	83
7:00	163	108			126	93		0	,,,,	0.0
7:15	151	78			101	120				
7:30	149	62		-	116	86				
7:45	136	52	599	300	109	62	452	361	1051	66
8:00	131	40			107	80				-
8:15	117	49		1	97	93				
8:30	108	45		1	89	77				
8:45	91	33	447	167	88	65	381	315	828	48
9:00	124	40		-	111	30				
9:15	96	34			85	36				
9:30	106	30			99	32	0	1		
9:45	93	14	419	118	93	28	388	126	807	24
10:00	133	21		Addition	106	12		1		
10:15	119	15			92	28		1		
10:30	137	10		i	134	12				
10:45	123	12	512	58	98	13	430	65	942	12
11:00	126	10			124	14				
11:15	111	9		l	126	11				
11:30	118	3			126	9				
11:45	137	6	492	28	152	6	528	40	1020	6
Total	3528	4626	3528	4626	3120	5403	3120	5403	6648	1002
bined	815	4	815	4	852	3	852	23	166	77
Total			- 1.5			-	502	-	100	
Peak	6:45 AM				11:30 AM					
Vol.	696				537					
'.H.F.	0.747				0.883					
Peak		3:30 PM				4:00 PM				
Vol.		699				902				
H.F.		0.900				0.913				

36.6%

63.4%

Percentage

43.3%

56,7%

Start	⊨asti	oound	Hour Te	otals	West	bound	Hour	Totals	Combine	d Totale
Time	Morning	Afternoon		Afternoon	Morning	Afternoon	Morning	Afternoon	Morning	Afterno
12:00	1	16			0	17				
12:15	0	25			0	16				
12:30	1	27			0	15				
12:45	1	14	3	82	3	18	3	66	e	4
1:00	0	21	Ü	ŲŽ.	6	20	J	00	6	1.
1:15	0	17								
					1	18				
1:30	2	20			2	18				
1:45	2	22	4	80	2	16	11	72	15	1
2:00	1	19			3	18]				
2:15	2	21		-	0	20		i		
2:30	1	23			0	19		i		
2:45	2	12	6	75	6	31	9	88	15	10
3:00	0	26	-	, ,	4	21		00	13	11
3:15	ŏ	32								
3:30				-	1	18				
	0	46	_		1	16				
3:45	0	25	0	129	3	21	9	76	9	2
4:00	1	12		1	1	9				
4:15	3	15			4	24				
4:30	1	28			2	15		1		
4:45	0	28	5	83	5	18	12	66	17	4
5:00	2	25	Ü	00	3		12	00	17	1.
5:15	1	26		1		14				
				l	4	12				
5:30	1	17		ĺ	6	24		į		
5:45	8	15	12	83	14	24	27	74	39	15
6:00	4	21			8	22		l		
6:15	4	18			14	20				
6:30	14	20		1	15	17		ļ.		
6:45	20	20	42	79	12	19	49	78	91	4.0
7:00	19	14	¬ &	, ,	19		49	70	91	15
7:15	12					16				
		10			28	13		Ì		
7:30	10	13			47	5				
7:45	12	17	53	54	22	5	116	39	169	9
8:00	12	13			23	13		I		
8:15	11	14		į	20	7				
8:30	15	15			13	3		i		
8:45	9	20	47	62	21		77	25	404	
9:00	14	15	71	02		2	77	25	124	8
				1	16	2		1		
9:15	12	12			18	3				
9:30	15	7			13	5		1		
9:45	12	5	53	39	15	0	62	10	115	4
10:00	12	5			15	1				-
10:15	14	3		1	14	1		1		
10:30	8	3		ŀ	15	5		İ		
10:45	13	4	47	15			50		455	_
			47	15	15	4	59	11	106	2
11:00	9	1			13	0				
11:15	16	7		1	7	7				
11:30	13	0			17	0				
11:45	13	3	51	11	16	0	53	7	104	1
Total	323	792	323	792	487	612	487	612	810	
bined									010	140
Total	111	5	1115		109	9	109	9	221	4
	44.45 014									
Peak	11:45 AM				7:15 AM					
Vol.	81				120					
P.H.F.	0.750				0.638					
Peak		3:00 PM				2:15 PM				
Val.		129								
voi. ⊃.H.F.		0.701				91				
T.O.C.		0.701				0.734				

File Name: 11-7083-001 SALINAS-LEVVIS Site Code: 00000000 Start Date: 3/9/2011 Page No: 6

CITY OF PAJARO

	Int Total	18	25	30	50	132	Ş	25 93	144	4. 1	402	137	165	233	218	753	268	347	374	324	1308	301	263	207	258	1112	100	+ CZ	238	
	App. Total	1	C	0	· c		····	٦ ٥	2 6	- C	3	0	n	0		4	~	, –		C	5	_	· -	- (*) -	9	**	٠	> —	
DRIVEWAY Eastbound	ght		0	. 0	0	0	-	- C	0	0	1	0	0	Ċ	, ,,,,,,			-	, 0	0	2	c	· C	» «	n =	3	c	•	00	
DRIVEWA Eastbound	Thru	,	0	0	0	-	C	· c	0	0	0	0	m	0	0	3	0		0	0	0	0	· c	· c	° C	0	C	0 0	0	
	Left	0	0	0	0	0	c	o C	, 71	0	2	0	0	0	0	0	2	С	. —	0	3	-	. –	· C		3	301 1	· C	>	
	App. Total	8	14	15	24	19	- 6	22	50	50	131	51	69	93	109	322	140	198	217	171	726	167	133	154	150	604	123	103	120	
AS RD. ound	Right	0	,, ,,,,,	7	6	12	m		7	10	16	0	3	2	10	15	3	30	10	12	30	9	9	4	. س	19	6	· V	9	
SALINAS RD Northbound	Thru	∞	[]	13	15	49	9	2]	47	40	114	51	99	91	66	307	137	192	207	159	695	160	127	150	146	583	121	70	114	
	Left	0	0	0	0	0	0	0		0		0	0	0	0	0	0		0	0	-		0	0	-	2	0	C	0	
	App. Total	2				5	<u>-</u>	9	7	0	18	4	6	7	7	27	14	13	7	6	43	13	11	6	6	42	4	4	7	
ROAD AVE. stbound	Right	2		0	-	4	2	7	7	0	11	ĸ	7	5	3	13	6	∞	S	4	26	1-	7	4	9	24	т	6	7	
KAILROAD . Westbound	Thru	0	0	0	0	0	0	0	0	0	0	0	4	0	0	4	0	0	0	0	0	0	0	0	0	0	0	0	0	
	Left	0	0	, 4	0		κn	4	0	0	7	-	m	7	4	10	Υ	5	7	5	17	9	4	S	es	18		ς.	0	
	App. Total	7	10	14	34	65	37	64	85	64	250	82	84	133	101	400	11	130	149	144	534	120	118	124	86	460	106	104	110	The state of the s
Southbound	Right	0	0	0	0	0	0		0	0	-	0	0	0	0	0	fund	0	0	-	2	0	0	*****	0	-	********	0	2	
Southbound	Thru	7	∞	6	20	44	35	99	9/	40	207	80	82	129	95	386	105	126	139	130	200	117	114	119	96	446	100	100	103	
	Left	0	2	\$	14	21	7	7	6	24	42	2	7	4	9	41	'n	4	10	13	32	ы	4	4	2	13	ς.	4	5	
	Start Time	04:00	04:15	04:30	04:45	Total	02:00	05:15	05:30	05:45	Total	00:90	06:15	06:30	06:45	Total	00:20	07:15	02:20	07:45	Total	08:00	08:15	08:30	08:45	Total	00:60	09:15	06:30	,

CITY OF PAJARO

		Southbound	AS KD. ound			RAILRO/ Westbo	ROAD AVE. stbound	\		SALINAS RD. Northbound	S RD.			DRIVEW/	DRIVEWAY Fastbound		
Start Time	Left	Thru	Right	App. Total	Left	Thru Ri	ght	App. Total	Left	Thru	spt	App. Total	Left	Thru	Right	App. Total	Int. Total
-																	
16:00	co.	199	0	202	М	0	17	20	0	151	ťΩ	154	0	0	0	0	376
16:15	۲	201	⊶	500	7	0	10	12	0	166	Ξ	177	0	0	0	0	368
16:30	Π	196	_	208	9	0	Π	17	7	153	ĸ	158	0	0		-	384
16:45	7	184	-	192	9	_	'n	12	0	154	4	158	0	0	0	0	362
Total	78	780	er.	811	17	П	43	61	2	624	21	647	0	0	I		1520
17:00	6	221	0	230	9	0	7	13	0	151	'n	156	0	0	0	C	300
17:15	~	211	0	218	4	0	11	15	0	172	S	177	С	· c	· -	-	411
17:30	4	166	0	170	,	0	10	11	0	163	4	167	. 0	· C	· c	· C	348
17:45	9	156	0	162	4	0	ν,	6	2	165	∞	175	0	0		, 0	346
Total	26	754	0	780	15	0	33	48	2	651	22	675	0	0	_		1504
18:00	8	157	0	165	gung	0	S	9	0	120	4	124	c	C	C	0	795
18:15	∞	156	0	164	2	0	m	\$	0	129	· m	132	· c	· C	· c	, c	301
18:30	7	168	0	175	0	0	7	7	0	140	ı m	143		· c	· c	· C	305
18:45	7	138	0	145	m	0	7	30	0	132	0	132		· c	· c	· c	280
Total	30	619	0	649	9	0	17	23	0	521	10	531	0	0	0	0	1203
19:00	5	123	0	128	23	0	∞	11	0	124	~	126	O	C	C	C	3,4%
19:15	4	115	0	119	_	0	4	٧٢	0	111	9	117	· c			, ,	241
19:30	ν,	91	0	96	7	0	0	7	0	100	· va	105	0	· c	· -	0	203
19:45	₹	26	0	101	1	0	9	1	0	104	· v	109	· c	· c	· -	· c	717
Total	18	426	0	444	7	0	18	25	0	439	18	457	0	0	0	0	926
20:00	9	117	0	123	-	0	3	4	0	92	0	92	C	C	C	C	219
20:15	7	93	0	100	7	0	4	2	0	51	_	55	· C	· C	· C	· c	157
Grand Total	251	4675	10	4936	106	٧٠	215	326	90	4458	178	4644	° <u>c</u>	> ব	a	٠,	0000
Apprch %	5.1	94.7	0.2	PP OF MAIN	32.5	1.5	99		0.2	96) oc	<u> </u>	43.5	17.4	30.1	C.3	6766
102.1.6	(-)	_			۲.۲		

CITY OF PAJARO

Start Time Left Thu Right App. Total Int. Total Int. Total Int. Total Peak Hour for Entire Intersection Begins at 07:15 1			SALINAS RD.	AS RD.			RAILRO	RAILROAD AVE.			SALINAS RD	S RD.			DRIV	DRIVEWAY		
Right App. Total Left Thru Right App. Total Left Thru Right App. Total Left Thru Right App. Total Left Thru Right App. Total Int Int Int App. Total Int App. Total Int App. Total Int Int Int App. Total Int					1000	Dane			TOPERDO	nua			Eastbo	und				
of 1 0 130 5 0 8 13 1 192 5 198 0 0 1 1 1 149 2 0 207 10 217 1 0 0 1 0 149 5 0 4 9 0 159 12 171 0 0 0 1 0 120 6 0 7 13 1 160 6 167 1 0 0 0 0 1 6 0 7 13 1 160 6 167 1 0 0 0 1 543 18 0 24 4 4 4 4 4 4 4 4 66.7 0 33.3 3 250 91 750 760 750 760 760 760 760 760	ĺ	Left	Thru	Right /	App. Total	Left	Thru	Right A	pp. Total	Left	Thru	Right	App. Total	i en	Thui	Right Av	va Total	Int Total
0 130 5 0 8 13 1 192 5 198 0 0 1 1 1 149 2 0 5 7 0 207 10 217 1 0 0 1 0 120 6 0 7 13 1 160 6 167 1 0 0 0 1 543 18 0 24 42 2 718 33 753 2 0 1 0 0.2 42.9 0 57.1 4.4 4.4 4.4 66.7 0 33.3 250 911 750 100 750 760 760 760	Ε	04:00 to (09:15 - Pea	ık 1 of 1					*				The raint		11114	W.Sm.	75. 1 Otal	III. I UIAI
0 130 5 0 8 13 1 192 5 198 0 1 1 0 149 2 0 5 7 0 207 10 217 1 0 0 1 0 120 6 0 7 13 1 160 6 167 1 0 0 0 1 543 18 0 24 42 2 718 33 753 2 0 1 3 0.2 42.9 0 57.1 4.4 4.4 4.4 66.7 0 33.3 250 911 750 808 500 600 760 760	ter	section Be	egins at 07.	:15														
139 0 149 2 0 5 7 0 207 10 217 1 0 0 1 130 1 144 5 0 4 9 0 159 12 17 0 0 0 0 0 1 0		4	126	0	130	S	0	90	13		192	v	198	C	c	****	-	242
130 1 144 5 0 4 9 0 159 12 171 0		10	139	0	149	7	0	ίζ	[-	C	202	. 01	217	- c	> <	~ <		745
117 0 120 6 0 7 13 1 60 6 1 0 0 1 512 1 543 18 0 24 42 2 718 33 753 2 0 1 3 94.3 0.2 42.9 0 57.1 0 37.4 44 66.7 0 33.3 95.1 250 91 750 .808 .500 .867 688 500 000 250 750		13	130	-	144	5	0	া বা	. 0	> c	150	2 5	171	. c	> <	0 0	- c	4/5
512 1 543 18 0 24 42 2 718 33 753 2 0 1 3 94.3 0.2 42.9 0 57.1 0.3 95.4 4.4 66.7 0 33.3 .921 .250 .911 .750 .000 .750 .808 .500 .867 .688 500 000 .560 .750		ťΩ	117	0	120	9	0		13	·	091	٧.	167	> -	> 0	> <	- c	324
94.3 0.2 42.9 0 57.1 0.3 95.4 4.4 66.7 0 33.3 .921 .250 .911 .750 .000 .750 .808 .500 .867 .688 868 500 000 .560 .750		30	512		543	18	0	24	42	2	718	33	753	2	0	-	7 (1	1341
. 921 . 250 . 911 . 750 . 000 . 750 . 808 500 867 688 868 . 500 . 000 350 350		5.5	94.3	0.2		42.9	0	57.1		0.3	95.4	4.4)	7 99	o	333	ח	1401
	İ	.577	.921	.250	.911	.750	000	.750	808.	.500	.867	889	898	500	000	250	750	908

CITY OF PAJARO

Alght App. Total Left Thru Right App. Total Left Thru Right App. Total Left Thru Right App. Total Int. 11 17 2 153 3 158 0 0 0 0 5 12 0 154 4 158 0	SALINAS RD.				RAILRO	ROAD AVE.			SALINAS RD.	S RD.			DRIV	DRIVEWAY		
3ht App. Total Left Thru Right App. Total Left Thru Right App. Total Int 11 17 2 153 3 158 0 0 1	Southbound	We	We	W	stbo	nnd			Northbo	nuq			Eastbo	bund		
11	Left Thru Right App. Total Left	Left			Thru	Right A	pp. Total	Left	Thru	Right	Ann Total	T et	Thri	Right A	Total	Int Total
11 17 2 153 3 158 0 0 1 1 7 13 0 154 4 158 0 0 0 0 11 15 0 151 5 156 0 0 0 0 34 57 2 630 17 649 0 0 1 1 59.6 0.3 97.1 2.6 850 917 000 000 600 500	Peak Hour Analysis From 16:00 to 20:15 - Peak 1 of 1									0		1122	71114	V mgra	PP. 4 Olds	IIIC. total
11 17 2 153 3 158 0 0 1 1 7 12 0 154 4 158 0 0 0 0 11 15 0 151 5 156 0 0 0 0 11 15 0 172 5 177 0 0 1 1 34 57 2 630 17 649 0 0 2 2 59.6 0.3 97.1 2.6 916 850 917 000 000 500 500	Peak Hour for Entire Intersection Begins at 16:30															
5 12 0 154 4 158 0 0 0 0 7 13 0 151 5 156 0 0 0 0 11 15 0 172 5 177 0 0 0 0 34 57 2 630 17 649 0 0 2 2 59.6 0.3 97.1 2.6 0 0 0 100 500 773 .838 .250 .916 .850 .917 0.00 0.00 600 600	11 196 1 208 6	208 6	9		0	11	1	~	153	٣	158	C	C	****		384
7 13 0 151 5 156 0 0 0 0 11 15 0 172 5 177 0 0 1 1 34 57 2 630 17 649 0 0 2 2 59.6 0.3 97.1 2.6 0 0 0 100 773 .838 .250 .916 .850 .917 0.00 0.00 600 600	7 184 1 192 6	192 6	9		, (ς.	12	0	154	4	158	· C	· c		, ,	Cyt
11 15 0 172 5 177 0 0 1 1 34 57 2 630 17 649 0 0 2 2 59.6 0.3 97.1 2.6 0 0 0 100 .773 .838 .250 .916 .850 .917 0.00 0.00 500 500	9 221 0 230 6	230 6	9		0	7	13	0	151	V	156	· C	, c	» <		300
34 57 2 630 17 649 0 0 2 2 89.6 59.6 0.3 97.1 2.6 0 0 0 100 2 2 2 2 3 39.6 250 .916 .850 .917 0.00 0.00 5.00 5.00	7 211 0 218 4	218 4	4		0	Ξ	15	0	172	, .	177	· c	» с	>	>	411
59.6 0.3 97.1 2.6 0 0 0 100 100 173 .838 .250 .916 .850 .917 0.00 0.00 son son	34 812 2 848 22		22	4	1	34	57	2	630	17	649	0	0	,	, (1556
.773 .838 .250 .916 .850 .917 0.00 0.00 son son	4 95.8 0.2 38.6	38.6	38.6		1.8	9.65		0.3	97.1	2.6	**************************************	0	¢	100	4	0001
	773 .919 .500 .922 .917		.917	1 :	.250	.773	.838	.250	.916	.850	.917	000	000	500	200	946

Start	Eastb	ound	Hour	Totals	West	oound	Hour	Totals	Combine	ed Totals
Time	Morning	Afternoon	Morning	Afternoon	Morning	Afternoon	Morning		Morning	Afternoo
12:00	5	17			0	19				
12:15	4	8			3	11				
12:30	4	16			6	18				
12:45	1	13	14	54	1	18	10	66	24	12
1:00	2	19	201		0	9		00		1.4-
1:15	3	22			3	14				
1:30	0	29			0	15				
1:45	1	15	6	85	0	9	3	47	9	13
2:00	1	19	U	00	1	19	3	47	9	13.
2:15	3	24			2	21				
2:30	1	20			2					
	1	20	6		2	26	4.4	0.4	47	47
2:45			6	83	6	25	11	91	17	17
3:00	3	29			1	30				
3:15	3	32		-	4	19				
3:30	3	18			5	19				
3:45	1	23	10	102	14	21	24	89	34	19
4:00	3	22			2	15				
4:15	0	24			3	17				
4:30	0	27		55 AUGUST 10	4	12				
4:45	0	36	3	109	1	12	10	56	13	16
5:00	2	20			3	17				
5:15	2	30			4	24				
5:30	4	30			3	19				
5:45	2	25	10	105	12	17	22	77	32	18
6:00	2	25			15	26				
6:15	5	13			12	19				
6:30	19	20		1	16	18				
6:45	23	21	49	79	15	11	58	74	107	15
7:00	14	10		, ,	21	13	00		107	10
7:15	6	16			30	6				
7:30	9	11			24	10				
7:45	11	6	40	43	18	8	93	37	133	0
8:00	11	12	40	43	30	8	93	31	133	8
	14									
8:15		12			18	5				
8:30	12	11	50		22	5	0.4			-
8:45	15	17	52	52	11	9	81	27	133	7
9:00	12	10			12	3				
9:15	16	10			11	5		1		
9:30	12	9			14	4				
9:45	10	6	50	35	15	2	52	14	102	4
10:00	14	6			13	0				
10:15	15	5		1	8	3		1		
10:30	7	4		1	17	1				
10:45	14	4	50	19	14	2	52	6	102	2
11:00	10	8		1	20	1		200		
11:15	14	1		1	11	6		1		
11:30	13	4		- 1	14	4		1		
11:45	8	8	45	21	16	4	61	15	106	3
Total	335	787	335	787	477	599	477	599	812	138
nbined										
Total	112	.2	112	.2	107	76	10	76	219	98
	6:20 AM				7.15 014					
1 Peak	6:30 AM				7:15 AM					
Vol.	62				102					
P.H.F.	0.674				0.850					
1 Peak		4:45 PM				2:15 PM				
Vol.		116				102				
		0.806				0.850				
P.H.F.		0.000				0.630				

Volumes for: Friday, March 11, 2011 City: Pajaro Project #: 11-7082-002 Location: Lewis Road just east of UP railroad

Location:	Lewis Road				3	SS				
Start	Eastb		Hour	Totals	West	bound	Hour	Totals	Combine	ed Totals
Time	Morning	Afternoon	Morning	Afternoon	Morning	Afternoon	Morning	Afternoon	Morning	Afternoo
12:00	3	21	[6	18				7 1110111100
12:15	4	31			1	27				
12:30	3	21			0	19				
12:45	2	22	12	0.5				0.5		4.0
			12	95	4	31	11	95	23	19
1:00	1	27			0	30				
1:15	1	20			0	22				
1:30	0	20			0	14				
1:45	0	20	2	87	0	21	0	87	2	17
2:00	1	17			0	16		157.00		400
2:15	2	30			5	21				
2:30	1	24			3	21		1		
2:45	0	27	4	00	3		40			
			4	98	2	23	10	81	14	17
3:00	1	23			2	21		1		
3:15	1	17			1	23				
3:30	4	27			2	22				
3:45	1	20	7	87	7	20	12	86	19	17
4:00	2	34		00000	6	27		-		4070
4:15	0	22			4	18		1		
4:30	1	36						1		
			_	400	2	11		272	920000	50000
4:45	0	34	3	126	2	36	14	92	17	21
5:00	2	17			3	31		-		
5:15	1	25			3	16		- 1		
5:30	3	25			7	14		1		
5:45	2	18	8	85	11	12	24	73	32	15
6:00	9	19		\$600 B	16	20		, ,	02	10
6:15	16	25			17	24		İ		
		15		i				İ		
6:30	17		0.4		19	23				
6:45	22	16	64	75	23	10	75	77	139	15
7:00	13	11			19	21				
7:15	17	11			24	10		- 1		
7:30	13	18			29	6				
7:45	19	6	62	46	19	8	91	45	153	9
8:00	32	16			27	5	0.	,0	100	0
8:15	16	12			14	7				
8:30	21	12	20		14	7	=:			
8:45	17	11	86	51	19	1	74	20	160	7
9:00	17	5	(4)		13	8				
9:15	14	7		ı	13	2				
9:30	17	9			25	7				
9:45	13	5	61	26	14	7	65	24	126	50
10:00	13	11	0.		12	5	00	27	120	31
10:15	8	5								
				1	19	4				
10:30	16	6		71120000	18	2				
10:45	18	8	55	30	15	3	64	14	119	44
11:00	17	6		1	16	2		1		
11:15	16	4			14	4		- 1		
11:30	19	4		1	25	1		1		
11:45	9	2	61	16	22	1	77		400	
						,	77	8	138	24
Total	425	822	425	822	517	702	517	702	942	1524
nbined	124	7	124	47	12	19	121	a	246	86
Total	124		12	**	12		12		240	,,
/I Peak	7:45 AM				7:15 AM					
Vol.	88				99					
P.H.F.	0.688				0.853					
	0.000	4.00 DM			0.003	10:15 DM				
/ Peak		4:00 PM				12:15 PM				
Vol.		126				107				
P.H.F.		0.875				0.863				
entage	34.1%	65.9%			42.4%	57.6%				

0.722

59.5%

40.5%

Vol.

P.H.F.

Percentage

0.758

68.1%

31.9%

Start	Eastb	ound	Hour T	otals	West	bound	Hour	Totals	Combine	ed Totals
Time	Morning	Afternoon	Morning	Afternoon	Morning	Afternoon	Morning	Afternoon	Morning	Afternoo
12:00	5	12			3	20				
12:15	2	14			0	15				
12:30	6	8		91	1	16				
12:45	4	14	17	48	5	14	9	65	26	11
1:00	5	12			5	8				
1:15	1	9			1	21				
1:30	1	15	9 <u>22</u>		0	12				
1:45	0	15	7	51	1	15	7	56	14	10
2:00	3	15			0	10				
2:15	1	24			1	14				
2:30	0	16			1	12			1	
2:45	0	11	4	66	1	12	3	48	7	11
3:00	0	11		40	3	14				
3:15	0	11			3	12				
3:30	0	14	0	50	1	11	0			
3:45	0	14	0	50	1	16	8	53	8	10
4:00	0	10 18			1	7		4		
4:15	0	8			1	10				
4:30 4:45	0	5	0	41	4	11 7	6	35		7
5:00	0	16	U	41	4	10	0	35	6	7
5:15	0	15			2	16				
5:30	2	10			1	5		1		
5:45	5	11	7	52	4	7	11	38	18	9
6:00	7	10		52	5	11	1.1	30	10	8
6:15	3	10			9	15				
6:30	2	11			4	11				
6:45	5	10	17	41	12	8	30	45	47	8
7:00	6	7	10 F	71	5	7	30	43	47	O
7:15	3	12			9	7		1		
7:30	4	11			8	5				
7:45	11	6	24	36	9	6	31	25	55	6
8:00	3	7	2.1	00	7	4	01	20	55	
8:15	14	5			13	4		- 1		
8:30	10	11			10	8		1		
8:45	9	4	36	27	14	3	44	19	80	4
9:00	8	11			16	6		, ,		
9:15	9	2			11	0				
9:30	15	3			12	4				
9:45	6	0	38	16	12	2	51	12	89	2
10:00	10	8		7100000	16	4				
10:15	12	3			8	7				
10:30	18	5			9	1				
10:45	10	5	50	21	17	4	50	16	100	3
11:00	6	2			10	3		7.000.00		
11:15	11	1			7	0				
11:30	22	2			11	0				
11:45	13	2	52	7	20	0	48	3	100	1
Total	252	456	252	456	298	415	298	415	550	87
nbined	708	2	708	ı	71	3	71	2	142	0.1
Total		*	700			J	7 1	9	144	2-1
1 Peak	11:30 AM				11:45 AM					
Vol.	61				71					
P.H.F.	0.693				0.888					
1 Peak		1:45 PM				12:00 PM				
Vol.		70				65				
P.H.F.		0.729				0.813				
entage	35.6%	64.4%			41.8%	58.2%				

Start		just east of ound	Hour 1	otals	West	oound	Hour	Totals	Combine	ed Totals
Time	Morning	Afternoon	Morning	Afternoon	Morning	Afternoon	Morning	Afternoon	Morning	Afternoo
12:00	0	19			4	21				
12:15	1	28			0	16				
12:30	1	26			0	15				
12:45	3	23	5	96	2	17	6	69	11	16
1:00	0	15			1	12			ii	
1:15	0	27		i	1	32				
1:30	1	18	2.52		0	18		-		
1:45	1	15	2	75	0	21	2	83	4	15
2:00	2	18			0	12				
2:15	0	17			0	23				
2:30	3	33	_		15	29		0.00000		
2:45	0	18	5	86	4	21	19	85	24	17
3:00	0	37			2	11				
3:15	1	23			1	24				
3:30	1	23	_		0	12		14420000		
3:45	0	23	2	106	1	18	4	65	6	17
4:00	1	25			8	18				
4:15	0	26			0	21				
4:30	2	22			6	11				
4:45	1	17	4	90	8	31	22	81	26	17
5:00	3	23			7	10				
5:15	3	22			4	25				
5:30	3	24	00		5	14				1470
5:45	14	12	23	81	13	14	29	63	52	14
6:00	23	20			17	14				
6:15	10	9			12	8				
6:30	11	15		50	29	12	20			
6:45	7	8	51	52	31	14	89	48	140	10
7:00	17	17		1	21	5				
7:15	19	12		1	20	6				
7:30	13	11	58	40	21	4	71	00	400	-
7:45	9	8	50	48	9 24	8	71	23	129	7
8:00	11	10		I		3				
8:15	15	9			11	5				
8:30	14	6	49	25	17	6	61	47	440	-
8:45	9	10	49	35	9	3	61	17	110	5.
9:00	6	9			12	4				
9:15	11 10	9		- 1	9	2				
9:30	20	3 2	47	23	8	1	48		0.5	0
9:45	18	5	47	23	19	1 0	40	8	95	3
10:00 10:15	8	1			13 23	1				
	16	4			12					
10:30		2	54	12		1	60	3	444	
10:45	12		54	12	12	1	60	3	114	1:
11:00	21 18	5 4			14	5 0		1		
11:15	13	4			17	2				
11:30	19	3	71	16	21 15	3	67	10	100	
Total	371	720	371	720	478	555	67 478	10	138	2
nbined								555	849	127
Total	109	91	109	1	103	33	10:	33	212	24
1 Peak	11:45 AM				6:30 AM					
Vol.	92				101					
P.H.F.	0.821				0.815					
P.n.r. 1 Peak	0.021	2:30 PM			0.013	1:45 PM				
Vol.		111				1.45 PW 85				
P.H.F.		0.750				0.733				
r "Fl.F".		0.750				0.733				
entage	34.0%	66.0%			46.3%	53.7%				

Location: Start		l just east of bound	Hour	Totals	West	bound	Hour	Totals	Combine	ed Totals
Time	Morning	Afternoon	Morning	Afternoon	Morning	Afternoon	Morning	Afternoon	Morning	Afternoo
12:00	1	23			1	15	wiching	7 (Itellioon	Ivioitiiig	Alterno
12:15	5	13			5	19				
12:30	0	14			0	14				
12:45	2	25	8	75	1	18	7	66	15	14
1:00	2	15		, ,	1	8	,	00	15	14
1:15	1	21			0	16				
1:30	2	21			4	17				
1:45	7	14	12	71	0		_	50	47	
2:00	1	21	12	7 1	1	17 22	5	58	17	12
2:15	1	14			1					
2:30	3	25				19				
			0	70	10	15	4.0			
2:45	3	18	8	78	7	15	19	71	27	14
3:00	1	23			4	18				
3:15	0	25			9	14				
3:30	1	27	6000	2003 (2120-002)	1	28				
3:45	3	26	5	101	2	28	16	88	21	18
4:00	2	33			10	15				
4:15	3	28			6	21				
4:30	5	45			5	20				
4:45	4	25	14	131	18	29	39	85	53	2
5:00	2	25			11	15				_
5:15	5	26			6	15				
5:30	7	20			10	15				
5:45	12	17	26	88	12	15	39	60	65	14
6:00	18	13	20	00	20	13	55	00	05	1.5
6:15	9	11			13	11		4		
6:30	9	14		1	22			i i		
6:45	16	9	52	47	30	7	0.5	20	407	,
			52	47		7	85	38	137	8
7:00	6	16		1	26	9	4			
7:15	19	9		- 1	18	6				
7:30	19	10			23	2				
7:45	9	6	53	41	18	11	85	28	138	6
8:00	11	10		1	14	6				
8:15	9	7		1	13	3		1		
8:30	12	4			16	9		1		
8:45	10	13	42	34	9	2	52	20	94	5
9:00	16	4		- 1	19	3		50000		
9:15	6	5			13	2				
9:30	18	8		-	11	2				
9:45	12	3	52	20	16	1	59	8	111	2
10:00	22	5			15	2			,	-
10:15	18	4			23	0				
10:30	19	2			18	3				
10:45	13	9	72	20	15	1	71	6	142	2
11:00	18	4	12	20	19		7.1	0	143	
		4				0				
11:15	11 14				11	6				
11:30		3	00	40	18	3	70			
11:45	25	2	68	13	22	5	70	14	138	2
Total	412	719	412	719	547	542	547	542	959	126
nbined	113	31	113	1	108	39	108	39	222	20
Total			10.50	7.5			10.		222	-0
1 Peak	11:30 AM				6:45 AM					
Vol.	75				97					
P.H.F.	0.750				0.808					
1 Peak		3:45 PM				3:30 PM				
Vol.		132				92				
P.H.F.		0.733				0.821				
		5.700				0.021				
entage	36.4%	63.6%			50.2%	49.8%				

APPENDIX C Level of Service Calculations

	1	4	1	~	1	↓
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	*y*		^		ሻ	↑ ↑
Sign Control	Stop		Free			Free
Grade	0%		0%			0%
Volume (veh/h)	28	64	680	12	36	482
Peak Hour Factor	0.66	0.66	0.79	0.79	0.93	0.93
Hourly flow rate (vph)	42	97	861	15	39	518
Pedestrians						
Lane Width (ft)						
Walking Speed (ft/s)						
Percent Blockage						
Right turn flare (veh)						
Median type	Raised					
Median storage veh)	0					
Upstream signal (ft)						
pX, platoon unblocked						
vC, conflicting volume	1205	438			876	
vC1, stage 1 conf vol	868					
vC2, stage 2 conf vol	337					
vCu, unblocked vol	1205	438			876	
tC, single (s)	6.8	6.9			4.1	
tC, 2 stage (s)	5.8					
tF (s)	3.5	3.3			2.2	
p0 queue free %	80	83			95	
cM capacity (veh/h)	212	567			766	
Direction, Lane #	WB 1	NB 1	NB 2	SB 1	SB 2	SB 3
Volume Total	139	574	302	39	259	259
Volume Left	42	0	0	39	0	0
Volume Right	97	0	15	0	0	Ő
cSH	375	1700	1700	766	1700	1700
Volume to Capacity	0.37	0.34	0.18	0.05	0.15	0.15
Queue Length 95th (ft)		0	0	4	0	0
Control Delay (s)	20.2	0.0	0.0	9.9	0.0	0.0
Lane LOS	C			A	0.0	0.0
Approach Delay (s)	20.2	0.0		0.7		
Approach LOS	С	11 (12 (12 (12 (12 (12 (12 (12 (
Intersection Summary						
Average Delay	The state of the s		2.0	- /iu		
Intersection Capacity U	tilization		38.0%	IC	CU Leve	l of Serv
Analysis Period (min)			15	100000000000000000000000000000000000000	(6)	

	•	*	†	1	-	↓		
Movement	WBL	WBR	NBT	NBR	SBL	SBT		THE THE REAL
Lane Configurations	Ϋ́	7	1		7	†	S	
Sign Control	Stop		Free			Free		
Grade	0%		0%			0%		
Volume (veh/h)	18	24	718	33	30	512		
Peak Hour Factor	0.81	0.81	0.87	0.87	0.91	0.91		
Hourly flow rate (vph)	22	30	825	38	33	563		
Pedestrians								
Lane Width (ft)								
Walking Speed (ft/s)								
Percent Blockage								
Right turn flare (veh)								
Median type	None							
Median storage veh)								
Upstream signal (ft)						1051		
pX, platoon unblocked								
vC, conflicting volume	1473	844			863			
C1, stage 1 conf vol								
C2, stage 2 conf vol								
Cu, unblocked vol	1473	844			863			
C, single (s)	6.4	6.2			4.1			
:C, 2 stage (s)								
F (s)	3.5	3.3			2.2			
00 queue free %	83	92			96			
M capacity (veh/h)	134	363			779			
Direction, Lane#	WB 1	WB 2	NB 1	SB 1	SB 2			
/olume Total	22	30	863	33	563			
/olume Left	22	0	0	33	0			
/olume Right	0	30	38	0	0			
SH	134	363	1700	779	1700			
/olume to Capacity	0.17	0.08	0.51	0.04	0.33			
Queue Length 95th (ft)	14	7	0	3	0			
Control Delay (s)	37.2	15.8	0.0	9.8	0.0			
ane LOS	Е	С		Α				
Approach Delay (s)	25.0		0.0	0.5				
Approach LOS	С							
ntersection Summary								
Average Delay			1.1					
ntersection Capacity Ut	tilization		49.8%	10	CU Leve	of Ser	/ice	Α
Analysis Period (min)			15					

Parsons Transportation Group

	•	→	*	*	4-	*	4	†	1	>	ţ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	Ϋ́	†	77		स	77	ሻ	1		ሻሻ	↑ ↑	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	4.0	4.0	4.0		4.0	4.0	4.0	4.0		4.0	4.0	
Lane Util. Factor	1.00	1.00	1.00		1.00	0.88	1.00	0.95		0.97	0.95	
Frt	1.00	1.00	0.85		1.00	0.85	1.00	1.00		1.00	0.99	
Flt Protected	0.95	1.00	1.00		0.96	1.00	0.95	1.00		0.95	1.00	
Satd. Flow (prot)	1770	1863	1583		1782	2787	1770	3535		3433	3516	
Flt Permitted	0.73	1.00	1.00		0.74	1.00	0.95	1.00		0.95	1.00	
Satd. Flow (perm)	1356	1863	1583		1381	2787	1770	3535		3433	3516	
Volume (vph)	36	4	5	34	3	579	2	701	5	252	607	28
Peak-hour factor, PHF	0.86	0.86	0.86	0.82	0.82	0.82	0.84	0.84	0.84	0.82	0.82	0.82
Adj. Flow (vph)	42	5	6	41	4	706	2	835	6	307	740	34
RTOR Reduction (vph)	0	0	5	0	0	633	0	0	0	0	2	0
Lane Group Flow (vph)	42	5	1	0	45	73	2	841	0	307	772	0
Turn Type c	ustom	C	ustom	Perm		Perm	Prot			Prot		
Protected Phases					8		5	2		1	6	
Permitted Phases	4	4	4	8		8				closers and plan		
Actuated Green, G (s)	9.3	9.3	9.3		9.3	9.3	1.8	55.7		13.0	66.9	
Effective Green, g (s)	9.3	9.3	9.3		9.3	9.3	1.8	55.7		13.0	66.9	
Actuated g/C Ratio	0.10	0.10	0.10		0.10	0.10	0.02	0.62		0.14	0.74	
Clearance Time (s)	4.0	4.0	4.0		4.0	4.0	4.0	4.0		4.0	4.0	
Vehicle Extension (s)	3.0	3.0	3.0		3.0	3.0	3.0	3.0		3.0	3.0	
Lane Grp Cap (vph)	140	193	164		143	288	35	2188		496	2614	
v/s Ratio Prot							0.00	c0.24		c0.09	0.22	
v/s Ratio Perm	0.03	0.00	0.00		c0.03	0.03						
v/c Ratio	0.30	0.03	0.00		0.31	0.25	0.06	0.38		0.62	0.30	
Uniform Delay, d1	37.3	36.3	36.2		37.4	37.2	43.3	8.6		36.2	3.8	
Progression Factor	1.00	1.00	1.00		1.00	1.00	1.05	1.14		1.00	1.00	
Incremental Delay, d2	1.2	0.1	0.0		1.3	0.5	0.6	0.5		2.3	0.3	
Delay (s)	38.5	36.3	36.2		38.7	37.6	45.9	10.2		38.5	4.1	
Level of Service	D	D	D		D	D	D	В		D	Α	
Approach Delay (s)		38.1			37.7			10.3		THE REAL PROPERTY.	13.9	
Approach LOS		D			D			В			В	
Intersection Summary										CACA	38232	12/19/3
HCM Average Control D	elay		19.8	Н	CM Lev	el of Se	rvice	10 W - 0 W - 10 W	В			
HCM Volume to Capacit	y ratio		0.42									
Actuated Cycle Length (s	s)		90.0	S	um of lo	st time	(s)		12.0			
Intersection Capacity Uti			53.1%			of Sen			Α			
Analysis Period (min)			15						•			
c Critical Lane Group												

Parsons Transportation Group

23: Pajaro School Entrance & Salinas Road

	۶	→	*	1	4	4	4	†	1	1	ţ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	P)	٦		ሻ	f)		ሻ	1>		ሻ	1>	-
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	4.0	4.0		4.0	4.0		4.0	4.0		4.0	4.0	
Lane Util. Factor	1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00	
Frt	1.00	0.86		1.00	0.86		1.00	1.00		1.00	0.98	
Flt Protected	0.95	1.00		0.95	1.00		0.95	1.00		0.95	1.00	
Satd. Flow (prot)	1770	1611		1770	1594		1770	1860	r.	1770	1834	
Flt Permitted	0.74	1.00		0.74	1.00		0.95	1.00		0.36	1.00	
Satd. Flow (perm)	1378	1611		1386	1594		1770	1860		678	1834	
Volume (vph)	46	2	16	11	1	23	11	678	8	29	509	59
Peak-hour factor, PHF	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88
Adj. Flow (vph)	52	2	18	12	1	26	12	770	9	33	578	67
RTOR Reduction (vph)	0	17	0	0	24	0	0	0	0	0	2	0
Lane Group Flow (vph)	52	3	0	12	3	0	12	779	0	33	643	0
Turn Type	Perm			Perm			Prot			Perm		
Protected Phases		4			8		5	2			6	
Permitted Phases	4			8						6		
Actuated Green, G (s)	6.1	6.1		6.1	6.1		1.5	75.9		70.4	70.4	
Effective Green, g (s)	6.1	6.1		6.1	6.1		1.5	75.9		70.4	70.4	
Actuated g/C Ratio	0.07	0.07		0.07	0.07		0.02	0.84		0.78	0.78	
Clearance Time (s)	4.0	4.0		4.0	4.0		4.0	4.0		4.0	4.0	
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Lane Grp Cap (vph)	93	109		94	108		30	1569		530	1435	
v/s Ratio Prot		0.00			0.00		0.01	c0.42			0.35	
v/s Ratio Perm	c0.04			0.01						0.05		
v/c Ratio	0.56	0.03		0.13	0.03		0.40	0.50		0.06	0.45	
Uniform Delay, d1	40.6	39.2		39.4	39.2		43.8	1.9		2.2	3.3	
Progression Factor	1.00	1.00		1.00	1.00		1.00	1.00		0.93	1.53	
Incremental Delay, d2	7.1	0.1		0.6	0.1		8.5	1.1		0.2	1.0	
Delay (s)	47.8	39.3		40.1	39.3		52.3	3.0		2.3	6.0	
Level of Service	D	D		D	D		D	Α		Α	Α	
Approach Delay (s)		45.4			39.5			3.8			5.8	
Approach LOS		D			D			Α			Α	
Intersection Summary												
HCM Average Control D			7.4	Н	CM Lev	el of Se	rvice		Α			
HCM Volume to Capacit			0.50									
Actuated Cycle Length (90.0			st time			8.0			
Intersection Capacity Uti	lization		52.1%	IC	CU Leve	of Sen	vice		Α			
Analysis Period (min)			15									
c Critical Lane Group												

Parsons Transportation Group

	*	\rightarrow	*	*	—	*	4	†	~	1		1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	1	7		4	777	ኻ	^ \$		44	1	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	4.0	4.0	4.0		4.0	4.0	4.0	4.0		4.0	4.0	
Lane Util. Factor	1.00	1.00	1.00		1.00	0.88	1.00	0.95		0.97	0.95	
Frt	1.00	1.00	0.85		1.00	0.85	1.00	1.00		1.00	0.98	
Flt Protected	0.95	1.00	1.00		0.97	1.00	0.95	1.00		0.95	1.00	
Satd. Flow (prot)	1770	1863	1583		1799	2787	1770	3535		3433	3478	
Flt Permitted	0.71	1.00	1.00		0.81	1.00	0.95	1.00		0.95	1.00	
Satd. Flow (perm)	1323	1863	1583		1503	2787	1770	3535		3433	3478	
Volume (vph)	152	17	20	46	19	425	11	707	6	383	887	116
Peak-hour factor, PHF	0.81	0.81	0.81	0.91	0.91	0.91	0.95	0.95	0.95	0.96	0.96	0.96
Adj. Flow (vph)	188	21	25	51	21	467	12	744	6	399	924	121
RTOR Reduction (vph)	0	0	20	0	0	377	0	0	0	0	8	0
Lane Group Flow (vph)	188	21	5	0	72	90	12	750	0	399	1037	0
	custom	С	ustom	Perm		Perm	Prot		**************************************	Prot		
Protected Phases					8		5	2		1	6	
Permitted Phases	4	4	4	8		8						
Actuated Green, G (s)	17.3	17.3	17.3		17.3	17.3	1.6	45.4		15.3	59.1	
Effective Green, g (s)	17.3	17.3	17.3		17.3	17.3	1.6	45.4		15.3	59.1	
Actuated g/C Ratio	0.19	0.19	0.19		0.19	0.19	0.02	0.50		0.17	0.66	
Clearance Time (s)	4.0	4.0	4.0		4.0	4.0	4.0	4.0		4.0	4.0	
Vehicle Extension (s)	3.0	3.0	3.0		3.0	3.0	3.0	3.0		3.0	3.0	
Lane Grp Cap (vph)	254	358	304		289	536	31	1783		584	2284	
v/s Ratio Prot							0.01	c0.21		c0.12	c0.30	
v/s Ratio Perm	c0.14	0.01	0.00		0.05	0.03						
v/c Ratio	0.74	0.06	0.02		0.25	0.17	0.39	0.42		0.68	0.45	
Uniform Delay, d1	34.2	29.7	29.5		30.8	30.3	43.7	14.0		35.1	7.6	
Progression Factor	1.00	1.00	1.00		1.00	1.00	0.97	0.92		1.00	1.00	
Incremental Delay, d2	11.0	0.1	0.0		0.5	0.1	7.2	0.7		3.3	0.7	
Delay (s)	45.2	29.8	29.5		31.3	30.5	49.4	13.6		38.4	8.2	
Level of Service	D	С	С		С	С	D	В		D	A	
Approach Delay (s)		42.2			30.6		ASSESSED.	14.2		15 K 11 K 1	16.5	
Approach LOS		D			С			В			В	
Intersection Summary							661 A 196		BEER SEA	65/ 6 750	DEFENDATIONS	
HCM Average Control D	elav		20.5	Н	CM Lev	el of Se	rvice		С		NO 1810/01/01/01	VIEW PCH
HCM Volume to Capacit	•		0.54		OIII LOV	01 01 00	1 1100					
Actuated Cycle Length (90.0	Si	um of lo	st time	(2)		8.0			
Intersection Capacity Uti	,	ļ	56.6%			of Sen			8.0 B			
Analysis Period (min)			15	ert Heigh		0,00	100					
c Critical Lane Group												

23: Pajaro School Entrance & Salinas Road

	۶	→	*	•	4	4	4	†	~	1	ļ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	₽		ሻ	1•		ሻ	1₃		ř	1>	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	4.0	4.0		4.0	4.0		4.0	4.0		4.0	4.0	
Lane Util. Factor	1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00	
Frt	1.00	0.85		1.00	0.85		1.00	1.00		1.00	1.00	
Flt Protected	0.95	1.00		0.95	1.00		0.95	1.00		0.95	1.00	
Satd. Flow (prot)	1770	1583		1770	1583		1770	1860		1770	1862	
Flt Permitted	1.00	1.00		1.00	1.00		0.95	1.00		0.38	1.00	
Satd. Flow (perm)	1863	1583		1863	1583	111-11	1770	1860		713	1862	
Volume (vph)	9	0	2	8	0	25	5	694	7	14	882	3
Peak-hour factor, PHF	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
Adj. Flow (vph)	10	0	2	9	0	27	5	738	7	15	938	3
RTOR Reduction (vph)	0	2	0	0	26	0	0	0	0	0	0	0
Lane Group Flow (vph)	10	0	0	9	1	0	5	745	0	15	941	0
Turn Type	Perm			Perm			Prot			Perm		
Protected Phases		4			8		5	2			6	
Permitted Phases	4			8						6		
Actuated Green, G (s)	4.0	4.0		4.0	4.0		1.3	78.0		72.7	72.7	
Effective Green, g (s)	4.0	4.0		4.0	4.0		1.3	78.0		72.7	72.7	
Actuated g/C Ratio	0.04	0.04		0.04	0.04		0.01	0.87		0.81	0.81	
Clearance Time (s)	4.0	4.0		4.0	4.0		4.0	4.0		4.0	4.0	
Vehicle Extension (s)	3.0	3.0		3.0	3.0	4 5 6 1	3.0	3.0		3.0	3.0	
Lane Grp Cap (vph)	83	70		83	70		26	1612		576	1504	
v/s Ratio Prot		0.00			0.00		0.00	c0.40			c0.51	
v/s Ratio Perm	c0.01			0.00						0.02		
v/c Ratio	0.12	0.00		0.11	0.02		0.19	0.46		0.03	0.63	
Uniform Delay, d1	41.3	41.1		41.3	41.1		43.8	1.3		1.7	3.4	
Progression Factor	1.00	1.00		1.00	1.00		1.00	1.00		1.41	2.25	
Incremental Delay, d2	0.7	0.0		0.6	0.1		3.6	1.0		0.1	1.8	
Delay (s)	42.0	41.1		41.9	41.2		47.4	2.3		2.5	9.4	
Level of Service	D	D		D	D		D	Α		Α	Α	
Approach Delay (s)		41.8			41.4			2.6			9.3	
Approach LOS		D			D			Α			Α	
Intersection Summary				To less to								10 TO 10 TO
HCM Average Control D	elay		7.3	Н	CM Lev	el of Se	rvice		Α			
HCM Volume to Capacit	y ratio		0.61									
Actuated Cycle Length (90.0	S	um of lo	ost time	(s)		12.0			
Intersection Capacity Uti			60.4%			of Sen			В			
Analysis Period (min)			15									
c Critical Lane Group												

	1	*	†	1	1	↓		
Movement	WBL	WBR	NBT	NBR	SBL	SBT	100	
Lane Configurations	**	-	† }	Tarakan dikina dia 1800.	ኻ	^		
Sign Control	Stop		Free	X 1.6 E.C.	375 (2 m) (300)	Free	(40)gc/s21541	
Grade	0%		0%			0%		
Volume (veh/h)	9	76	615	27	94	701		
Peak Hour Factor	0.82	0.82	0.87	0.87	0.88	0.88		
Hourly flow rate (vph)	11	93	707	31	107	797		11 M. M. M. M. M. M. M. M. M. M. M. M. M.
Pedestrians								
Lane Width (ft)		5.000						
Walking Speed (ft/s)								
Percent Blockage				S GAL				
Right turn flare (veh)								
Median type	Raised			A STATE				
Median storage veh)	0							
Upstream signal (ft)				KEKLER				
pX, platoon unblocked								
vC, conflicting volume	1334	369			738			
vC1, stage 1 conf vol	722							
vC2, stage 2 conf vol	612				Tanilla Sa			
vCu, unblocked vol	1334	369			738			
tC, single (s)	6.8	6.9			4.1			
tC, 2 stage (s)	5.8							
tF (s)	3.5	3.3			2.2			
p0 queue free %	94	85			88			
cM capacity (veh/h)	193	628			864			
Direction, Lane#	WB 1	NB 1	NB 2	SB 1	SB 2	SB 3		
Volume Total	104	471	267	107	398	398		
Volume Left	11	0	0	107	0	0		
Volume Right	93	0	31	0	0	0		
cSH	507	1700	1700	864	1700	1700		
Volume to Capacity	0.20	0.28	0.16	0.12	0.23	0.23		
Queue Length 95th (ft)	19	0	0	11	0	0		
Control Delay (s)	13.9	0.0	0.0	9.8	0.0	0.0		
Lane LOS	В			Α				
Approach Delay (s)	13.9	0.0		1.2				
Approach LOS	В	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,						
Intersection Summary								
Average Delay			1.4	***				
Intersection Capacity U	tilization		38.3%	IC	U Leve	of Service	YEAR DE	Α
Analysis Period (min)			15					

	1	*	†	-	1	\
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	ሻ	7	1>		75	†
Sign Control	Stop		Free			Free
Grade	0%		0%			0%
Volume (veh/h)	22	34	630	17	34	812
Peak Hour Factor	0.84	0.84	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	26	40	685	18	37	883
Pedestrians						
Lane Width (ft)						
Walking Speed (ft/s)						
Percent Blockage						
Right turn flare (veh)						
Median type	None					
Median storage veh)						
Upstream signal (ft)						1051
pX, platoon unblocked	0.74					
vC, conflicting volume	1651	694			703	
vC1, stage 1 conf vol						
vC2, stage 2 conf vol						
vCu, unblocked vol	1881	694			703	
tC, single (s)	6.4	6.2			4.1	
tC, 2 stage (s)						
tF (s)	3.5	3.3			2.2	
p0 queue free %	53	91			96	
cM capacity (veh/h)	55	443			894	
Direction, Lane #	WB 1	WB 2	NB 1	SB 1	SB 2	
Volume Total	26	40	703	37	883	
Volume Left	26	0	0	37	0	
Volume Right	0	40	18	0	. 0	
cSH	55	443	1700	894	1700	
Volume to Capacity	0.47	0.09	0.41	0.04	0.52	
Queue Length 95th (ft)	45	8	0	3	0	
Control Delay (s)	118.7	13.9	0.0	9.2	0.0	
Lane LOS	F	В		Α		
Approach Delay (s)	55.1		0.0	0.4		
Approach LOS	F					
Intersection Summary						
Average Delay			2.4			-
Intersection Capacity Ut	ilization		52.7%	IC	U Leve	l of Sen
Analysis Period (min)			15			

-	1	*	†	-	-	↓	
Movement	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Configurations	Ψ.		↑ ↑		ሻ	十 个	
Sign Control	Stop		Free			Free	
Grade	0%		0%			0%	
Volume (veh/h)	14	31	189	8	24	259	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	
Hourly flow rate (vph)	15	34	205	9	26	282	
Pedestrians							
Lane Width (ft)							
Walking Speed (ft/s)							
Percent Blockage							
Right turn flare (veh)							
Median type	Raised						
Median storage veh)	0						
Upstream signal (ft)							
pX, platoon unblocked							
vC, conflicting volume	403	107			214		
vC1, stage 1 conf vol	210						
vC2, stage 2 conf vol	193						
vCu, unblocked vol	403	107			214		
tC, single (s)	6.8	6.9			4.1		
tC, 2 stage (s)	5.8						
tF (s)	3.5	3.3			2.2		
p0 queue free %	97	96			98		
cM capacity (veh/h)	466	926			1353		
Direction, Lane #	WB 1	NB 1	NB 2	SB 1	SB 2	SB 3	
Volume Total	49	137	77	26	141	141	
Volume Left	15	0	0	26	0	0	
Volume Right	34	0	9	0	0	0	
cSH	708	1700	1700	1353	1700	1700	
Volume to Capacity	0.07	0.08	0.05	0.02	0.08	0.08	
Queue Length 95th (ft)		0	0	1	0	0	
Control Delay (s)	10.5	0.0	0.0	7.7	0.0	0.0	
Lane LOS	В			Α			
Approach Delay (s)	10.5	0.0		0.7			
Approach LOS	В						
Intersection Summary			PLEAS.				
Average Delay			1.2				
Intersection Capacity U	Itilization		22.1%	10	CU Leve	el of Ser	rvice A
Analysis Period (min)			15				

	1	1	†	~	1	Į.
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	γį	7	f)		ሻ	†
Sign Control	Stop		Free			Free
Grade	0%		0%			0%
Volume (veh/h)	4	12	204	15	37	278
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	4	13	222	16	40	302
Pedestrians						
Lane Width (ft)						
Walking Speed (ft/s)						
Percent Blockage						
Right turn flare (veh)						
Median type	None					
Median storage veh)						
Upstream signal (ft)						1051
pX, platoon unblocked						
vC, conflicting volume	612	230			238	
vC1, stage 1 conf vol						
vC2, stage 2 conf vol						
vCu, unblocked vol	612	230			238	
tC, single (s)	6.4	6.2			4.1	
tC, 2 stage (s)						
tF (s)	3.5	3.3			2.2	
p0 queue free %	99	98			97	
cM capacity (veh/h)	442	809			1329	
Direction, Lane#	WB 1	WB 2	NB 1	SB 1	SB 2	
Volume Total	4	13	238	40	302	
Volume Left	4	0	0	40	0	
Volume Right	0	13	16	0	0	
cSH	442	809	1700	1329	1700	
Volume to Capacity	0.01	0.02	0.14	0.03	0.18	
Queue Length 95th (ft)	1	1	0	2	0	
Control Delay (s)	13.2	9.5	0.0	7.8	0.0	
Lane LOS	В	Α		Α		
Approach Delay (s)	10.4		0.0	0.9		
Approach LOS	В					
Intersection Summary					19730	8886186
Average Delay			0.8			
Intersection Capacity Uti	ilization		28.3%	10	CU Leve	of Ser
Analysis Period (min)			15		2 2010	. 0, 001

	۶	-	*	1	4-	4	4	†	~	1	\	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	育	†	7"		र्भ	717	ሻ	† 1>		ሻሻ	↑ ↑	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	4.0	4.0	4.0		4.0	4.0		4.0		4.0	4.0	
Lane Util. Factor	1.00	1.00	1.00		1.00	0.88		0.95		0.97	0.95	
Frt	1.00	1.00	0.85		1.00	0.85		1.00		1.00	1.00	
Flt Protected	0.95	1.00	1.00		0.96	1.00		1.00		0.95	1.00	
Satd. Flow (prot)	1770	1863	1583		1781	2787		3531		3433	3528	
Flt Permitted	0.75	1.00	1.00		0.76	1.00		1.00		0.95	1.00	
Satd. Flow (perm)	1397	1863	1583		1420	2787		3531		3433	3528	
Volume (vph)	11	2	4	10	1	208	0	249	4	137	399	8
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	12	2	4	11	1	226	0	271	4	149	434	9
RTOR Reduction (vph)	0	0	4	0	0	209	0	1	0	0	0	0
Lane Group Flow (vph)	12	2	0	0	12	17	0	274	0	149	443	0
	custom	C	ustom	Perm		Perm	Prot			Prot		
Protected Phases					8		5	2		1	6	
Permitted Phases	4	4	4	8		8						
Actuated Green, G (s)	6.6	6.6	6.6		6.6	6.6		62.4		9.0	75.4	
Effective Green, g (s)	6.6	6.6	6.6		6.6	6.6		62.4		9.0	75.4	
Actuated g/C Ratio	0.07	0.07	0.07		0.07	0.07		0.69		0.10	0.84	
Clearance Time (s)	4.0	4.0	4.0		4.0	4.0		4.0		4.0	4.0	
Vehicle Extension (s)	3.0	3.0	3.0		3.0	3.0		3.0		3.0	3.0	
Lane Grp Cap (vph)	102	137	116		104	204		2448	-	343	2956	
v/s Ratio Prot								0.08		c0.04	c0.13	
v/s Ratio Perm	c0.01	0.00	0.00		0.01	0.01						
v/c Ratio	0.12	0.01	0.00		0.12	0.08		0.11		0.43	0.15	
Uniform Delay, d1	39.0	38.7	38.6		39.0	38.9		4.6		38.1	1.4	
Progression Factor	1.00	1.00	1.00		1.00	1.00		1.06		1.00	1.00	
Incremental Delay, d2	0.5	0.0	0.0		0.5	0.2		0.1		0.9	0.1	
Delay (s)	39.5	38.7	38.7		39.5	39.0		5.0		39.0	1.5	
Level of Service	D	D	D		D	D		Α		D	Α	
Approach Delay (s)		39.2			39.1			5.0			10.9	
Approach LOS		D			D			Α			В	
Intersection Summary							防原热	100000				
HCM Average Control D	elay		15.9	Н	CM Lev	el of Se	rvice		В			
HCM Volume to Capacit	y ratio		0.18									
Actuated Cycle Length (90.0	S	um of lo	ost time	(s)		8.0			
Intersection Capacity Ut			31.9%			el of Sen			Α			
Analysis Period (min)			15									
c Critical Lane Group												

	٨	-	*	*	-	4	4	1	1	1	↓	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ħ	1→		آر	ĵ.		ří	1>		ሻ	‡	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)				4.0	4.0		4.0	4.0		4.0	4.0	
Lane Util. Factor				1.00	1.00		1.00	1.00		1.00	1.00	
Frt				1.00	0.85		1.00	1.00		1.00	1.00	
Flt Protected				0.95	1.00		0.95	1.00		0.95	1.00	
Satd. Flow (prot)				1770	1583		1770	1858		1770	1862	
Flt Permitted				1.00	1.00		0.95	1.00		0.62	1.00	
Satd. Flow (perm)				1863	1583		1770	1858		1157	1862	
Volume (vph)	0	0	0	8	0	17	1	198	4	32	334	1
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	0	0	0	9	0	18	1	215	4	35	363	1
RTOR Reduction (vph)	0	0	0	0	17	0	0	0	0	0	0	0
Lane Group Flow (vph)	0	0	0	9	1	0	1	219	0	35	364	0
Turn Type	Perm			Perm			Prot			Perm		
Protected Phases		4			8		5	2			6	
Permitted Phases	4			8						6		
Actuated Green, G (s)				2.8	2.8		1.2	79.2		74.0	74.0	
Effective Green, g (s)				2.8	2.8		1.2	79.2		74.0	74.0	
Actuated g/C Ratio				0.03	0.03		0.01	0.88		0.82	0.82	
Clearance Time (s)				4.0	4.0		4.0	4.0		4.0	4.0	
Vehicle Extension (s)				3.0	3.0	1225	3.0	3.0		3.0	3.0	
Lane Grp Cap (vph)	24.79			58	49		24	1635		951	1531	
v/s Ratio Prot					0.00		0.00	c0.12			c0.20	
v/s Ratio Perm				c0.00						0.03		
v/c Ratio				0.16	0.01		0.04	0.13		0.04	0.24	
Uniform Delay, d1				42.4	42.3		43.8	0.7		1.5	1.8	
Progression Factor				1.00	1.00		1.00	1.00		0.97	1.04	
Incremental Delay, d2				1.2	0.1		0.7	0.2		0.1	0.4	
Delay (s)				43.7	42.4		44.5	0.9		1.5	2.2	
Level of Service				D	D		D	Α		Α	Α	
Approach Delay (s)		0.0			42.8			1.1			2.1	
Approach LOS		Α			D			Α			Α	
Intersection Summary										I ERG		With the
HCM Average Control D			3.5	Н	CM Lev	el of Se	rvice		Α			
HCM Volume to Capacit			0.24									
Actuated Cycle Length (s			90.0			ost time	` '		12.0			
Intersection Capacity Uti	lization		34.3%	10	CU Leve	el of Ser	vice		Α			
Analysis Period (min)			15									
c Critical Lane Group												

	۶	→	*	1	—	4	4	†	~	1	↓	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	↑	7"		લી	77	"	^		77	↑ ↑	-
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	4.0	4.0	4.0		4.0	4.0	4.0	4.0		4.0	4.0	
Lane Util. Factor	1.00	1.00	1.00		1.00	0.88	1.00	0.95		0.97	0.95	
Frt	1.00	1.00	0.85		1.00	0.85	1.00	1.00		1.00	0.96	
Flt Protected	0.95	1.00	1.00		0.97	1.00	0.95	1.00		0.95	1.00	
Satd. Flow (prot)	1770	1863	1583		1803	2787	1770	3524		3433	3408	
Flt Permitted	0.71	1.00	1.00		0.82	1.00	0.95	1.00		0.95	1.00	
Satd. Flow (perm)	1320	1863	1583		1521	2787	1770	3524		3433	3408	
Volume (vph)	215	36	19	45	23	299	11	612	18	307	738	242
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	234	39	21	49	25	325	12	665	20	334	802	263
RTOR Reduction (vph)	0	0	16	0	0	252	0	2	0	0	23	0
Lane Group Flow (vph)	234	39	5	0	74	73	12	683	0	334	1042	0
	custom	C	ustom	Perm		Perm	Prot			Prot		
Protected Phases					8		5	2		1	6	
Permitted Phases	4	4	4	8		8						
Actuated Green, G (s)	20.1	20.1	20.1		20.1	20.1	1.6	44.2		13.7	56.3	
Effective Green, g (s)	20.1	20.1	20.1		20.1	20.1	1.6	44.2		13.7	56.3	
Actuated g/C Ratio	0.22	0.22	0.22		0.22	0.22	0.02	0.49		0.15	0.63	
Clearance Time (s)	4.0	4.0	4.0		4.0	4.0	4.0	4.0		4.0	4.0	
Vehicle Extension (s)	3.0	3.0	3.0		3.0	3.0	3.0	3.0		3.0	3.0	
Lane Grp Cap (vph)	295	416	354		340	622	31	1731		523	2132	
v/s Ratio Prot							0.01	c0.19		c0.10	c0.31	
v/s Ratio Perm	c0.18	0.02	0.00		0.05	0.03						
v/c Ratio	0.79	0.09	0.01		0.22	0.12	0.39	0.39		0.64	0.49	
Uniform Delay, d1	33.0	27.7	27.2		28.5	27.9	43.7	14.5		35.8	9.1	
Progression Factor	1.00	1.00	1.00		1.00	1.00	0.97	0.95		1.00	1.00	
Incremental Delay, d2	13.6	0.1	0.0		0.3	0.1	7.2	0.6		2.6	0.8	
Delay (s)	46.6	27.8	27.2		28.9	28.0	49.5	14.3		38.4	9.9	
Level of Service	D	С	С		С	С	D	В		D	Α	
Approach Delay (s)		42.7			28.1			14.9			16.7	94250
Approach LOS		D			С			В			В	
Intersection Summary				a Padis				NEW YORK				10024
HCM Average Control D	elay		20.6	Н	CM Lev	el of Se	rvice		С			
HCM Volume to Capacit	y ratio		0.57						KILLEN.			
Actuated Cycle Length (s)		90.0	S	um of lo	st time	(s)		8.0			
Intersection Capacity Uti		(30.0%			of Sen			В			
Analysis Period (min)			15						ar control the			
c Critical Lane Group												

	•	→	*	*	←	*	4	†	1	-	ļ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	N.	ĵ.		7	f		ሻ	1>		ħ	₽	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	4.0	4.0		4.0	4.0			4.0		4.0	4.0	
Lane Util. Factor	1.00	1.00		1.00	1.00			1.00		1.00	1.00	
Frt	1.00	0.85		1.00	0.85			1.00		1.00	1.00	
Flt Protected	0.95	1.00		0.95	1.00			1.00		0.95	1.00	
Satd. Flow (prot)	1770	1583		1770	1583			1862		1770	1862	
Flt Permitted	1.00	1.00		1.00	1.00			1.00		0.36	1.00	
Satd. Flow (perm)	1863	1583		1863	1583			1862		666	1862	
Volume (vph)	5	0	3	6	0	28	0	690	3	29	739	1
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	5	0	3	7	0	30	0	750	3	32	803	1
RTOR Reduction (vph)	0	3	0	0	29	0	0	0	0	0	0	0
Lane Group Flow (vph)	5	0	0	7	1	0	0	753	0	32	804	0
Turn Type	Perm			Perm			Prot	100000000000000000000000000000000000000		Perm	* 13.0 km mm = 10.0 m	
Protected Phases		4			8		5	2			6	
Permitted Phases	4	0.0		8	0.0			70.4		6		
Actuated Green, G (s)	3.9	3.9		3.9	3.9			78.1		78.1	78.1	
Effective Green, g (s)	3.9	3.9		3.9	3.9			78.1		78.1	78.1	
Actuated g/C Ratio	0.04	0.04		0.04	0.04			0.87		0.87	0.87	
Clearance Time (s)	4.0	4.0		4.0	4.0			4.0		4.0	4.0	
Vehicle Extension (s)	3.0	3.0		3.0	3.0			3.0	200	3.0	3.0	
Lane Grp Cap (vph)	81	69		81	69			1616		578	1616	
v/s Ratio Prot	0.00	0.00		c0.00	0.00			0.40		0.05	c0.43	
v/s Ratio Perm	0.00	0.00		0.09	0.02			0.47		0.05	0.50	
v/c Ratio	41.3	41.2		41.3	41.2					0.06	0.50	
Uniform Delay, d1	1.00	1.00		1.00	1.00			1.3		0.8	1.4 3.25	
Progression Factor Incremental Delay, d2	0.3	0.0		0.5	0.1			1.00		0.2	1.0	
Delay (s)	41.6	41.2		41.8	41.3			2.3		1.7	5.5	
Level of Service	41.0 D	41.2 D		D	41.3 D			2.5 A		Α	3.5 A	
Approach Delay (s)		41.5			41.4			2.3			5.4	
Approach LOS		D			D D			2.5 A			A	
		D	00000000000000000000000000000000000000		D						^	
Intersection Summary												
HCM Average Control D			4.9	H	ICM Lev	el of Se	rvice		Α			
HCM Volume to Capacit			0.48									
Actuated Cycle Length (90.0			st time			8.0			
Intersection Capacity Ut	lization		50.6%	10	CU Leve	of Sen	vice		Α			
Analysis Period (min)			15									
c Critical Lane Group												

	1	*	Ť	~	-	↓			
Movement	WBL	WBR	NBT	NBR	SBL	SBT			MARKET S
Lane Configurations	**		† 1>		*	个 个			
Sign Control	Stop		Free			Free			3-6130
Grade	0%		0%			0%			
Volume (veh/h)	17	53	540	16	70	584			
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92			
Hourly flow rate (vph)	18	58	587	17	76	635			
Pedestrians									
Lane Width (ft)									NACE OF SEC.
Walking Speed (ft/s)									
Percent Blockage		16151119							141146
Right turn flare (veh)							V		
	Raised								W 21162
Median storage veh)	0								
Upstream signal (ft)							300000000000000000000000000000000000000		
pX, platoon unblocked								-	
vC, conflicting volume	1065	302			604				(505-)
vC1, stage 1 conf vol	596								
vC2, stage 2 conf vol	470						Mary Aller		
vCu, unblocked vol	1065	302			604				
tC, single (s)	6.8	6.9			4.1				-
tC, 2 stage (s)	5.8								
tF (s)	3.5	3.3			2.2				103.280
p0 queue free %	93	92			92				
cM capacity (veh/h)	248	694			969				
Direction, Lane #	WB 1	NB 1	NB 2	SB 1	SB 2	SB 3	W 219 6 2 45 5		(700-23
Volume Total	76	391	213	76	317	317			
Volume Left	18	0	0	76	0	0			
Volume Right	58	0	17	0	0	0	863, 1100 AV	2500,841-0-970 VEC	
cSH	483	1700	1700	969	1700	1700			
Volume to Capacity	0.16	0.23	0.13	0.08	0.19	0.19			
Queue Length 95th (ft)	14	0	0	6	0	0			
Control Delay (s)	13.8	0.0	0.0	9.0	0.0	0.0			YEAR TO SE
Lane LOS	В	-		A					
Approach Delay (s)	13.8	0.0	E051/85E	1.0	A Property	NAME OF THE PERSON OF THE PERS			
Approach LOS	В					COLUMN TO SERVICE SERV			
Intersection Summary						e en en en en en en en en en en en en en			
Average Delay			1.3				W-W-W-W-W-		
Intersection Capacity U	tilization		33.5%	10	CU Leve	l of Servic	•	Α	
			15					, ,	

	1	*	†	-	-	ļ
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	ሻ	74	7>		ሻ	
Sign Control	Stop		Free			Free
Grade	0%		0%			0%
Volume (veh/h)	7	20	554	18	29	637
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	8	22	602	20	32	692
Pedestrians						
Lane Width (ft)						
Walking Speed (ft/s)						
Percent Blockage						
Right turn flare (veh)						
Median type	None					
Median storage veh)						
Upstream signal (ft)						1051
pX, platoon unblocked						
vC, conflicting volume	1367	612			622	
vC1, stage 1 conf vol						
vC2, stage 2 conf vol						
vCu, unblocked vol	1367	612			622	
tC, single (s)	6.4	6.2			4.1	
tC, 2 stage (s)						
tF (s)	3.5	3.3			2.2	
p0 queue free %	95	96			97	
cM capacity (veh/h)	157	493			959	
Direction, Lane #	WB 1	WB 2	NB 1	SB 1	SB 2	STREET,
Volume Total	8	22	622	32	692	
Volume Left	8	0	0	32	0	
Volume Right	0	22	20	0	0	
cSH	157	493	1700	959	1700	
Volume to Capacity	0.05	0.04	0.37	0.03	0.41	
Queue Length 95th (ft)	4	3	0	3	0	
Control Delay (s)	29.2	12.6	0.0	8.9	0.0	
Lane LOS	D	В		Α		
Approach Delay (s)	16.9		0.0	0.4		
Approach LOS	C					
Intersection Summary						
Average Delay			0.6			
Intersection Capacity Ut	ilization		43.5%	10	CU Leve	el of Ser
Analysis Period (min)			15			
ranaryolo i oriou (min)						

	1	*	1	~	1	ļ	
Movement	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Configurations	W		† \$		75	ተተ	
Sign Control	Stop		Free			Free	
Grade	0%		0%			0%	
Volume (veh/h)	28	64	680	12	36	482	
Peak Hour Factor	0.66	0.66	0.79	0.79	0.93	0.93	
Hourly flow rate (vph)	47	107	947	17	43	570	
Pedestrians							
Lane Width (ft)							
Walking Speed (ft/s)							
Percent Blockage							
Right turn flare (veh)							A THE RESIDENCE OF THE PARTY OF
Median type	Raised						
Median storage veh)	0						
Upstream signal (ft)							
pX, platoon unblocked							
vC, conflicting volume	1325	482			964		
vC1, stage 1 conf vol	955						
vC2, stage 2 conf vol	370						
vCu, unblocked vol	1325	482			964		
tC, single (s)	6.8	6.9			4.1		
tC, 2 stage (s)	5.8						
tF(s)	3.5	3.3			2.2		
p0 queue free %	75	80			94		
cM capacity (veh/h)	189	531			710		
Direction, Lane #	WB 1	NB 1	NB 2	SB 1	SB 2	SB 3	
Volume Total	153	631	332	43	285	285	
Volume Left	47	0	0	43	0	0	
Volume Right	107	0	17	0	0	0	
cSH	342	1700	1700	710	1700	1700	
Volume to Capacity	0.45	0.37	0.20	0.06	0.17	0.17	
Queue Length 95th (ft)	56	0	0	5	0	0	
Control Delay (s)	23.8	0.0	0.0	10.4	0.0	0.0	
Lane LOS	С			В			
Approach Delay (s)	23.8	0.0		0.7			
Approach LOS	С						
Intersection Summary		2 441					
Average Delay			2.4				
Intersection Capacity U	Itilization		40.5%	10	CU Leve	of Ser	vice A
Analysis Period (min)			15				

	*	*	†	1	1	↓	
Movement	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Configurations	7	7	4		ሻ	†	
Sign Control	Stop		Free			Free	
Grade	0%		0%			0%	
Volume (veh/h)	18	24	718	33	30	512	
Peak Hour Factor	0.81	0.81	0.87	0.87	0.91	0.91	
Hourly flow rate (vph)	24	33	908	42	36	619	
Pedestrians							
Lane Width (ft)							
Walking Speed (ft/s)							
Percent Blockage							
Right turn flare (veh)							
Median type	None						
Median storage veh)							
Upstream signal (ft)						1051	
pX, platoon unblocked	0.95						
vC, conflicting volume	1620	929			950		
vC1, stage 1 conf vol							
vC2, stage 2 conf vol							
vCu, unblocked vol	1650	929			950		
tC, single (s)	6.4	6.2			4.1		
tC, 2 stage (s)							
tF (s)	3.5	3.3			2.2		
p0 queue free %	75	90			95		
cM capacity (veh/h)	98	325			723		
Direction, Lane #	WB 1	WB 2	NB 1	SB 1	SB 2		
Volume Total	24	33	950	36	619		
Volume Left	24	0	0	36	0		
Volume Right	0	33	42	0	0		
cSH	98	325	1700	723	1700		
Volume to Capacity	0.25	0.10	0.56	0.05	0.36		
Queue Length 95th (ft)	23	8	0	4	0		
Control Delay (s)	53.2	17.3	0.0	10.2	0.0		
Lane LOS	F	С		В			
Approach Delay (s)	32.7		0.0	0.6			
Approach LOS	D						
Intersection Summary							
Average Delay			1.3				
Intersection Capacity Ut	tilization		53.8%	10	CU Leve	of Ser	vice A
Analysis Period (min)			15				
SHARE THE RESIDENCE AND ADMINISTRAL							

	۶	-	*	•	—	4	4	†	1	1	1	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	79	†	i"		ર્ની	77	ħ	↑ ↑	*	ሻሻ	^ \$	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	4.0	4.0	4.0		4.0	4.0	4.0	4.0		4.0	4.0	
Lane Util. Factor	1.00	1.00	1.00		1.00	0.88	1.00	0.95		0.97	0.95	
Frt	1.00	1.00	0.85		1.00	0.85	1.00	1.00		1.00	0.99	
Flt Protected	0.95	1.00	1.00		0.96	1.00	0.95	1.00		0.95	1.00	
Satd. Flow (prot)	1770	1863	1583		1781	2787	1770	3535		3433	3516	
Flt Permitted	0.72	1.00	1.00		0.75	1.00	0.95	1.00		0.95	1.00	
Satd. Flow (perm)	1349	1863	1583		1388	2787	1770	3535		3433	3516	
Volume (vph)	36	4	5	34	3	579	2	701	5	252	607	28
Peak-hour factor, PHF	0.86	0.86	0.86	0.82	0.82	0.82	0.84	0.84	0.84	0.82	0.82	0.82
Growth Factor (vph)	110%	110%	110%	110%	110%	110%	110%	110%	110%	110%	110%	110%
Adj. Flow (vph)	46	5	6	46	4	777	3	918	7	338	814	38
RTOR Reduction (vph)	0	0	5	0	0	644	0	0	0	0	2	0
Lane Group Flow (vph)	46	5	1	0	50	133	3	925	0	338	850	0
Turn Type	custom	(custom	Perm		Perm	Prot			Prot		
Protected Phases					8		5	2		1	6	
Permitted Phases	4	4	4	8		8						
Actuated Green, G (s)	10.8	10.8	10.8		10.8	10.8	1.4	53.3		13.9	65.8	
Effective Green, g (s)	10.8	10.8	10.8		10.8	10.8	1.4	53.3		13.9	65.8	
Actuated g/C Ratio	0.12	0.12	0.12		0.12	0.12	0.02	0.59		0.15	0.73	
Clearance Time (s)	4.0	4.0	4.0		4.0	4.0	4.0	4.0		4.0	4.0	
Vehicle Extension (s)	3.0	3.0	3.0		3.0	3.0	3.0	3.0		3.0	3.0	
Lane Grp Cap (vph)	162	224	190		167	334	28	2094		530	2571	
v/s Ratio Prot							0.00	c0.26		c0.10	0.24	
v/s Ratio Perm	0.03	0.00	0.00		0.04	c0.05						
v/c Ratio	0.28	0.02	0.00		0.30	0.40	0.11	0.44		0.64	0.33	
Uniform Delay, d1	36.1	34.9	34.9		36.1	36.6	43.7	10.1		35.7	4.3	
Progression Factor	1.00	1.00	1.00		1.00	1.00	1.04	1.16		1.00	1.00	
Incremental Delay, d2	1.0	0.0	0.0		1.0	0.8	1.5	0.6		2.5	0.3	
Delay (s)	37.0	35.0	34.9		37.2	37.4	47.0	12.3		38.2	4.6	
Level of Service	D	C	C		D	D	D	В		D	Α	
Approach Delay (s)		36.6			37.4			12.5			14.2	
Approach LOS		D			D			В			В	
Intersection Summary	N. Frie										1000	V ALSE
HCM Average Control D			20.5	F	ICM Lev	vel of Se	ervice		C			
HCM Volume to Capaci			0.47									
Actuated Cycle Length			90.0			ost time			12.0			
Intersection Capacity Ut	ilization		57.1%	10	CU Leve	el of Ser	vice		В			
Analysis Period (min)			15									
c Critical Lane Group												

	۶	\rightarrow	*	•	←	*	4	†	1	1	ţ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	T	ĵ.		ኻ	1>		ሻ	1>		75	₽	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	4.0	4.0		4.0	4.0		4.0	4.0		4.0	4.0	
Lane Util. Factor	1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00	
Frt	1.00	0.86		1.00	0.86		1.00	1.00		1.00	0.98	
Flt Protected	0.95	1.00		0.95	1.00		0.95	1.00		0.95	1.00	
Satd. Flow (prot)	1770	1609		1770	1593		1770	1859		1770	1834	
Flt Permitted	0.74	1.00		0.74	1.00		0.95	1.00		0.32	1.00	
Satd. Flow (perm)	1374	1609		1384	1593		1770	1859		595	1834	
Volume (vph)	46	2	16	11	1	23	11	678	8	29	509	59
Peak-hour factor, PHF	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88
Growth Factor (vph)	110%	110%	110%	110%	110%	110%	110%	110%	110%	110%	110%	110%
Adj. Flow (vph)	58	2	20	14	1	29	14	848	10	36	636	74
RTOR Reduction (vph)	0	18	0	0	26	0	0	0	0	0	2	0
Lane Group Flow (vph)	58	4	0	14	4	0	14	858	0	36	708	0
Turn Type	Perm			Perm			Prot			Perm	THE STATE	
Protected Phases		4			8		5	2			6	
Permitted Phases	4			8						6		
Actuated Green, G (s)	7.9	7.9		7.9	7.9		1.5	74.1		68.6	68.6	
Effective Green, g (s)	7.9	7.9		7.9	7.9		1.5	74.1		68.6	68.6	
Actuated g/C Ratio	0.09	0.09		0.09	0.09		0.02	0.82		0.76	0.76	
Clearance Time (s)	4.0	4.0		4.0	4.0		4.0	4.0		4.0	4.0	
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Lane Grp Cap (vph)	121	141		121	140	11 L 142 E	30	1531		454	1398	(Giringa
v/s Ratio Prot		0.00			0.00		0.01	c0.46			0.39	
v/s Ratio Perm	c0.04			0.01						0.06		
v/c Ratio	0.48	0.03		0.12	0.03		0.47	0.56		0.08	0.51	
Uniform Delay, d1	39.1	37.5		37.8	37.5		43.9	2.6		2.7	4.1	
Progression Factor	1.00	1.00		1.00	1.00		1.00	1.00		1.22	1.70	
Incremental Delay, d2	3.0	0.1		0.4	0.1		11.0	1.5		0.3	1.3	
Delay (s)	42.1	37.6		38.3	37.6		54.9	4.1		3.6	8.3	
Level of Service	D	D		D	D		D	Α		Α	Α	
Approach Delay (s)		40.8			37.8			4.9			8.1	
Approach LOS		D			D			Α			Α	
Intersection Summary												State of
HCM Average Control D	elay		8.8	ŀ	ICM Lev	el of Se	ervice		Α			
HCM Volume to Capacit			0.55									
Actuated Cycle Length (90.0		Sum of le				8.0			
Intersection Capacity Ut	ilization		55.9%	10	CU Leve	el of Ser	vice		В			
Analysis Period (min)			15									
c Critical Lane Group												

	۶	→	*	•	—	*	4	†	~	1	↓	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	↑	74		र्स	7575	ሻ	↑ ↑>		ሻሻ	4 \$	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	4.0	4.0	4.0		4.0	4.0	4.0	4.0		4.0	4.0	
Lane Util. Factor	1.00	1.00	1.00		1.00	0.88	1.00	0.95		0.97	0.95	
Frt	1.00	1.00	0.85		1.00	0.85	1.00	1.00		1.00	0.98	
Flt Protected	0.95	1.00	1.00		0.97	1.00	0.95	1.00		0.95	1.00	
Satd. Flow (prot)	1770	1863	1583		1799	2787	1770	3535		3433	3478	
Flt Permitted	0.71	1.00	1.00		0.81	1.00	0.95	1.00		0.95	1.00	
Satd. Flow (perm)	1314	1863	1583		1501	2787	1770	3535		3433	3478	
Volume (vph)	152	17	20	46	19	425	11	707	6	383	887	116
Peak-hour factor, PHF	0.81	0.81	0.81	0.91	0.91	0.91	0.95	0.95	0.95	0.96	0.96	0.96
Growth Factor (vph)	110%	110%	110%	110%	110%	110%	110%	110%	110%	110%	110%	110%
Adj. Flow (vph)	206	23	27	56	23	514	13	819	7	439	1016	133
RTOR Reduction (vph)	0	0	21	0	0	405	0	1	0	0	8	0
Lane Group Flow (vph)	206	23	6	0	79	109	13	825	0	439	1141	0
Turn Type	custom	(custom	Perm		Perm	Prot			Prot		
Protected Phases					8		5	2		1	6	
Permitted Phases	4	4	4	8		8						
Actuated Green, G (s)	16.3	16.3	16.3		16.3	16.3	1.2	34.2		14.5	47.5	
Effective Green, g (s)	16.3	16.3	16.3		16.3	16.3	1.2	34.2		14.5	47.5	
Actuated g/C Ratio	0.21	0.21	0.21		0.21	0.21	0.02	0.44		0.19	0.62	
Clearance Time (s)	4.0	4.0	4.0		4.0	4.0	4.0	4.0		4.0	4.0	
Vehicle Extension (s)	3.0	3.0	3.0		3.0	3.0	3.0	3.0		3.0	3.0	
Lane Grp Cap (vph)	278	394	335	April 1	318	590	28	1570		646	2146	
v/s Ratio Prot							0.01	c0.23		c0.13	c0.33	
v/s Ratio Perm	c0.16	0.01	0.00		0.05	0.04						
v/c Ratio	0.74	0.06	0.02		0.25	0.18	0.46	0.53		0.68	0.53	
Uniform Delay, d1	28.4	24.2	24.0		25.3	24.9	37.6	15.5		29.1	8.4	
Progression Factor	1.00	1.00	1.00		1.00	1.00	1.00	1.00		1.00	1.00	
Incremental Delay, d2	10.2	0.1	0.0		0.4	0.2	11.7	1.3		2.9	0.9	
Delay (s)	38.5	24.3	24.0		25.7	25.0	49.3	16.8		31.9	9.4	
Level of Service	D	C	C		C	C	D	В		C	Α	
Approach Delay (s)		35.7			25.1			17.3			15.6	
Approach LOS		D			C			В			В	
Intersection Summary									(-1, 1)		55,605	
HCM Average Control D	Delay		19.3	H	ICM Lev	el of Se	ervice		В			
HCM Volume to Capaci	ty ratio		0.59									
Actuated Cycle Length ((s)		77.0	S	sum of k	ost time	(s)		8.0			
Intersection Capacity Ut	ilization		60.3%		CU Leve				В			
Analysis Period (min)			15									
c Critical Lane Group												

	۶	→	*	1	-	4	4	†	1	1	ţ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	1}		ሻ	ĵ.		³ h	1→		ሻ	1>	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	4.0	4.0		4.0	4.0		4.0	4.0		4.0	4.0	
Lane Util. Factor	1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00	
Frt	1.00	0.85		1.00	0.85		1.00	1.00		1.00	1.00	
Flt Protected	0.95	1.00		0.95	1.00		0.95	1.00		0.95	1.00	
Satd. Flow (prot)	1770	1583		1770	1583		1770	1860		1770	1862	
Flt Permitted	0.98	1.00		0.98	1.00		0.95	1.00		0.35	1.00	
Satd. Flow (perm)	1817	1583		1817	1583		1770	1860		658	1862	
Volume (vph)	9	0	2	8	0	25	5	694	7	14	882	3
Peak-hour factor, PHF	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
Growth Factor (vph)	110%	110%	110%	110%	110%	110%	110%	110%	110%	110%	110%	110%
Adj. Flow (vph)	11	0	2	9	0	29	6	812	8	16	1032	4
RTOR Reduction (vph)	0	2	0	0	28	0	0	0	0	0	0	0
Lane Group Flow (vph)	11	0	0	9	1	0	6	820	0	16	1036	0
Turn Type	Perm			Perm			Prot			Perm		No. 25
Protected Phases		4			8		5	2			6	
Permitted Phases	4			8						6		
Actuated Green, G (s)	4.1	4.1		4.1	4.1		1.4	77.9		72.5	72.5	
Effective Green, g (s)	4.1	4.1		4.1	4.1		1.4	77.9		72.5	72.5	
Actuated g/C Ratio	0.05	0.05		0.05	0.05		0.02	0.87		0.81	0.81	
Clearance Time (s)	4.0	4.0		4.0	4.0		4.0	4.0		4.0	4.0	
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Lane Grp Cap (vph)	83	72		83	72		28	1610		530	1500	
v/s Ratio Prot		0.00			0.00		0.00	c0.44			c0.56	
v/s Ratio Perm	c0.01			0.00						0.02		
v/c Ratio	0.13	0.00		0.11	0.02		0.21	0.51		0.03	0.69	
Uniform Delay, d1	41.2	41.0		41.2	41.0		43.8	1.5		1.7	3.8	
Progression Factor	1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00	
Incremental Delay, d2	0.7	0.0		0.6	0.1		3.8	1.2		0.1	2.6	
Delay (s)	42.0	41.0		41.8	41.1		47.6	2.6		1.8	6.5	
Level of Service	D	D		D	D		D	Α		Α	Α	
Approach Delay (s)		41.8			41.3			2.9			6.4	
Approach LOS		D			D			Α			Α	
Intersection Summary					1000							
HCM Average Control D	elay		5.8	F	ICM Le	vel of Se	ervice	AFER	Α			
HCM Volume to Capacit			0.67				400					
Actuated Cycle Length (s)		90.0	5	Sum of lost time (s)				12.0			
Intersection Capacity Ut	ilization		65.1%		CU Leve				С			
Analysis Period (min)			15									
c Critical Lane Group												

c Critical Lane Group

	*	*	†	1	-	↓	
Movement	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Configurations	N/		^		ሻ	^	
Sign Control	Stop		Free			Free	
Grade	0%		0%			0%	
Volume (veh/h)	9	76	615	27	94	701	
Peak Hour Factor	0.82	0.82	0.87	0.87	0.88	0.88	
Hourly flow rate (vph)	12	102	778	34	118	876	
Pedestrians							
Lane Width (ft)							
Walking Speed (ft/s)							
Percent Blockage							
Right turn flare (veh)		33.01	100 to 10				
Median type	Raised						
Median storage veh)	0						-
Upstream signal (ft)							
pX, platoon unblocked							
vC, conflicting volume	1468	406			812		
vC1, stage 1 conf vol	795						
vC2, stage 2 conf vol	673						
vCu, unblocked vol	1468	406			812		
tC, single (s)	6.8	6.9			4.1		
tC, 2 stage (s)	5.8						
tF (s)	3.5	3.3			2.2		
p0 queue free %	93	83			86		
cM capacity (veh/h)	171	594			810		
Direction, Lane#	WB 1	NB 1	NB 2	SB 1	SB 2	SB 3	
Volume Total	114	518	293	118	438	438	
Volume Left	12	0	0	118	0	0	
Volume Right	102	0	34	0	0	0	
cSH	471	1700	1700	810	1700	1700	
Volume to Capacity	0.24	0.30	0.17	0.14	0.26	0.26	
Queue Length 95th (ft)	23	0	0	13	0	0	
Control Delay (s)	15.1	0.0	0.0	10.2	0.0	0.0	
Lane LOS	С			В			
Approach Delay (s)	15.1	0.0		1.2		1244	
Approach LOS	С						
Intersection Summary							
Average Delay			1.5				
Intersection Capacity U	tilization		41.1%	10	CU Leve	l of Servic	e A
Analysis Period (min)			15				

	*	4	†	-	-	↓
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations) ^N	7	1>		ሻ	†
Sign Control	Stop		Free			Free
Grade	0%		0%			0%
Volume (veh/h)	22	34	630	17	34	812
Peak Hour Factor	0.84	0.84	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	29	45	753	20	41	971
Pedestrians						
Lane Width (ft)						
Walking Speed (ft/s)						
Percent Blockage						
Right turn flare (veh)						
Median type	None					
Median storage veh)						
Upstream signal (ft)						1051
pX, platoon unblocked	0.55					
vC, conflicting volume	1816	763			774	
vC1, stage 1 conf vol						
vC2, stage 2 conf vol						
vCu, unblocked vol	2493	763			774	
tC, single (s)	6.4	6.2			4.1	
tC, 2 stage (s)						
tF (s)	3.5	3.3			2.2	
p0 queue free %	0	89			95	
cM capacity (veh/h)	17	404			842	
Direction, Lane #	WB 1	WB2	NB 1	SB 1	SB 2	
Volume Total	29	45	774	41	971	
Volume Left	29	0	0	41	0	
Volume Right	0	45	20	0	0	
cSH	17	404	1700	842	1700	
Volume to Capacity	1.73	0.11	0.46	0.05	0.57	
Queue Length 95th (ft)	103	9	0	4	0	
Control Delay (s)	826.5	15.0	0.0	9.5	0.0	
Lane LOS	F	C		Α		
Approach Delay (s)	333.8		0.0	0.4		
Approach LOS	F					
Intersection Summary						
Average Delay			13.4	and the second second		
Intersection Capacity Ut	ilization		57.0%	10	CU Leve	of Ser
Analysis Period (min)			15			
maryolo i choa (min)			10			

	1	*	†	-	-	ļ	
Movement	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Configurations	144		44		ሻ	^	
Sign Control	Stop		Free			Free	
Grade	0%		0%			0%	
Volume (veh/h)	14	31	189	8	-24	259	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	
Hourly flow rate (vph)	17	37	226	10	29	310	
Pedestrians							
Lane Width (ft)					*		
Walking Speed (ft/s)							
Percent Blockage							
Right turn flare (veh)							
Median type	Raised						
Median storage veh)	0						
Upstream signal (ft)							
pX, platoon unblocked							
vC, conflicting volume	443	118			236		
vC1, stage 1 conf vol	231						
vC2, stage 2 conf vol	212						
vCu, unblocked vol	443	118			236		
tC, single (s)	6.8	6.9			4.1		
tC, 2 stage (s)	5.8						
tF (s)	3.5	3.3			2.2		
p0 queue free %	96	96			98		*
cM capacity (veh/h)	448	912			1329		
Direction, Lane #	WB 1	NB 1	NB 2	SB 1	SB 2	SB 3	學為於此為有於物質的原因,但是其他學歷史的
Volume Total	54	151	85	29	155	155	
Volume Left	17	0	0	29	0	0	
Volume Right	37	0	10	0	0	0	
cSH	690	1700	1700	1329	1700	1700	
Volume to Capacity	0.08	0.09	0.05	0.02	0.09	0.09	
Queue Length 95th (ft)		0	0	2	0	0	
Control Delay (s)	10.7	0.0	0.0	7.8	0.0	0.0	
Lane LOS	В			Α			
Approach Delay (s)	10.7	0.0		0.7			
Approach LOS	В						
Intersection Summary							
Average Delay			1.3				
Intersection Capacity U	Itilization		22.7%	10	CU Leve	el of Ser	vice A
Analysis Period (min)			15				

	*	4	†	1	1		
Movement	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Configurations	ሻ	77	1>		ሻ	^	
Sign Control	Stop	BUPPER.	Free			Free	
Grade	0%		0%			0%	
Volume (veh/h)	4	12	204	15	37	278	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	
Hourly flow rate (vph)	5	14	244	18	44	332	
Pedestrians							
Lane Width (ft)							
Walking Speed (ft/s)							
Percent Blockage							
Right turn flare (veh)							
Median type	None						
Median storage veh)							
Upstream signal (ft)						1051	
pX, platoon unblocked							
vC, conflicting volume	674	253			262		
vC1, stage 1 conf vol							
vC2, stage 2 conf vol							
vCu, unblocked vol	674	253			262		
tC, single (s)	6.4	6.2			4.1		
tC, 2 stage (s)							
tF (s)	3.5	3.3			2.2		
p0 queue free %	99	98			97		
cM capacity (veh/h)	406	786			1302		
Direction, Lane #	WB 1	WB 2	NB 1	SB 1	SB 2		
Volume Total	5	14	262	44	332		
Volume Left	5	0	0	44	0		
Volume Right	0	14	18	0	0		
cSH	406	786	1700	1302	1700		
Volume to Capacity	0.01	0.02	0.15	0.03	0.20		
Queue Length 95th (ft)	1	1	0	3	0		
Control Delay (s)	14.0	9.7	0.0	7.9	0.0		
Lane LOS	В	Α		Α			
Approach Delay (s)	10.7		0.0	0.9			
Approach LOS	В						
Intersection Summary							
Average Delay			0.8				
Intersection Capacity U	tilization		29.5%	10	CU Leve	el of Ser	vice A
Analysis Period (min)			15				

	۶	→	*	1	—	*	4	†	1	1	ţ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	Ŋ	†	ř		र्स	77	ሻ	† 1>		ሻሻ	↑ ↑	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	4.0	4.0	4.0		4.0	4.0		4.0		4.0	4.0	
Lane Util. Factor	1.00	1.00	1.00		1.00	0.88		0.95		0.97	0.95	
Frt	1.00	1.00	0.85		1.00	0.85		1.00		1.00	1.00	
Flt Protected	0.95	1.00	1.00		0.96	1.00		1.00		0.95	1.00	
Satd. Flow (prot)	1770	1863	1583		1781	2787		3530		3433	3528	
Flt Permitted	0.75	1.00	1.00		0.77	1.00		1.00		0.95	1.00	
Satd. Flow (perm)	1395	1863	1583		1441	2787		3530		3433	3528	
Volume (vph)	11	2	4	10	1	208	0	249	4	137	399	8
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Growth Factor (vph)	110%	110%	110%	110%	110%	110%	110%	110%	110%	110%	110%	110%
Adj. Flow (vph)	13	2	5	12	1	249	0	298	5	164	477	10
RTOR Reduction (vph)	0	0	4	0	0	221	0	1	0	0	1	0
Lane Group Flow (vph)	13	2	1	0	13	28	0	302	0	164	486	0
	custom	(custom	Perm		Perm	Prot	HE HOSE		Prot	SECTION	
Protected Phases					8		5	2		1	6	
Permitted Phases	4	4	4	8		8						
Actuated Green, G (s)	6.5	6.5	6.5		6.5	6.5		31.4		6.9	42.3	
Effective Green, g (s)	6.5	6.5	6.5		6.5	6.5		31.4		6.9	42.3	
Actuated g/C Ratio	0.11	0.11	0.11		0.11	0.11		0.55		0.12	0.74	
Clearance Time (s)	4.0	4.0	4.0		4.0	4.0		4.0		4.0	4.0	
Vehicle Extension (s)	3.0	3.0	3.0		3.0	3.0		3.0		3.0	3.0	
Lane Grp Cap (vph)	160	213	181		165	319		1951	42.00	417	2627	
v/s Ratio Prot								0.09		c0.05	c0.14	
v/s Ratio Perm	0.01	0.00	0.00		0.01	c0.01						
v/c Ratio	0.08	0.01	0.00		0.08	0.09		0.15		0.39	0.19	
Uniform Delay, d1	22.5	22.3	22.3		22.5	22.5		6.2		23.0	2.1	
Progression Factor	1.00	1.00	1.00		1.00	1.00		1.00		1.00	1.00	
Incremental Delay, d2	0.2	0.0	0.0		0.2	0.1		0.2		0.6	0.2	
Delay (s)	22.7	22.3	22.3		22.7	22.6		6.4		23.6	2.3	
Level of Service	C	С	С		C	C		Α		C	Α	
Approach Delay (s)		22.6			22.6			6.4			7.7	
Approach LOS		C			C			Α			Α	
Intersection Summary								100 000	(E) \$460			
HCM Average Control D			10.8	H	ICM Lev	vel of Se	ervice		В			
HCM Volume to Capaci	•		0.20									
Actuated Cycle Length			56.8			ost time			8.0			
Intersection Capacity Ut	ilization		33.1%	10	CU Leve	el of Ser	vice		Α			
Analysis Period (min)			15									
c Critical Lane Group												

	۶	\rightarrow	*	•	←	*	4	†	1	-	↓	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	1>		ሻ	1̂→		ሻ	ĵ»		"	1⇒	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)				4.0	4.0		4.0	4.0		4.0	4.0	
Lane Util. Factor				1.00	1.00		1.00	1.00		1.00	1.00	
Frt				1.00	0.85		1.00	1.00		1.00	1.00	
Flt Protected				0.95	1.00		0.95	1.00		0.95	1.00	
Satd. Flow (prot)				1770	1583		1770	1857		1770	1862	
Flt Permitted				1.00	1.00		0.95	1.00		0.61	1.00	
Satd. Flow (perm)				1863	1583		1770	1857		1133	1862	
Volume (vph)	0	0	0	8	0	17	1	198	4	32	334	1
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Growth Factor (vph)	110%	110%	110%	110%	110%	110%	110%	110%	110%	110%	110%	110%
Adj. Flow (vph)	0	0	0	10	0	20	1	237	5	38	399	1
RTOR Reduction (vph)	0	0	0	0	19	0	0	0	0	0	0	0
Lane Group Flow (vph)	0	0	0	10	1	0	1	242	0	38	400	0
Turn Type	Perm			Perm			Prot			Perm		
Protected Phases		4		•	8		5	2		•	6	
Permitted Phases	4			8	0.0		4.0	70.0		6	74.0	
Actuated Green, G (s)				2.8	2.8		1.2	79.2		74.0	74.0	
Effective Green, g (s)				2.8	2.8		1.2	79.2		74.0	74.0	
Actuated g/C Ratio				0.03	0.03		0.01	0.88		0.82	0.82	
Clearance Time (s)				4.0	4.0		4.0	4.0		4.0	4.0	
Vehicle Extension (s)	er Coo. pe la Mari	NEONES (IEV	MANUEL EVALUATION				3.0				3.0	evenines)
Lane Grp Cap (vph)				58	49		24	1634		932	1531	
v/s Ratio Prot				-0.01	0.00		0.00	c0.13		0.02	c0.21	
v/s Ratio Perm				c0.01	0.01		0.04	0.15		0.03	0.26	
v/c Ratio				42.5	42.3		43.8	0.13		0.04	1.8	
Uniform Delay, d1				1.00	1.00		1.00	1.00		1.00	1.00	
Progression Factor				1.4	0.1		0.7	0.2		0.1	0.4	
Incremental Delay, d2 Delay (s)		No.		43.9	42.4		44.5	0.2		1.6	2.2	
Level of Service				43.3 D	D		D	Α.		Α	Α.Δ	
Approach Delay (s)		0.0			42.9		D	1.1			2.2	
Approach LOS		Α.			72.5 D			A			Α.Α	
				BUU BREKKE								DESCRIPTION OF THE PARTY OF THE
Intersection Summary								g canto				
HCM Average Control D			3.5	H	ICM Le	vel of Se	ervice		Α			
HCM Volume to Capaci			0.26									
Actuated Cycle Length (90.0					12.0				
Intersection Capacity Ut	ilization		36.1%					Α				
Analysis Period (min)			15									
c Critical Lane Group												

	٨	→	*	•	4-	*	1	†	1	1	1	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	M	↑	74		स	77	ሻ	↑ ↑>		ሻሻ	↑ \$	Andrew Commencer and the
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	4.0	4.0	4.0		4.0	4.0	4.0	4.0		4.0	4.0	
Lane Util. Factor	1.00	1.00	1.00		1.00	0.88	1.00	0.95		0.97	0.95	
Frt	1.00	1.00	0.85		1.00	0.85	1.00	1.00		1.00	0.96	
Flt Protected	0.95	1.00	1.00		0.97	1.00	0.95	1.00		0.95	1.00	
Satd. Flow (prot)	1770	1863	1583		1803	2787	1770	3524		3433	3408	
Flt Permitted	0.70	1.00	1.00		0.81	1.00	0.95	1.00		0.95	1.00	
Satd. Flow (perm)	1311	1863	1583		1516	2787	1770	3524		3433	3408	
Volume (vph)	215	36	19	45	23	299	11	612	18	307	738	242
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Growth Factor (vph)	110%	110%	110%	110%	110%	110%	110%	110%	110%	110%	110%	110%
Adj. Flow (vph)	257	43	23	54	28	358	13	732	22	367	882	289
RTOR Reduction (vph)	0	0	17	0	0	271	0	2	0	0	25	0
Lane Group Flow (vph)	257	43	6	0	82	87	13	752	0	367	1146	0
Turn Type	custom	(custom	Perm		Perm	Prot		io is it is	Prot		
Protected Phases					8		5	2		1	6	
Permitted Phases	4	4	4	8		8						
Actuated Green, G (s)	21.8	21.8	21.8		21.8	21.8	0.8	42.0		14.2	55.4	
Effective Green, g (s)	21.8	21.8	21.8		21.8	21.8	0.8	42.0		14.2	55.4	
Actuated g/C Ratio	0.24	0.24	0.24		0.24	0.24	0.01	0.47		0.16	0.62	
Clearance Time (s)	4.0	4.0	4.0		4.0	4.0	4.0	4.0		4.0	4.0	
Vehicle Extension (s)	3.0	3.0	3.0		3.0	3.0	3.0	3.0		3.0	3.0	
Lane Grp Cap (vph)	318	451	383		367	675	16	1645		542	2098	
v/s Ratio Prot							0.01	c0.21		c0.11	c0.34	
v/s Ratio Perm	c0.20	0.02	0.00		0.05	0.03						
v/c Ratio	0.81	0.10	0.01		0.22	0.13	0.81	0.46		0.68	0.55	
Uniform Delay, d1	32.1	26.5	25.9		27.3	26.7	44.5	16.3		35.7	10.0	
Progression Factor	1.00	1.00	1.00		1.00	1.00	0.95	0.92		1.00	1.00	
Incremental Delay, d2	14.0	0.1	0.0		0.3	0.1	123.3	0.8		3.3	1.0	
Delay (s)	46.1	26.5	25.9		27.6	26.8	165.8	15.8		39.1	11.0	
Level of Service	D	C	C		C	C	F	В		D	В	
Approach Delay (s)		42.1			26.9			18.4			17.7	
Approach LOS		D			C			В			В	
Intersection Summary						Tion.						
HCM Average Control D			21.8	H	ICM Lev	vel of Se	ervice		C			
HCM Volume to Capaci	ty ratio		0.62									
Actuated Cycle Length			90.0					8.0				
Intersection Capacity Ut	tilization		64.0%						С			
Analysis Period (min)			15									
c Critical Lane Group												

	۶	→	*	*	←	*	4	†	<i>p</i>	1	ţ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	N.	₽		T	ĵ»		Ť	ĵ⇒		3/1	1>	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	4.0	4.0		4.0	4.0			4.0		4.0	4.0	
Lane Util. Factor	1.00	1.00		1.00	1.00			1.00		1.00	1.00	
Frt	1.00	0.85		1.00	0.85			1.00		1.00	1.00	
Flt Protected	0.95	1.00		0.95	1.00			1.00		0.95	1.00	
Satd. Flow (prot)	1770	1583		1770	1583			1861		1770	1862	
Flt Permitted	1.00	1.00		1.00	1.00			1.00		0.33	1.00	
Satd. Flow (perm)	1863	1583		1863	1583			1861		607	1862	
Volume (vph)	5	0	3	6	0	28	0	690	3	29	739	1
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Growth Factor (vph)	110%	110%	110%	110%	110%	110%	110%	110%	110%	110%	110%	110%
Adj. Flow (vph)	6	0	4	7	0	33	0	825	4	35	884	1
RTOR Reduction (vph)	0	4	0	0	32	0	0	0	0	0	0	0
Lane Group Flow (vph)	6	0	0	7	1	0	0	829	0	35	885	0
Turn Type	Perm	School Sch		Perm			Prot			Perm		
Protected Phases		4			8		5	2			6	
Permitted Phases	4			8						6		
Actuated Green, G (s)	3.9	3.9		3.9	3.9			78.1		78.1	78.1	
Effective Green, g (s)	3.9	3.9		3.9	3.9			78.1		78.1	78.1	
Actuated g/C Ratio	0.04	0.04		0.04	0.04			0.87		0.87	0.87	
Clearance Time (s)	4.0	4.0		4.0	4.0			4.0		4.0	4.0	
Vehicle Extension (s)	3.0	3.0		3.0	3.0			3.0		3.0	3.0	
Lane Grp Cap (vph)	81	69		81	69			1615		527	1616	
v/s Ratio Prot		0.00			0.00			0.45			c0.48	
v/s Ratio Perm	0.00			c0.00						0.06		
v/c Ratio	0.07	0.00		0.09	0.02			0.51		0.07	0.55	
Uniform Delay, d1	41.3	41.2		41.3	41.2			1.4		0.8	1.5	
Progression Factor	1.00	1.00		1.00	1.00			1.00		1.87	3.52	
Incremental Delay, d2	0.4	0.0		0.5	0.1			1.2		0.2	1.2	
Delay (s)	41.7	41.2		41.8	41.3			2.6		1.8	6.5	
Level of Service	D	D		D	D			Α		Α	Α	
Approach Delay (s)		41.5			41.4			2.6			6.3	
Approach LOS		D			D			Α			Α	
Intersection Summary												
HCM Average Control D	elay		5.6	H	ICM Le	vel of Se	ervice		Α			
HCM Volume to Capacit	ty ratio		0.53									
Actuated Cycle Length (s)		90.0	Sum of lost time (s)				8.0				
Intersection Capacity Ut			55.0%	6 ICU Level of Service				В				
Analysis Period (min)			15									
c Critical Lane Group												

Baseline Parsons Transportation Group

	1	*	†	1	1	↓	
Movement	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Configurations	N/A		↑ ₽		75	ተተ	
Sign Control	Stop		Free	9 5.45.15	6 7210.0	Free	
Grade	0%		0%			0%	
Volume (veh/h)	17	53	540	16	70	584	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	
Hourly flow rate (vph)	20	63	646	19	84	698	
Pedestrians							
Lane Width (ft)							
Walking Speed (ft/s)							
Percent Blockage							
Right turn flare (veh)							
Median type	Raised						
Median storage veh)	0						
Upstream signal (ft)							
pX, platoon unblocked							
vC, conflicting volume	1172	332			665		
vC1, stage 1 conf vol	655						
vC2, stage 2 conf vol	517						
vCu, unblocked vol	1172	332			665		
tC, single (s)	6.8	6.9			4.1		
tC, 2 stage (s)	5.8					1.253	
tF (s)	3.5	3.3			2.2		
p0 queue free %	91	90			91		
cM capacity (veh/h)	225	663			920		
Direction, Lane#	WB 1	NB 1	NB 2	SB 1	SB 2	SB 3	
Volume Total	84	430	234	84	349	349	
Volume Left	20	0	0	84	0	0	
Volume Right	63	0	19	0	0	0	
cSH	451	1700	1700	920	1700	1700	
Volume to Capacity	0.19	0.25	0.14	0.09	0.21	0.21	
Queue Length 95th (ft)	17	0	0	7	0	0	
Control Delay (s)	14.8	0.0	0.0	9.3	0.0	0.0	
Lane LOS	В			Α			
Approach Delay (s)	14.8	0.0		1.0			
Approach LOS	В						
Intersection Summary							
Average Delay			1.3				
Intersection Capacity U	Itilization		35.9%	10	CU Leve	el of Servi	ce A
Analysis Period (min)			15				

	1	*	†	~	-	↓
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	19	7	1>		ħ	†
Sign Control	Stop		Free		1.453.43	Free
Grade	0%		0%			0%
Volume (veh/h)	7	20	554	18	29	637
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	8	24	662	22	35	762
Pedestrians						
Lane Width (ft)						
Walking Speed (ft/s)						
Percent Blockage						
Right turn flare (veh)						
Median type	None					
Median storage veh)						
Upstream signal (ft)						1051
pX, platoon unblocked	1.00					
vC, conflicting volume	1504	673			684	
vC1, stage 1 conf vol						
vC2, stage 2 conf vol						
vCu, unblocked vol	1506	673			684	
tC, single (s)	6.4	6.2			4.1	
tC, 2 stage (s)						
tF(s)	3.5	3.3			2.2	
p0 queue free %	93	95			96	
cM capacity (veh/h)	128	455			909	
Direction, Lane #	WB 1	WB 2	NB 1	SB 1	SB 2	
Volume Total	8	24	684	35	762	
Volume Left	8	0	0	35	0	
Volume Right	0	24	22	0	0	
cSH	128	455	1700	909	1700	
Volume to Capacity	0.07	0.05	0.40	0.04	0.45	
Queue Length 95th (ft)	5	4	0	3	0	
Control Delay (s)	35.2	13.3	0.0	9.1	0.0	
Lane LOS	E	В		Α		
Approach Delay (s)	19.0		0.0	0.4		
Approach LOS	С		ding ya Talah se			
Intersection Summary	N. AS	沙洲 科				
Average Delay			0.6			
	tersection Capacity Utilization		46.9%	10	CU Leve	l of Ser
Analysis Period (min)			15			
, maryolo i orioa (iiiii)			7.5			

	*	4	†	~	1	↓	
Movement	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Configurations	ሻ	7	₽		ሻ	†	
Sign Control	Stop		Free			Free	
Grade	0%		0%			0%	
Volume (veh/h)	18	24	713	33	30	506	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	
Hourly flow rate (vph)	22	29	852	39	36	605	
Pedestrians							
Lane Width (ft)							
Walking Speed (ft/s)							
Percent Blockage							
Right turn flare (veh)							
Median type	None						
Median storage veh)							
Upstream signal (ft)						1051	
pX, platoon unblocked	0.96						
vC, conflicting volume	1549	872			892		
vC1, stage 1 conf vol							
vC2, stage 2 conf vol							
vCu, unblocked vol	1573	872			892		
tC, single (s)	6.4	6.2			4.1		
tC, 2 stage (s)							
tF (s)	3.5	3.3			2.2		
p0 queue free %	81	92			95		
cM capacity (veh/h)	111	350			760		
Direction, Lane #	WB 1	WB 2	NB 1	SB 1	SB 2		
Volume Total	22	29	892	36	605		
Volume Left	22	0	0	36	0		
Volume Right	0	29	39	0	0		
cSH	111	350	1700	760	1700		
Volume to Capacity	0.19	0.08	0.52	0.05	0.36		
Queue Length 95th (ft)	17	7	0	4	0		
Control Delay (s)	45.3	16.2	0.0	10.0	0.0		
Lane LOS	E	С		Α			
Approach Delay (s)	28.7		0.0	0.6			
Approach LOS	D						
Intersection Summary	61383838						
Average Delay			1.1			******	
Intersection Capacity Ut	tilization		53.5%	10	CU Leve	of Servi	
Analysis Period (min)			15				
, araiyolo i oriod (iriiri)							

	1	1	†	1	1	↓	
Movement	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Configurations	ሻ	7	1>		79	1	
Sign Control	Stop		Free			Free	
Grade	0%		0%			0%	
Volume (veh/h)	1	1	819	0	0	577	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	
Hourly flow rate (vph)	1	1	890	0	0	627	
Pedestrians							
Lane Width (ft)							
Walking Speed (ft/s)							
Percent Blockage							
Right turn flare (veh)							
	TWLTL						
Median storage veh)	0						
Upstream signal (ft)			915				
pX, platoon unblocked	0.77	0.77			0.77		
vC, conflicting volume	1517	890			890		
vC1, stage 1 conf vol	890						
vC2, stage 2 conf vol	627						
vCu, unblocked vol	1674	857			857		
tC, single (s)	6.4	6.2			4.1		
tC, 2 stage (s)	5.4						
tF (s)	3.5	3.3			2.2		
p0 queue free %	99	100			100		
cM capacity (veh/h)	161	274			602		
Direction, Lane #	WB 1	WB 2	NB 1	SB 1	SB 2		
Volume Total	1	1	890	0	627		
Volume Left	1	0	0	0	0		
Volume Right	0	1	0	0	0		
cSH	161	274	1700	1700	1700		
Volume to Capacity	0.01	0.00	0.52	0.00	0.37		
Queue Length 95th (ft)	1	0	0	0	0		
Control Delay (s)	27.5	18.2	0.0	0.0	0.0		
Lane LOS	D	С	7				
Approach Delay (s)	22.8	16.22.55	0.0	0.0			
Approach LOS	C						AND THE RESIDENCE OF THE PROPERTY OF THE PROPE
Intersection Summary							
Average Delay	The state of the state of		0.0				
Intersection Capacity U	53.1%	10	CU Leve	l of Ser	vice A		
Analysis Period (min)			15				

	1	*	†	-	-	↓	
Movement	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Configurations		7	1>		ሻ	A	
Sign Control	Stop		Free			Free	
Grade	0%		0%			0%	
Volume (veh/h)	0	1	818	0	0	578	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	
Hourly flow rate (vph)	0	1	889	0	0	628	
Pedestrians							
Lane Width (ft)							
Walking Speed (ft/s)							
Percent Blockage							
Right turn flare (veh)							
Median type	Raised						
Median storage veh)	0						
Upstream signal (ft)			530				
pX, platoon unblocked	0.78	0.78			0.78		
vC, conflicting volume	1517	889			889		
vC1, stage 1 conf vol	889						
vC2, stage 2 conf vol	628						
vCu, unblocked vol	1662	858			858		
tC, single (s)	6.4	6.2			4.1		
tC, 2 stage (s)	5.4						
tF (s)	3.5	3.3			2.2		
p0 queue free %	100	100			100		
cM capacity (veh/h)	163	279			612		
Direction, Lane #	WB 1	NB 1	SB 1	SB 2			对关的时间,这种特别为他的对对对对对对对对对对
Volume Total	1	889	0	628			
Volume Left	0	0	0	0			
Volume Right	1	0	0	0			
cSH	279	1700	1700	1700			
Volume to Capacity	0.00	0.52	0.00	0.37			
Queue Length 95th (ft)	0	0	0	0			
Control Delay (s)	18.0	0.0	0.0	0.0			
Lane LOS	С						
Approach Delay (s)	18.0	0.0	0.0				
Approach LOS	С						
Intersection Summary							
Average Delay			0.0				
Intersection Capacity U	tilization		53.1%	IC	U Leve	l of Ser	vice A
Analysis Period (min)			15				
E SUITE NE METERAL DE REPUBLICATION DE							

	*	*	†	1	>	↓	
Movement	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Configurations	W		↑	74	Ť	†	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	
Total Lost time (s)	4.0		4.0	4.0	4.0	4.0	
Lane Util. Factor	1.00		1.00	1.00	1.00	1.00	
Frt	0.91		1.00	0.85	1.00	1.00	
Flt Protected	0.99		1.00	1.00	0.95	1.00	
Satd. Flow (prot)	1662		1863	1583	1770	1863	
Flt Permitted	0.99		1.00	1.00	0.95	1.00	
Satd. Flow (perm)	1662		1863	1583	1770	1863	
Volume (vph)	28	64	680	12	36	489	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	
Growth Factor (vph)	110%	110%	110%	110%	110%	110%	
Adj. Flow (vph)	33	77	813	14	43	585	
RTOR Reduction (vph)	71	0	0	3	0	0	
Lane Group Flow (vph)	39	0	813	11	43	585	
Turn Type				Perm	Prot		
Protected Phases	8		2		1	6	
Permitted Phases				2			
Actuated Green, G (s)	7.2		71.7	71.7	4.0	79.7	
Effective Green, g (s)	7.2		71.7	71.7	4.0	79.7	
Actuated g/C Ratio	0.08		0.76	0.76	0.04	0.84	
Clearance Time (s)	4.0		4.0	4.0	4.0	4.0	
Vehicle Extension (s)	3.0		3.0	3.0	3.0	3.0	
Lane Grp Cap (vph)	126		1408	1196	75	1565	
v/s Ratio Prot	c0.02		c0.44		c0.02	0.31	
v/s Ratio Perm				0.01			
v/c Ratio	0.31		0.58	0.01	0.57	0.37	
Uniform Delay, d1	41.5		5.0	2.9	44.6	1.8	
Progression Factor	1.00		1.00	1.00	1.00	1.00	
Incremental Delay, d2	1.4		1.7	0.0	10.2	0.7	
Delay (s)	42.9		6.8	2.9	54.8	2.5	
Level of Service	D		Α	Α	D	Α	
Approach Delay (s)	42.9		6.7			6.0	
Approach LOS	D		Α			Α	
Intersection Summary				LAPAN.			
HCM Average Control D			9.0	F	ICM Le	vel of Servi	rice A
HCM Volume to Capacit			0.55				
Actuated Cycle Length (94.9			ost time (s)	
Intersection Capacity Ut	ilization		52.1%	10	CU Leve	el of Servic	ce A
Analysis Period (min)			15				
c Critical Lane Group							

	۶	-	*	*	←	1	4	†	1	-	1	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ř	†	7		र्स	77	ሻ	^		77	↑ ↑	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	4.0	4.0	4.0		4.0	4.0	4.0	4.0		4.0	4.0	
Lane Util. Factor	1.00	1.00	1.00		1.00	0.88	1.00	0.95		0.97	0.95	
Frt	1.00	1.00	0.85		1.00	0.85	1.00	1.00		1.00	0.99	
Flt Protected	0.95	1.00	1.00		0.96	1.00	0.95	1.00		0.95	1.00	
Satd. Flow (prot)	1770	1863	1583		1782	2787	1770	3536		3433	3516	
FIt Permitted	0.73	1.00	1.00		0.75	1.00	0.95	1.00		0.95	1.00	
Satd. Flow (perm)	1356	1863	1583		1391	2787	1770	3536		3433	3516	
Volume (vph)	36	4	5	34	3	579	2	750	5	252	607	28
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Growth Factor (vph)	110%	110%	110%	110%	110%	110%	110%	110%	110%	110%	110%	110%
Adj. Flow (vph)	43	5	6	41	4	692	2	897	6	301	726	33
RTOR Reduction (vph)	0	0	5	0	0	604	0	0	0	0	2	0
Lane Group Flow (vph)	43	5	1	0	45	88	2	903	0	301	757	0
Turn Type	custom		custom	Perm		Perm	Prot			Prot		
Protected Phases					8		5	2		1	6	
Permitted Phases	4	4	4	8		8						
Actuated Green, G (s)	8.7	8.7	8.7		8.7	8.7	1.0	36.6		10.8	46.4	
Effective Green, g (s)	8.7	8.7	8.7		8.7	8.7	1.0	36.6		10.8	46.4	
Actuated g/C Ratio	0.13	0.13	0.13		0.13	0.13	0.01	0.54		0.16	0.68	
Clearance Time (s)	4.0	4.0	4.0		4.0	4.0	4.0	4.0		4.0	4.0	
Vehicle Extension (s)	3.0	3.0	3.0		3.0	3.0	3.0	3.0		3.0	3.0	
Lane Grp Cap (vph)	173	238	202		178	356	26	1900		544	2396	
v/s Ratio Prot							0.00	c0.26		c0.09	0.22	
v/s Ratio Perm	0.03	0.00	0.00		c0.03	0.03						
v/c Ratio	0.25	0.02	0.00		0.25	0.25	0.08	0.48		0.55	0.32	
Uniform Delay, d1	26.8	26.0	25.9		26.8	26.8	33.1	9.8		26.4	4.4	
Progression Factor	1.00	1.00	1.00		1.00	1.00	1.00	1.00		1.00	1.00	
Incremental Delay, d2	0.8	0.0	0.0		0.8	0.4	1.3	0.9		1.2	0.3	
Delay (s)	27.5	26.0	25.9		27.5	27.1	34.4	10.6		27.6	4.8	
Level of Service	C	C	C		C	C	C	В		C	Α	
Approach Delay (s)		27.2			27.1			10.7			11.3	
Approach LOS		C			С			В			В	
Intersection Summary								65.				
HCM Average Control I	Delay		15.6	H	HCM Le	vel of S	ervice		В			
HCM Volume to Capaci			0.46									
Actuated Cycle Length	(s)		68.1			ost time			12.0			
Intersection Capacity U			58.6%	1	CU Lev	el of Se	rvice		В			
Analysis Period (min)			15									
c Critical Lane Group												

	۶	→	*	•	—	*	4	†	1	>	ļ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ħ	1}→		ď	^}		ሻ			75	\$	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	4.0	4.0		4.0	4.0		4.0	4.0		4.0	4.0	
Lane Util. Factor	1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00	
Frt	1.00	0.86		1.00	0.86		1.00	1.00		1.00	0.98	
Flt Protected	0.95	1.00		0.95	1.00		0.95	1.00		0.95	1.00	
Satd. Flow (prot)	1770	1610		1770	1593		1770	1860		1770	1834	
Flt Permitted	0.74	1.00		0.74	1.00		0.95	1.00		0.32	1.00	
Satd. Flow (perm)	1375	1610		1385	1593		1770	1860		591	1834	
Volume (vph)	46	2	16	11	1	23	11	717	8	29	509	59
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Growth Factor (vph)	110%	110%	110%	110%	110%	110%	110%	110%	110%	110%	110%	110%
Adj. Flow (vph)	55	2	19	13	1	28	13	857	10	35	609	71
RTOR Reduction (vph)	0	17	0	0	26	0	0	0	0	0	2	0
Lane Group Flow (vph)	55	4	0	13	3	0	13	867	0	35	678	0 .
Turn Type	Perm			Perm			Prot			Perm		
Protected Phases		4			8		5	2			6	
Permitted Phases	4			8						6		
Actuated Green, G (s)	8.5	8.5		8.5	8.5		1.8	84.8		79.0	79.0	
Effective Green, g (s)	8.5	8.5		8.5	8.5		1.8	84.8		79.0	79.0	
Actuated g/C Ratio	0.08	0.08		0.08	0.08		0.02	0.84		0.78	0.78	
Clearance Time (s)	4.0	4.0		4.0	4.0		4.0	4.0		4.0	4.0	
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Lane Grp Cap (vph)	115	135		116	134		31	1557		461	1430	
v/s Ratio Prot		0.00			0.00		0.01	c0.47			0.37	
v/s Ratio Perm	c0.04			0.01						0.06		
v/c Ratio	0.48	0.03		0.11	0.02		0.42	0.56		0.08	0.47	
Uniform Delay, d1	44.3	42.6		42.9	42.6		49.2	2.5		2.6	3.9	
Progression Factor	1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00	
Incremental Delay, d2	3.1	0.1		0.4	0.1		8.9	1.4		0.3	1.1	
Delay (s)	47.4	42.7		43.3	42.7		58.2	4.0		2.9	5.0	
Level of Service	D	D		D	D		E	Α		Α	Α	
Approach Delay (s)		46.1			42.9			4.8			4.9	
Approach LOS		D			. D			Α			Α	
Intersection Summary												
HCM Average Control D	elay		7.6	H	ICM Le	vel of Se	ervice		Α			
HCM Volume to Capaci	ty ratio		0.55									
Actuated Cycle Length (s)		101.3			ost time			8.0			
Intersection Capacity Ut	ilization		58.2%	10	CU Leve	el of Ser	vice		В			
Analysis Period (min)			15									
c Critical Lane Group												

Baseline Parsons Transportation Group

	1	*	†	1	1	↓	
Movement	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Configurations	*/*	-	1>		ří	^	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	
Total Lost time (s)	4.0		4.0		4.0	4.0	
Lane Util. Factor	1.00		1.00		1.00	1.00	
Frt	0.88		0.99		1.00	1.00	
Flt Protected	0.99		1.00		0.95	1.00	
Satd. Flow (prot)	1630		1852		1770	1863	
Flt Permitted	0.99		1.00		0.95	1.00	
Satd. Flow (perm)	1630		1852		1770	1863	
Volume (vph)	9	76	615	27	94	701	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	
Growth Factor (vph)	110%	110%	110%	110%	110%	110%	
Adj. Flow (vph)	11	91	735	32	112	838	
RTOR Reduction (vph)	83	0	2	0	0	0	
Lane Group Flow (vph)	19	0	765	0	112	838	
Turn Type					Prot		
Protected Phases	8		2		1	6	
Permitted Phases							
Actuated Green, G (s)	6.2		42.6		8.2	54.8	
Effective Green, g (s)	6.2		42.6		8.2	54.8	
Actuated g/C Ratio	0.09		0.62		0.12	0.79	
Clearance Time (s)	4.0		4.0		4.0	4.0	
Vehicle Extension (s)	3.0		3.0		3.0	3.0	
Lane Grp Cap (vph)	146		1143		210	1480	
v/s Ratio Prot	c0.01		c0.41		0.06	c0.45	
v/s Ratio Perm							
v/c Ratio	0.13		0.67		0.53	0.57	
Uniform Delay, d1	28.9		8.6		28.6	2.7	
Progression Factor	1.00		1.00		1.00	1.00	
Incremental Delay, d2	0.4		1.5		2.6	0.5	
Delay (s)	29.3		10.1		31.2	3.2	
Level of Service	C		В		C	Α	
Approach Delay (s)	29.3		10.1			6.5	
Approach LOS	C		В			Α	
Intersection Summary		14 6 18					
HCM Average Control D			9.3	ŀ	ICM Le	vel of Serv	vice A
HCM Volume to Capaci			0.61				
Actuated Cycle Length (69.0			ost time (s	
Intersection Capacity Ut	ilization		58.8%	1	CU Lev	el of Servi	ce B
Analysis Period (min)			15				
c Critical Lane Group							

	۶	-	*	•	—	*	4	†	1	1	↓	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	75	†	7		र्स	77	ሻ	↑ Դ		ሻሻ	↑ ↑	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	4.0	4.0	4.0		4.0	4.0	4.0	4.0		4.0	4.0	
Lane Util. Factor	1.00	1.00	1.00		1.00	0.88	1.00	0.95		0.97	0.95	
Frt	1.00	1.00	0.85		1.00	0.85	1.00	1.00		1.00	0.98	
Flt Protected	0.95	1.00	1.00		0.97	1.00	0.95	1.00		0.95	1.00	
Satd. Flow (prot)	1770	1863	1583		1799	2787	1770	3535		3433	3478	
Flt Permitted	0.71	1.00	1.00		0.80	1.00	0.95	1.00		0.95	1.00	
Satd. Flow (perm)	1316	1863	1583		1498	2787	1770	3535		3433	3478	
Volume (vph)	152	17	20	46	19	425	11	778	6	383	976	116
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Growth Factor (vph)	110%	110%	110%	110%	110%	110%	110%	100%	110%	110%	100%	110%
Adj. Flow (vph)	182	20	24	55	23	508	13	846	7	458	1061	139
RTOR Reduction (vph)	0	0	19	0	0	409	0	1	0	0	8	0
Lane Group Flow (vph)		20	5	0	78	99	13	852	0	458	1192	0
Turn Type	custom	(custom	Perm		Perm	Prot	10.15		Prot		
Protected Phases					8		5	2		1	6	
Permitted Phases	4	4	4	8		8						
Actuated Green, G (s)	15.3	15.3	15.3		15.3	15.3	1.4	36.8		14.6	50.0	
Effective Green, g (s)	15.3	15.3	15.3		15.3	15.3	1.4	36.8		14.6	50.0	
Actuated g/C Ratio	0.19	0.19	0.19		0.19	0.19	0.02	0.47		0.19	0.64	
Clearance Time (s)	4.0	4.0	4.0		4.0	4.0	4.0	4.0		4.0	4.0	
Vehicle Extension (s)	3.0	3.0	3.0		3.0	3.0	3.0	3.0		3.0	3.0	
Lane Grp Cap (vph)	256	362	308		291	542	31	1653		637	2210	
v/s Ratio Prot							0.01	c0.24		c0.13	c0.34	
v/s Ratio Perm	c0.14	0.01	0.00		0.05	0.04						
v/c Ratio	0.71	0.06	0.02		0.27	0.18	0.42	0.52		0.72	0.54	
Uniform Delay, d1	29.6	25.8	25.6		26.9	26.5	38.2	14.7		30.1	8.0	
Progression Factor	1.00	1.00	1.00		1.00	1.00	1.00	1.00		1.00	1.00	
Incremental Delay, d2	9.0	0.1	0.0		0.5	0.2	8.9	1.2		3.9	0.9	
Delay (s)	38.6	25.9	25.6		27.4	26.6	47.2	15.9		34.0	8.9	
Level of Service	D	C	C		C	C	D	В		C	Α	
Approach Delay (s)		36.1			26.7			16.3			15.8	
Approach LOS		D			C			В			В	
Intersection Summary						A BASS			in Liter			
HCM Average Control	Delay		19.3	ŀ	HCM Le	vel of S	ervice		В			
HCM Volume to Capac	ity ratio		0.59									
Actuated Cycle Length	(s)		78.7		Sum of I				8.0			
Intersection Capacity U	Itilization		60.3%	1	CU Lev	el of Se	rvice		В			
Analysis Period (min)			15									
c Critical Lane Group												

	*	→	*	*	—	*	4	†	~	>	Ţ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	ĵ.		ሻ	ĵ»		آثا	1⇒		Ϋ́	1→	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	4.0	4.0		4.0	4.0		4.0	4.0		4.0	4.0	
Lane Util. Factor	1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00	
Frt	1.00	0.85		1.00	0.85		1.00	1.00		1.00	1.00	
Flt Protected	0.95	1.00		0.95	1.00		0.95	1.00		0.95	1.00	
Satd. Flow (prot)	1770	1583		1770	1583		1770	1860		1770	1862	
Flt Permitted	0.87	1.00		0.87	1.00		0.95	1.00		0.29	1.00	
Satd. Flow (perm)	1620	1583		1620	1583		1770	1860		533	1862	
Volume (vph)	9	0	2	8	0	25	5	814	7	14	800	3
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Growth Factor (vph)	110%	110%	110%	110%	110%	110%	110%	110%	110%	110%	110%	110%
Adj. Flow (vph)	11	0	2	10	0	30	6	973	8	17	957	4
RTOR Reduction (vph)	0	2	0	0	29	0	0	0	0	0	0	0
Lane Group Flow (vph)	11	0	0	10	1	0	6	981	0	17	961	0
Turn Type	Perm			Perm			Prot			Perm		
Protected Phases		4			8		5	2			6	
Permitted Phases	4			8						6		
Actuated Green, G (s)	4.6	4.6		4.6	4.6		1.0	96.9		91.9	91.9	
Effective Green, g (s)	4.6	4.6		4.6	4.6		1.0	96.9		91.9	91.9	
Actuated g/C Ratio	0.04	0.04		0.04	0.04		0.01	0.88		0.84	0.84	
Clearance Time (s)	4.0	4.0		4.0	4.0		4.0	4.0		4.0	4.0	
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Lane Grp Cap (vph)	68	67		68	67	5 15 98 10	16	1646	HALLES	447	1563	
v/s Ratio Prot		0.00			0.00		0.00	c0.53			c0.52	
v/s Ratio Perm	c0.01			0.01						0.03		
v/c Ratio	0.16	0.00		0.15	0.02		0.38	0.60		0.04	0.61	
Uniform Delay, d1	50.6	50.2		50.6	50.3		53.9	1.5		1.5	2.9	
Progression Factor	1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00	
Incremental Delay, d2	1.1	0.0		1.0	0.1		14.1	1.6		0.2	1.8	
Delay (s)	51.7	50.3		51.6	50.4		68.1	3.1		1.6	4.7	
Level of Service	D	D		D	D		E	Α		Α	Α	
Approach Delay (s)		51.5			50.7			3.5			4.7	
Approach LOS		D			D			Α			Α	
Intersection Summary												
HCM Average Control D	elay		5.3	ŀ	ICM Le	vel of Se	ervice		Α			
HCM Volume to Capacit			0.60									
Actuated Cycle Length (109.5	5	Sum of l	ost time	(s)		12.0			
Intersection Capacity Ut			61.5%			el of Ser			В			
Analysis Period (min)			15									
c Critical Lane Group												

	1	4	†	-	1	ţ	
Movement	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Configurations	*5	7"	1>		K	4	
Sign Control	Stop		Free			Free	
Grade	0%		0%			0%	
Volume (veh/h)	22	34	793	17	34	776	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	
Hourly flow rate (vph)	26	41	948	20	41	928	
Pedestrians							
Lane Width (ft)			e Carlo				
Walking Speed (ft/s)							
Percent Blockage							
Right turn flare (veh)							
Median type	None						
Median storage veh)							
Upstream signal (ft)						1051	
pX, platoon unblocked	0.72						
vC, conflicting volume	1967	958			968		
vC1, stage 1 conf vol	***************************************				71322-101300/2000-1013		
vC2, stage 2 conf vol				ese in a fair			
vCu, unblocked vol	2335	958			968		
tC, single (s)	6.4	6.2	44.17		4.1		
tC, 2 stage (s)							
tF (s)	3.5	3.3			2.2		
p0 queue free %	5	87			94		
cM capacity (veh/h)	28	312			711		
Direction, Lane#	WB 1	WB 2	NB 1	SB 1	SB 2		
Volume Total	26	41	968	41	928		
Volume Left	26	0	0	41	0		
Volume Right	0	41	20	0	0		
cSH	28	312	1700	711	1700		
Volume to Capacity	0.95	0.13	0.57	0.06	0.55		
Queue Length 95th (ft)	76	11	0	5	0		
Control Delay (s)	360.8	18.3	0.0	10.4	0.0		
Lane LOS	F	С		В			
Approach Delay (s)	152.8		0.0	0.4			
Approach LOS	F						
Intersection Summary							
Average Delay			5.3				
Intersection Capacity Ut	ilization		57.0%	IC	CU Leve	of Serv	rice
Analysis Period (min)			15				
				F. J. S. S. S. S. S. S. S. S. S. S. S. S. S.			12.03
		715					

	•	4	†	-	1	↓		
Movement	WBL	WBR	NBT	NBR	SBL	SBT		110 A 1 A 1 A 1 A 1 A 1 A 1 A 1 A 1 A 1
Lane Configurations	ħ	7	₽		ሻ	†		
Sign Control	Stop		Free			Free		
Grade	0%		0%			0%		
Volume (veh/h)	16	66	825	1	20	858		
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92		
Hourly flow rate (vph)	17	72	897	1	22	933		
Pedestrians								
Lane Width (ft)								
Walking Speed (ft/s)								
Percent Blockage								
Right turn flare (veh)								
Median type	TWLTL							
Median storage veh)	0							
Upstream signal (ft)			915					
pX, platoon unblocked	0.70	0.70			0.70			
vC, conflicting volume	1873	897			898			
vC1, stage 1 conf vol	897							
vC2, stage 2 conf vol	976							
vCu, unblocked vol	2253	853			853			
tC, single (s)	6.4	6.2			4.1			
tC, 2 stage (s)	5.4							
tF (s)	3.5	3.3			2.2			
p0 queue free %	85	71			96			
cM capacity (veh/h)	118	250			548			
Direction, Lane #	WB 1	WB 2	NB 1	SB 1	SB 2			
Volume Total	17	72	898	22	933			
Volume Left	17	0	0	22	0			
Volume Right	0	72	1	0	0			
cSH	118	250	1700	548	1700			
Volume to Capacity	0.15	0.29	0.53	0.04	0.55			
Queue Length 95th (ft)	12	29	0	3	0			
Control Delay (s)	40.6	25.1	0.0	11.8	0.0			
Lane LOS	Е	D		В				
Approach Delay (s)	28.1		0.0	0.3				
Approach LOS	D							
Intersection Summary		A PRODUCTION OF						PHAN
Average Delay		all all all all all all all all all all	1.4					-
Intersection Capacity U	tilization		55.2%	10	CU Leve	l of Ser	vice	
Analysis Period (min)			15			· ·	-	

	1	*	†	1	-	ļ	
Movement	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Configurations		7	1>		ሻ	†	
Sign Control	Stop		Free			Free	
Grade	0%		0%			0%	
Volume (veh/h)	0	66	760	1	0	874	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	
Hourly flow rate (vph)	0	72	826	1	0	950	
Pedestrians							9
Lane Width (ft)							
Walking Speed (ft/s)							
Percent Blockage							
Right turn flare (veh)							g)
Median type	Raised						
Median storage veh)	0						
Upstream signal (ft)			540				
pX, platoon unblocked	0.71	0.71			0.71		
vC, conflicting volume	1777	827			827		
vC1, stage 1 conf vol	827						
vC2, stage 2 conf vol	950						
vCu, unblocked vol	2100	754			755		
tC, single (s)	6.4	6.2			4.1		
tC, 2 stage (s)	5.4						
tF (s)	3.5	3.3			2.2		
p0 queue free %	100	75			100		
cM capacity (veh/h)	133	289			604		
Direction, Lane #	WB1	NB 1	SB 1	SB 2			
Volume Total	72	827	0	950			
Volume Left	0	0	0	0			
Volume Right	72	1	0	0			
cSH	289	1700	1700	1700			
Volume to Capacity	0.25	0.49	0.00	0.56			
Queue Length 95th (ft)	24	0	0	0			
Control Delay (s)	21.5	0.0	0.0	0.0			
Lane LOS	С						
Approach Delay (s)	21.5	0.0	0.0				
Approach LOS	С						
Intersection Summary							
Average Delay		5.000	0.8				
Intersection Capacity U	Itilization		50.8%	IC	CU Leve	of Ser	rvice A
Analysis Period (min)			15				

	1	*	†	1	-	ļ
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	7	7	1→		ሻ	↑
Sign Control	Stop		Free			Free
Grade	0%		0%			0%
Volume (veh/h)	4	12	212	15	37	514
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	5	14	253	18	44	615
Pedestrians						
Lane Width (ft)						
Walking Speed (ft/s)						
Percent Blockage						
Right turn flare (veh)						
Median type	None					
Median storage veh)						
Upstream signal (ft)						1051
pX, platoon unblocked	1.00					
vC, conflicting volume	965	262			271	
vC1, stage 1 conf vol						
vC2, stage 2 conf vol						
vCu, unblocked vol	965	262			271	
tC, single (s)	6.4	6.2			4.1	
tC, 2 stage (s)						
tF(s)	3.5	3.3			2.2	
p0 queue free %	98	98			97	
cM capacity (veh/h)	273	776			1292	
Direction, Lane #	WB 1	WB 2	NB 1	SB 1	SB 2	
Volume Total	5	14	271	44	615	
Volume Left	5	0	0	44	0	
Volume Right	0	14	18	0	0	
cSH	273	776	1700	1292	1700	
Volume to Capacity	0.02	0.02	0.16	0.03	0.36	
Queue Length 95th (ft)	1	1	0	3	0	
Control Delay (s)	18.4	9.7	0.0	7.9	0.0	
Lane LOS	С	Α		Α		
Approach Delay (s)	11.9		0.0	0.5		
Approach LOS	В					
Intersection Summary						
Average Delay			0.6			
Intersection Capacity Ut	tilization		39.8%	10	CU Leve	el of Ser
Analysis Period (min)			15			

	•	4	†	~	>	Ţ	
Movement	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Configurations	ሻ	7	7>		ሻ	↑	
Sign Control	Stop		Free			Free	
Grade	0%		0%			0%	
Volume (veh/h)	4	20	230	16	262	307	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	
Hourly flow rate (vph)	4	22	250	17	285	334	
Pedestrians							
Lane Width (ft)							
Walking Speed (ft/s)							
Percent Blockage							
Right turn flare (veh)							
Median type	TWLTL						
Median storage veh)	0						
Upstream signal (ft)			890				
pX, platoon unblocked							
vC, conflicting volume	1162	259			267		
vC1, stage 1 conf vol	259						
vC2, stage 2 conf vol	903						
vCu, unblocked vol	1162	259			267		
tC, single (s)	6.4	6.2			4.1		
tC, 2 stage (s)	5.4						
tF (s)	3.5	3.3			2.2		
p0 queue free %	98	97			78		
cM capacity (veh/h)	192	780			1296		
Direction, Lane #	WB 1	WB 2	NB 1	SB 1	SB 2		
Volume Total	4	22	267	285	334		
Volume Left	4	0	0	285	0		
Volume Right	0	22	17	0	0		
cSH	192	780	1700	1296	1700		
Volume to Capacity	0.02	0.03	0.16	0.22	0.20		
Queue Length 95th (ft)	2	2	0	21	0		
Control Delay (s)	24.2	9.7	0.0	8.6	0.0		
Lane LOS	С	Α		Α			
Approach Delay (s)	12.2		0.0	3.9			
Approach LOS	В						
Intersection Summary							
Average Delay	4 000 mm		3.0				
Intersection Capacity U	Itilization		40.9%	10	CU Leve	el of Se	rvice A
Analysis Period (min)			15				

Lane Configurations Sign Control Stop Free Grade 0% 0% 0% Volume (veh/h) 0 20 226 16 0 311 Peak Hour Factor 0,92 0,92 0,92 0,92 0,92 0,92 0,92 0,92		1	*	†	-	-	↓		
Lane Configurations Sign Control Stop Free Grade 0% 0% 0% Volume (veh/h) 0 20 226 16 0 311 Peak Hour Factor 0,92 0,92 0,92 0,92 0,92 0,92 0,92 0,92	Movement	WBL	WBR	NBT	NBR	SBL	SBT		SANSOR
Sign Control Stop				-					
Grade		Stop							
Peak Hour Factor 0.92 0.93 0.92 0.92 0.93	Grade			0%					
Hourly flow rate (vph) 0 22 246 17 0 338 Pedestrians Walking Speed (ft/s) Percent Blockage Right turn flare (veh) Median type Raised Median storage veh) Upstream signal (ft) pX, platoon unblocked 1.00 1.00 1.00 VC, conflicting volume 592 254 263 VCL, stage 1 conf vol 254 VC2, stage 2 conf vol 338 VCU, unblocked vol 592 254 263 VC, single (s) 6.4 6.2 4.1 KF (s) 3.5 3.3 2.2 p0 queue free % 100 97 100 CM capacity (veh/h) 415 784 1301 Direction, Lane # WB 1 NB 1 SB 1 SB 2 Volume Total 22 263 0 338 Volume Right 22 17 0 0 CSH 784 1700 1700 1700 Volume to Capacity 0 0.3 0.15 0.00 0.20 Queue Length 95th (ft) 2 0 0 0 Control Delay (s) 9.7 0.0 0.0 Approach LOS A Approach LOS A Intersection Summary Average Delay ntersection Capacity Utilization 22 9% ICU Level of Service A	Volume (veh/h)	0	20	226	16	0	311		
Pedestrians Lane Width (ft) Walking Speed (ft/s) Percent Blockage Right turn flare (veh) Median type Median storage veh) Upstream signal (ft) pX, platoon unblocked vC, conflicting volume vSq. conflicting volume vC2, stage 1 conf vol vC2, stage 2 conf vol vC3, stage 2 conf vol vC4, stage 2 conf vol vC5, stage (s) vC6, 2 stage (s) vC7, stage (s) vC8, stage (s) vC9, stage (s) vC1, stage (s) vC9, stage (s) vC1, stage (s) vC1, stage (s) vC9, stage (s) vC1, stage (s) vC1, stage (s) vC9, stage (s) vC1,	Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92		
Pedestrians	Hourly flow rate (vph)	0	22	246	17	0	338		
Walking Speed (ft/s) Percent Blockage Right turn flare (veh) Median type Raised Median storage veh) 0 Upstream signal (ft) 510 pX, platoon unblocked 1.00 1.00 vC1, stage 1 conf vol 254 vC2, stage 2 conf vol 338 vCu, unblocked vol 592 254 263 tC, single (s) 6.4 6.2 4.1 tC, 2 stage (s) 5.4 5.4 tF (s) 3.5 3.3 2.2 p0 queue free % 100 97 100 cM capacity (veh/h) 415 784 1301 Direction, Lane # WB 1 NB 1 SB 2 Volume Total 22 263 0 338 volume Left 0 0 0 0 volume Right 22 17 0 0 cSH 784 1700 1700 volume to Capacity 0.03 0.15 0.00 0 Control Delay (s) 9.7 0.0 0.0	Pedestrians								
Percent Blockage Right turn flare (veh) Median type Raised Median storage veh) 0 Upstream signal (ft) 510 pX, platoon unblocked 1.00 1.00 vC, conflicting volume 592 254 vC1, stage 1 conf vol 254 vC2, stage 2 conf vol 338 vCu, unblocked vol 592 254 vC, single (s) 6.4 6.2 vC, 2 stage (s) 5.4 tF (s) 3.5 3.3 p0 queue free % 100 97 p0 queue free % 100 97 p0 queue free % 100 97 p0 queue free % 100 97 volume Total 22 263 0 volume Total 22 263 0 volume Left 0 0 0 volume Right 22 17 0 volume to Capacity 0.03 0.15 0.00 volume to Capacity 0.03 0.0 0.0 volume Logs A	Lane Width (ft)								
Right turn flare (veh) Median type Raised Median storage veh) 0 Upstream signal (ft) 510 pX, platoon unblocked 1.00 1.00 1.00 vC, conflicting volume 592 254 263 vC1, stage 1 conf vol 254 vC2, stage 2 conf vol 338 vCu, unblocked vol 592 254 263 tC, single (s) 6.4 6.2 4.1 tC, 2 stage (s) 5.4 tF (s) 3.5 3.3 2.2 p0 queue free % 100 97 100 cM capacity (veh/h) 415 784 1301 Direction, Lane # WB 1 NB 1 SB 1 SB 2 Volume Total 22 263 0 338 Volume Right 22 17 0 0 volume Right 22 17 0 0 volume Right 22 17 0 0 volume to Capacity 0.03 0.15 0.00 0.20 Queue Length 95th (ft) 2 0 0 0 Control Delay (s) 9.7 0.0 0.0 0.0 Approach LOS A Approach LOS A Intersection Summary Average Delay ntersection Capacity Utilization 22.9% ICU Level of Service A	Walking Speed (ft/s)								
Median type Raised Median storage veh) 0 Upstream signal (ft) pox, platoon unblocked 1.00 1.00 vC, conflicting volume 592 254 263 vC1, stage 1 conf vol 254 263 vC2, stage 2 conf vol 338 263 254 vC2, stage (s) 6.4 6.2 4.1 VC, 2 stage (s) 5.4 5.4 5.4 VEF (s) 3.5 3.3 2.2 p0 queue free % 100 97 100 cM capacity (veh/h) 415 784 1301 Direction, Lane # WB 1 NB 1 SB 2 Volume Total 22 263 0 338 Volume Right 22 263 0 338 Volume Left 0 0 0 0 volume Right 22 17 0 0 cSH 784 1700 1700 1700 volume to Capacity 0.03 0.15 0.00 0.0 Queue Length 95th (ft) 2 0 0 </td <td>Percent Blockage</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Percent Blockage								
Median storage veh) Upstream signal (ft) pX, platoon unblocked 1.00 1.00 1.00 vC, conflicting volume 592 254 263 vC1, stage 1 conf vol 254 vC2, stage 2 conf vol 338 vCu, unblocked vol 592 254 263 tC, single (s) 6.4 6.2 4.1 tC, single (s) 5.4 tF (s) 3.5 3.3 2.2 p0 queue free % 100 97 100 cM capacity (veh/h) 415 784 1301 Direction, Lane # WB 1 NB 1 SB 1 SB 2 Volume Total 22 263 0 338 Volume Right 22 17 0 0 cSH 784 1700 1700 1700 Volume Right 22 17 0 0 cSH 784 1700 1700 1700 Volume to Capacity 0.03 0.15 0.00 0.20 Queue Length 95th (ft) 2 0 0 0 Control Delay (s) 9.7 0.0 0.0 Approach LOS A Intersection Summary Average Delay Intersection Capacity Utilization 22.9% ICU Level of Service A	Right turn flare (veh)								
Upstream signal (ft) pX, platoon unblocked 1.00 1.00 1.00 1.00 vC, conflicting volume 592 254 263 vC1, stage 1 conf vol 254 vC1, stage 2 conf vol 338 vC2, stage 2 conf vol 338 vC2, stage 2 conf vol 592 254 263 vC1, unblocked vol 592 254 263 vC2, stage (s) 5.4 vC1, stage (s) 6.4 6.2 4.1 vC1, 2 stage (s) 5.4 vC2, stage (s) 5.4 vC3, stage (s) 5.4 vC4, unblocked vol 592 254 263 vC2, stage (s) 5.4 vC3, stage (s) 5.4 vC4, stage (s) 5.4 vC5, stage (s) 5.4 vC5, stage (s) 5.4 vC6, stage (s) 5	Median type	Raised							
pX, platoon unblocked 1.00 1.00 1.00 254 263 vC1, stage 1 conf vol 254 263 vC2, stage 2 conf vol 338 vCu, unblocked vol 592 254 263 tC, single (s) 6.4 6.2 4.1 tC, 2 stage (s) 5.4 tF (s) 3.5 3.3 2.2 p0 queue free % 100 97 100 cM capacity (veh/h) 415 784 1301 Direction, Lane # WB 1 NB 1 SB 1 SB 2 Volume Total 22 263 0 338 Volume Left 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Median storage veh)	0							
VC, conflicting volume 592 254 263 VC1, stage 1 conf vol 254 VC2, stage 2 conf vol 338 VCu, unblocked vol 592 254 263 KC, single (s) 6.4 6.2 4.1 KC, 2 stage (s) 5.4 KF (s) 3.5 3.3 2.2 p0 queue free % 100 97 100 cM capacity (veh/h) 415 784 1301 Direction, Lane # WB 1 NB 1 SB 2 Volume Total 22 263 0 338 Volume Left 0 0 0 0 cSH 784 1700 1700 1700 Volume Right 22 17 0 0 cSH 784 1700 1700 1700 Volume to Capacity 0.03 0.15 0.00 0.20 Queue Length 95th (ft) 2 0 0 0 Control Delay (s) 9.7 0.0 0.0 Approach Delay (s) 9.7 0.0 0.0 Approach LOS A Intersection Summary Average Delay ntersection Capacity Utilization 22.9% ICU Level of Service A	Upstream signal (ft)			510					
vC1, stage 1 conf vol 254 vC2, stage 2 conf vol 338 vCu, unblocked vol 592 254 263 tC, single (s) 6.4 6.2 4.1 tC, 2 stage (s) 5.4 tF (s) 3.5 3.3 2.2 p0 queue free % 100 97 100 cM capacity (veh/h) 415 784 1301 Direction, Lane # WB 1 NB 1 SB 2 Volume Total 22 263 0 338 Volume Left 0 0 0 0 Volume Right 22 17 0 0 cSH 784 1700 1700 1700 Volume to Capacity 0.03 0.15 0.00 0.20 Queue Length 95th (ft) 2 0 0 0 Control Delay (s) 9.7 0.0 0.0 Approach LOS A Intersection Summary Average Delay ntersection Capacity Utilization 22.9% ICU Level of Service A	pX, platoon unblocked	1.00	1.00			1.00			
VC2, stage 2 conf vol 338 VCu, unblocked vol 592 254 263 tC, single (s) 6.4 6.2 4.1 tC, 2 stage (s) 5.4 tF (s) 3.5 3.3 2.2 p0 queue free % 100 97 100 cM capacity (veh/h) 415 784 1301 Direction, Lane # WB 1 NB 1 SB 1 SB 2 Volume Total 22 263 0 338 Volume Left 0 0 0 0 Volume Right 22 17 0 0 cSH 784 1700 1700 1700 Volume to Capacity 0.03 0.15 0.00 0.20 Queue Length 95th (ft) 2 0 0 0 Control Delay (s) 9.7 0.0 0.0 Lane LOS A Approach LOS A Intersection Summary Average Delay ntersection Capacity Utilization 22.9% ICU Level of Service A	vC, conflicting volume	592	254			263			
VCU, unblocked vol 592 254 263 tC, single (s) 6.4 6.2 4.1 tC, 2 stage (s) 5.4 tF (s) 3.5 3.3 2.2 p0 queue free % 100 97 100 cM capacity (veh/h) 415 784 1301 Direction, Lane # WB 1 NB 1 SB 1 SB 2 Volume Total 22 263 0 338 Volume Left 0 0 0 0 Volume Right 22 17 0 0 cSH 784 1700 1700 1700 Volume to Capacity 0.03 0.15 0.00 0.20 Queue Length 95th (ft) 2 0 0 0 Control Delay (s) 9.7 0.0 0.0 0.0 Lane LOS A Approach Delay (s) 9.7 0.0 0.0 Approach LOS A Intersection Summary Average Delay Intersection Capacity Utilization 22.9% ICU Level of Service A	vC1, stage 1 conf vol	254							
tC, single (s) 6.4 6.2 4.1 tC, 2 stage (s) 5.4 tF (s) 3.5 3.3 2.2 p0 queue free % 100 97 100 cM capacity (veh/h) 415 784 1301 Direction, Lane # WB 1 NB 1 SB 1 SB 2 Volume Total 22 263 0 338 Volume Left 0 0 0 0 Volume Right 22 17 0 0 cSH 784 1700 1700 1700 Volume to Capacity 0.03 0.15 0.00 0.20 Queue Length 95th (ft) 2 0 0 0 Control Delay (s) 9.7 0.0 0.0 0.0 Approach Delay (s) 9.7 0.0 0.0 Approach LOS A Intersection Summary Average Delay Intersection Capacity Utilization 22.9% ICU Level of Service A	vC2, stage 2 conf vol	338							
tC, 2 stage (s) 5.4 tF (s) 3.5 3.3 2.2 p0 queue free % 100 97 100 cM capacity (veh/h) 415 784 1301 Direction, Lane # WB 1 NB 1 SB 1 SB 2 Volume Total 22 263 0 338 Volume Left 0 0 0 0 Volume Right 22 17 0 0 cSH 784 1700 1700 1700 Volume to Capacity 0.03 0.15 0.00 0.20 Queue Length 95th (ft) 2 0 0 0 Control Delay (s) 9.7 0.0 0.0 Approach Delay (s) 9.7 0.0 0.0 Approach LOS A Intersection Summary Average Delay ntersection Capacity Utilization 22.9% ICU Level of Service A	vCu, unblocked vol	592	254			263			
## (s) 3.5 3.3 2.2 ## p0 queue free % 100 97 100 ## cM capacity (veh/h) 415 784 1301 ## Direction, Lane # WB 1 NB 1 SB 1 SB 2 ## Volume Total 22 263 0 338 ## Volume Left 0 0 0 0 ## Volume Right 22 17 0 0 ## CSH 784 1700 1700 1700 ## Volume to Capacity 0.03 0.15 0.00 0.20 ## Queue Length 95th (ft) 2 0 0 0 ## Control Delay (s) 9.7 0.0 0.0 0.0 ## Lane LOS A ## Approach Delay (s) 9.7 0.0 0.0 ## Approach LOS A ## Intersection Summary ## Average Delay needs a service of Service A	tC, single (s)	6.4	6.2			4.1			
po queue free % 100 97 100 cM capacity (veh/h) 415 784 1301 Direction, Lane # WB 1 NB 1 SB 1 SB 2 Volume Total 22 263 0 338 Volume Left 0 0 0 0 Volume Right 22 17 0 0 cSH 784 1700 1700 1700 Volume to Capacity 0.03 0.15 0.00 0.20 Queue Length 95th (ft) 2 0 0 0 Control Delay (s) 9.7 0.0 0.0 0.0 Approach Delay (s) 9.7 0.0 0.0 Approach LOS A Intersection Summary Average Delay ntersection Capacity Utilization 22.9% ICU Level of Service A	tC, 2 stage (s)								
Direction, Lane # WB 1 NB 1 SB 1 SB 2	tF (s)	3.5				2.2			
Direction, Lane # WB 1 NB 1 SB 1 SB 2 Volume Total 22 263 0 338 Volume Left 0 0 0 0 Volume Right 22 17 0 0 CSH 784 1700 1700 1700 Volume to Capacity 0.03 0.15 0.00 0.20 Queue Length 95th (ft) 2 0 0 0 Control Delay (s) 9.7 0.0 0.0 0.0 Lane LOS A Approach Delay (s) 9.7 0.0 0.0 Approach LOS A Intersection Summary Average Delay 0.3 ICU Level of Service A	p0 queue free %								
Volume Total 22 263 0 338 Volume Left 0 0 0 0 Volume Right 22 17 0 0 cSH 784 1700 1700 1700 Volume to Capacity 0.03 0.15 0.00 0.20 Queue Length 95th (ft) 2 0 0 0 Control Delay (s) 9.7 0.0 0.0 0.0 Lane LOS A A A Approach Delay (s) 9.7 0.0 0.0 Approach LOS A A Intersection Summary 0.3 Average Delay 0.3 ntersection Capacity Utilization 22.9% ICU Level of Service A	cM capacity (veh/h)	415	784			1301			
Volume Left 0 0 0 0 Volume Right 22 17 0 0 cSH 784 1700 1700 Volume to Capacity 0.03 0.15 0.00 0.20 Queue Length 95th (ft) 2 0 0 0 Control Delay (s) 9.7 0.0 0.0 0.0 Lane LOS A A A Approach Delay (s) 9.7 0.0 0.0 Approach LOS A A Intersection Summary 0.3 Average Delay 0.3 ntersection Capacity Utilization 22.9% ICU Level of Service A	Direction, Lane#			SB 1					
Volume Right 22 17 0 0 cSH 784 1700 1700 1700 Volume to Capacity 0.03 0.15 0.00 0.20 Queue Length 95th (ft) 2 0 0 0 Control Delay (s) 9.7 0.0 0.0 0.0 Lane LOS A A A Approach Delay (s) 9.7 0.0 0.0 Approach LOS A A Intersection Summary 0.3 Average Delay 0.3 ntersection Capacity Utilization 22.9% ICU Level of Service A	Volume Total	22	263	0	338				
784 1700 1700 1700 Volume to Capacity 0.03 0.15 0.00 0.20 Queue Length 95th (ft) 2 0 0 0 Control Delay (s) 9.7 0.0 0.0 0.0 Lane LOS A Approach Delay (s) 9.7 0.0 0.0 Approach LOS A Intersection Summary Average Delay 0.3 ICU Level of Service A	Volume Left								
Volume to Capacity 0.03 0.15 0.00 0.20 Queue Length 95th (ft) 2 0 0 0 Control Delay (s) 9.7 0.0 0.0 Lane LOS A Approach Delay (s) 9.7 0.0 0.0 Approach LOS A Intersection Summary 0.3 Average Delay 0.3 ntersection Capacity Utilization 22.9% ICU Level of Service A	Volume Right								
Queue Length 95th (ft) 2 0 0 0 Control Delay (s) 9.7 0.0 0.0 Lane LOS A Approach Delay (s) 9.7 0.0 0.0 Approach LOS A Intersection Summary Average Delay 0.3 ntersection Capacity Utilization 22.9% ICU Level of Service A	cSH								
Control Delay (s) 9.7 0.0 0.0 0.0 Lane LOS A Approach Delay (s) 9.7 0.0 0.0 Approach LOS A Intersection Summary Average Delay 0.3 Intersection Capacity Utilization 22.9% ICU Level of Service A	Volume to Capacity		0.15	0.00	0.20				
Lane LOS A Approach Delay (s) 9.7 0.0 0.0 Approach LOS A Intersection Summary Average Delay 0.3 Intersection Capacity Utilization 22.9% ICU Level of Service A	Queue Length 95th (ft)								
Approach Delay (s) 9.7 0.0 0.0 Approach LOS A Intersection Summary Average Delay 0.3 Intersection Capacity Utilization 22.9% ICU Level of Service A	Control Delay (s)	9.7	0.0	0.0	0.0				
Approach LOS A Intersection Summary Average Delay 0.3 Intersection Capacity Utilization 22.9% ICU Level of Service A	Lane LOS								
ntersection Summary Average Delay ntersection Capacity Utilization 22.9% ICU Level of Service A	Approach Delay (s)	9.7	0.0	0.0					
Average Delay 0.3 ntersection Capacity Utilization 22.9% ICU Level of Service A	Approach LOS	Α							
ntersection Capacity Utilization 22.9% ICU Level of Service A	Intersection Summary								
	Average Delay								
Analysis Period (min) 15		Jtilization			IC	CU Leve	l of Ser	/ice	Α
	Analysis Period (min)			15					

	1	*	†	1	1		
Movement	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Configurations	W		1>		75	†	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	
Total Lost time (s)	4.0		4.0		4.0	4.0	
Lane Util. Factor	1.00		1.00		1.00	1.00	
Frt	0.91		0.99		1.00	1.00	
FIt Protected	0.98		1.00		0.95	1.00	
Satd. Flow (prot)	1664		1852		1770	1863	
Flt Permitted	0.98		1.00		0.95	1.00	
Satd. Flow (perm)	1664		1852		1770	1863	
Volume (vph)	14	31	189	8	24	259	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	
Growth Factor (vph)	110%	110%	110%	110%	110%	110%	
Adj. Flow (vph)	17	37	226	10	29	310	
RTOR Reduction (vph)	36	0	1	0	0	0	
Lane Group Flow (vph)	18	0	235	0	29	310	
Turn Type					Prot		
Protected Phases	8		2		1	6	
Permitted Phases							
Actuated Green, G (s)	2.2		46.8		2.1	52.9	
Effective Green, g (s)	2.2		46.8		2.1	52.9	
Actuated g/C Ratio	0.03		0.74		0.03	0.84	
Clearance Time (s)	4.0		4.0		4.0	4.0	
Vehicle Extension (s)	3.0		3.0		3.0	3.0	
Lane Grp Cap (vph)	58		1374		59	1562	
v/s Ratio Prot	c0.01		0.13		c0.02	c0.17	
v/s Ratio Perm							
v/c Ratio	0.32		0.17		0.49	0.20	
Uniform Delay, d1	29.7		2.4		30.0	1.0	
Progression Factor	1.00		1.00		1.00	1.00	
Incremental Delay, d2	3.1		0.1		6.3	0.1	
Delay (s)	32.8		2.5		36.3	1.1	
Level of Service	C		Α		D	Α	
Approach Delay (s)	32.8		2.5			4.1	
Approach LOS	С		Α			Α	
Intersection Summary							
HCM Average Control D	Delay		5.9	H	ICM Le	vel of Serv	rvice A
HCM Volume to Capaci			0.22				
Actuated Cycle Length (63.1			ost time (s	
Intersection Capacity Ut	ilization		28.1%	1	CU Lev	el of Servi	rice A
Analysis Period (min)			15				
c Critical Lane Group							

	۶	-	*	•	←	*	4	†	~	1	↓	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ħ	†	7		र्स	77.77	Ť	^		ሻሻ	ተ ጮ	-
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	4.0	4.0	4.0		4.0	4.0		4.0		4.0	4.0	
Lane Util. Factor	1.00	1.00	1.00		1.00	0.88		0.95		0.97	0.95	
Frt	1.00	1.00	0.85		1.00	0.85		1.00		1.00	1.00	
FIt Protected	0.95	1.00	1.00		0.96	1.00		1.00		0.95	1.00	
Satd. Flow (prot)	1770	1863	1583		1781	2787		3530		3433	3528	
Flt Permitted	0.75	1.00	1.00		0.77	1.00		1.00		0.95	1.00	
Satd. Flow (perm)	1395	1863	1583		1441	2787		3530		3433	3528	
Volume (vph)	11	2	4	10	1	208	0	274	4	137	439	8
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Growth Factor (vph)	110%	110%	110%	110%	110%	110%	110%	100%	110%	110%	100%	110%
Adj. Flow (vph)	13	2	5	12	1	249	0	298	5	164	477	10
RTOR Reduction (vph)	0	0	4	0	0	221	0	1	0	0	1	0
Lane Group Flow (vph)	13	2	1	0	13	28	0	302	0	164	486	0
Turn Type	custom	(custom	Perm	ADDED	Perm	Prot	HUSE		Prot		4 (4)
Protected Phases					8		5	2		1	6	
Permitted Phases	4	4	4	8		8						
Actuated Green, G (s)	6.5	6.5	6.5		6.5	6.5		31.4		6.9	42.3	
Effective Green, g (s)	6.5	6.5	6.5		6.5	6.5		31.4		6.9	42.3	
Actuated g/C Ratio	0.11	0.11	0.11		0.11	0.11		0.55		0.12	0.74	
Clearance Time (s)	4.0	4.0	4.0		4.0	4.0		4.0		4.0	4.0	
Vehicle Extension (s)	3.0	3.0	3.0		3.0	3.0		3.0		3.0	3.0	
Lane Grp Cap (vph)	160	213	181		165	319	1147	1951		417	2627	177 116
v/s Ratio Prot								0.09		c0.05	c0.14	
v/s Ratio Perm	0.01	0.00	0.00		0.01	c0.01						
v/c Ratio	0.08	0.01	0.00		0.08	0.09		0.15		0.39	0.19	
Uniform Delay, d1	22.5	22.3	22.3		22.5	22.5		6.2		23.0	2.1	
Progression Factor	1.00	1.00	1.00		1.00	1.00		1.00		1.00	1.00	
Incremental Delay, d2	0.2	0.0	0.0		0.2	0.1		0.2		0.6	0.2	
Delay (s)	22.7	22.3	22.3		22.7	22.6		6.4		23.6	2.3	
Level of Service	C	C	C		C	C		Α		C	Α	
Approach Delay (s)		22.6			22.6			6.4			7.7	
Approach LOS		С			C			Α			Α	
Intersection Summary											500000	
HCM Average Control D	HCM Average Control Delay		10.8	F	ICM Le	vel of S	ervice		В			
HCM Volume to Capacity ratio			0.20									
Actuated Cycle Length (s)			56.8	5	Sum of I	ost time	(s)	8.0				
Intersection Capacity Utilization			33.1%			el of Sei		A				
Analysis Period (min)		15										
c Critical Lane Group												

	۶	-	*	1	←	*	4	†	~	-	ţ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	¥	₽		ሻ	ĵ»		ħ	ĵ.		Ϋ́	1>	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)				4.0	4.0		4.0	4.0		4.0	4.0	
Lane Util. Factor				1.00	1.00		1.00	1.00		1.00	1.00	
Frt				1.00	0.85		1.00	1.00		1.00	1.00	
Flt Protected				0.95	1.00		0.95	1.00		0.95	1.00	
Satd. Flow (prot)				1770	1583		1770	1858		1770	1862	
Flt Permitted				1.00	1.00		0.95	1.00		0.59	1.00	
Satd. Flow (perm)				1863	1583		1770	1858		1108	1862	
Volume (vph)	0	0	0	8	0	17	1	219	4	32	543	1
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Growth Factor (vph)	110%	110%	110%	110%	110%	110%	110%	110%	110%	110%	110%	110%
Adj. Flow (vph)	0	0	0	10	0	20	1	262	5	38	649	1
RTOR Reduction (vph)	0	0	0	0	19	0	0	0	0	0	0	0
Lane Group Flow (vph)	0	0	0	10	1	0	1	267	0	38	650	0
Turn Type	Perm			Perm			Prot			Perm		
Protected Phases		4			8		5	2			6	
Permitted Phases	4			8						6		
Actuated Green, G (s)				3.5	3.5		1.7	100.7		95.0	95.0	
Effective Green, g (s)				3.5	3.5		1.7	100.7		95.0	95.0	
Actuated g/C Ratio				0.03	0.03		0.02	0.90		0.85	0.85	
Clearance Time (s)				4.0	4.0		4.0	4.0		4.0	4.0	
Vehicle Extension (s)				3.0	3.0		3.0	3.0		3.0	3.0	
Lane Grp Cap (vph)				58	49		27	1668		938	1577	
v/s Ratio Prot					0.00		0.00	c0.14			c0.35	
v/s Ratio Perm				c0.01						0.03		
v/c Ratio				0.17	0.01		0.04	0.16		0.04	0.41	
Uniform Delay, d1				52.9	52.7		54.4	0.7		1.4	2.0	
Progression Factor				1.00	1.00		1.00	1.00		1.00	1.00	
Incremental Delay, d2				1.4	0.1		0.6	0.2		0.1	0.8	
Delay (s)				54.4	52.8		55.0	0.9		1.4	2.8	
Level of Service				D	D		E	Α		Α	Α	
Approach Delay (s)		0.0			53.3			1.1			2.7	
Approach LOS		Α			D			Α			Α	
Intersection Summary	Intersection Summary											90
HCM Average Control D	Delay		3.8	H	HCM Le	vel of S	ervice		Α			
HCM Volume to Capaci	ty ratio		0.40									
Actuated Cycle Length (112.2		Sum of I				12.0			
Intersection Capacity Ut			41.5%					Α				
Analysis Period (min)			15									
c Critical Lane Group												

	*	*	†	~	1	ţ	
Movement	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Configurations	% /f		†	7	ሻ	†	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	
Total Lost time (s)	4.0		4.0	4.0	4.0	4.0	
Lane Util. Factor	1.00		1.00	1.00	1.00	1.00	
Frt	0.90		1.00	0.85	1.00	1.00	
Flt Protected	0.99		1.00	1.00	0.95	1.00	
Satd. Flow (prot)	1652		1863	1583	1770	1863	
Flt Permitted	0.99		1.00	1.00	0.95	1.00	
Satd. Flow (perm)	1652		1863	1583	1770	1863	
Volume (vph)	17	53	540	16	70	584	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	
Growth Factor (vph)	110%	110%	110%	110%	110%	110%	
Adj. Flow (vph)	20	63	646	19	84	698	
RTOR Reduction (vph)	58	0	0	7	0	0	
Lane Group Flow (vph)	25	0	646	12	84	698	
Turn Type				Perm	Prot		
Protected Phases	8		2		1	6	
Permitted Phases				2			
Actuated Green, G (s)	5.3		45.2	45.2	6.6	55.8	
Effective Green, g (s)	5.3		45.2	45.2	6.6	55.8	
Actuated g/C Ratio	0.08		0.65	0.65	0.10	0.81	
Clearance Time (s)	4.0		4.0	4.0	4.0	4.0	
Vehicle Extension (s)	3.0		3.0	3.0	3.0	3.0	
Lane Grp Cap (vph)	127		1219	1035	169	1504	
v/s Ratio Prot	c0.02		c0.35		0.05	c0.37	ACTION IN THE RANGE OF THE RESERVED OF THE PROPERTY OF THE PRO
v/s Ratio Perm				0.01			
v/c Ratio	0.20		0.53	0.01	0.50	0.46	
Uniform Delay, d1	29.9		6.3	4.2	29.7	2.0	
Progression Factor	1.00		1.00	1.00	1.00	1.00	
Incremental Delay, d2	0.8		0.4	0.0	2.3	0.2	
Delay (s)	30.7		6.7	4.2	32.0	2.3	
Level of Service	С		Α	Α	C	Α	
Approach Delay (s)	30.7		6.7			5.5	
Approach LOS	C		Α			Α	
Intersection Summary							
HCM Average Control D	Delay		7.4	H	ICM Le	vel of Serv	vice A
HCM Volume to Capaci	ty ratio		0.50				
Actuated Cycle Length	(s)		69.1	5	Sum of I	ost time (s	s) 12.0
Intersection Capacity Ut			50.2%	I	CU Leve	el of Servi	ce A
Analysis Period (min)			15				
c Critical Lane Group							•

	۶	-	*	1	←	*	4	†	~	1	↓	1	
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations	7	†	7		4	75.75	ħ	↑ ↑		ሻሻ	↑ ⊅		
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	
Total Lost time (s)	4.0	4.0	4.0		4.0	4.0	4.0	4.0		4.0	4.0		
Lane Util. Factor	1.00	1.00	1.00		1.00	0.88	1.00	0.95		0.97	0.95		
Frt	1.00	1.00	0.85		1.00	0.85	1.00	1.00		1.00	0.96		
Flt Protected	0.95	1.00	1.00		0.97	1.00	0.95	1.00		0.95	1.00		
Satd. Flow (prot)	1770	1863	1583		1803	2787	1770	3527		3433	3401		
Flt Permitted	0.70	1.00	1.00		0.81	1.00	0.95	1.00		0.95	1.00		
Satd. Flow (perm)	1311	1863	1583		1517	2787	1770	3527		3433	3401		
Volume (vph)	215	36	19	45	23	299	11	773	18	307	688	242	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	
Growth Factor (vph)	110%	110%	110%	110%	110%	110%	110%	110%	110%	110%	110%	110%	
Adj. Flow (vph)	257	43	23	54	28	358	13	924	22	367	823	289	
RTOR Reduction (vph)		0	17	0	0	0	0	2	0	0	31	0	
Lane Group Flow (vph)	257	43	6	0	82	358	13	944	0	367	1081	0	
Turn Type	custom	(custom	Perm		Perm	Prot			Prot			
Protected Phases					8		5	2		1	6		
Permitted Phases	4	4	4	8		8							
Actuated Green, G (s)	19.9	19.9	19.9		19.9	19.9	0.7	37.8		12.7	49.8		
Effective Green, g (s)	19.9	19.9	19.9		19.9	19.9	0.7	37.8		12.7	49.8		
Actuated g/C Ratio	0.24	0.24	0.24		0.24	0.24	0.01	0.46		0.15	0.60		
Clearance Time (s)	4.0	4.0	4.0		4.0	4.0	4.0	4.0		4.0	4.0		
Vehicle Extension (s)	3.0	3.0	3.0		3.0	3.0	3.0	3.0		3.0	3.0		
Lane Grp Cap (vph)	317	450	382		366	673	15	1618		529	2055		
v/s Ratio Prot							0.01	c0.27		c0.11	0.32		
v/s Ratio Perm	c0.20	0.02	0.00		0.05	0.13							
v/c Ratio	0.81	0.10	0.01		0.22	0.53	0.87	0.58		0.69	0.53		
Uniform Delay, d1	29.5	24.3	23.8		25.1	27.2	40.8	16.5		33.0	9.5		
Progression Factor	1.00	1.00	1.00		1.00	1.00	1.00	1.00		1.00	1.00		
Incremental Delay, d2	14.5	0.1	0.0		0.3	0.8	162.9	1.5		3.9	1.0		
Delay (s)	43.9	24.4	23.8		25.4	28.0	203.7	18.0		36.9	10.4		
Level of Service	D	C	C		C	C	F	В		D	В		
Approach Delay (s)		39.9			27.5			20.5			17.0		
Approach LOS		D			C			C			В		
Intersection Summary													
HCM Average Control I		21.8	H	ICM Le	vel of Se	ervice		C					
HCM Volume to Capacity ratio			0.67										
Actuated Cycle Length		82.4 63.5%		Sum of l			12.0						
										В			
Analysis Period (min)		15											
c Critical Lane Group													

	۶	→	*	1	←	*	4	†	1	1	1	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	75	f)		ኻ	ĵ.		ሻ	₽		ሻ	\$	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	4.0	4.0		4.0	4.0			4.0		4.0	4.0	
Lane Util. Factor	1.00	1.00		1.00	1.00			1.00		1.00	1.00	
Frt	1.00	0.85		1.00	0.85			1.00		1.00	1.00	
Flt Protected	0.95	1.00		0.95	1.00			1.00		0.95	1.00	
Satd. Flow (prot)	1770	1583		1770	1583			1862		1770	1862	
Flt Permitted	1.00	1.00		1.00	1.00			1.00		0.26	1.00	
Satd. Flow (perm)	1863	1583		1863	1583			1862		487	1862	
Volume (vph)	5	0	3	6	0	28	0	828	3	29	673	1
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Growth Factor (vph)	110%	110%	110%	110%	110%	110%	110%	110%	110%	110%	110%	110%
Adj. Flow (vph)	6	0	4	7	0	33	0	990	4	35	805	1
RTOR Reduction (vph)	0	4	0	0	32	0	0	0	0	0	0	0
Lane Group Flow (vph)	6	0	0	7	1	0	0	994	0	35	806	0
Turn Type	Perm	en in German	the state of	Perm			Prot	t-Mulay	1 Trans	Perm		
Protected Phases		4			8		5	2			6	
Permitted Phases	4			8						6		
Actuated Green, G (s)	3.9	3.9		3.9	3.9			78.1		78.1	78.1	
Effective Green, g (s)	3.9	3.9		3.9	3.9			78.1		78.1	78.1	
Actuated g/C Ratio	0.04	0.04		0.04	0.04			0.87		0.87	0.87	
Clearance Time (s)	4.0	4.0		4.0	4.0			4.0		4.0	4.0	
Vehicle Extension (s)	3.0	3.0		3.0	3.0			3.0		3.0	3.0	
Lane Grp Cap (vph)	81	69		81	69			1616		423	1616	BOLE WA
v/s Ratio Prot	•	0.00			0.00			c0.53		:-Y	0.43	
v/s Ratio Perm	0.00			c0.00						0.07		
v/c Ratio	0.07	0.00		0.09	0.02			0.62		0.08	0.50	
Uniform Delay, d1	41.3	41.2		41.3	41.2			1.7		0.8	1.4	
Progression Factor	1.00	1.00		1.00	1.00			1.00		1.00	1.00	
Incremental Delay, d2	0.4	0.0		0.5	0.1			1.8		0.4	1.1	
Delay (s)	41.7	41.2		41.8	41.3			3.4		1.2	2.5	
Level of Service	D	D		D	D			A		A	A	
Approach Delay (s)		41.5		A ACRES - AT VA	41.4			3.4			2.4	
Approach LOS		D			D			Α			A	
Intersection Summary												
HCM Average Control D	7 - POSC 345 - POSC 34		4.0	H	ICM Le	vel of Se	ervice		Α			
HCM Volume to Capaci			0.59									
Actuated Cycle Length (90.0			ost time			8.0			
Intersection Capacity Utilization			60.3%	10	CU Leve	el of Ser	vice	В				
Analysis Period (min)		15	4 1									
c Critical Lane Group												

	1	•	1	1	-	Ţ		Ţ
Movement	WBL	WBR	NBT	NBR	SBL	SBT		SBT
Lane Configurations	N,	7	\$		ħ	4		
Sign Control	Stop		Free			Free		
Grade	0%		0%			0%		0%
Volume (veh/h)	7	20	892	18	29	653		653
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92		0.92
Hourly flow rate (vph)	8	24	970	20	35	781		781
Pedestrians								
Lane Width (ft)								
Walking Speed (ft/s)								
Percent Blockage								
Right turn flare (veh)								
Median type	None			155.55				
Median storage veh)								
Upstream signal (ft)						1051		051
pX, platoon unblocked	0.99							
vC, conflicting volume	1829	979			989			
vC1, stage 1 conf vol								
vC2, stage 2 conf vol								
vCu, unblocked vol	1840	979			989			
tC, single (s)	6.4	6.2			4.1			
tC, 2 stage (s)								
tF (s)	3.5	3.3			2.2			
p0 queue free %	89	92	PERMITE PROPERTY OF THE PROPERTY OF		95			
cM capacity (veh/h)	78	303			699			
Direction, Lane #	WB 1	WB 2	NB 1	SB 1	SB 2			
Volume Total	8	24	989	35	781			
Volume Left	8	0	0	35	0		Selli some	(1000) (1000) (1000) (1000) (1000) (1000) (1000)
Volume Right	0	24	20	0	0			
cSH	78	303	1700	699	1700			
Volume to Capacity	0.11	0.08	0.58	0.05	0.46			
Queue Length 95th (ft)	9	6	0	4	0			
Control Delay (s)	56.8	17.9	0.0	10.4	0.0			
Lane LOS	F	С		В				
Approach Delay (s)	28.0	Fate (S)	0.0	0.4				
Approach LOS	D							
Intersection Summary								
Average Delay			0.7					
Intersection Capacity Ut	ilization		58.0%	10	CU Leve	of Service	e	of Service
Analysis Period (min)	AL 2 N. 1 MARIE - 10 N N		15					
	2/2/							

	•		†	1	1	↓				
Movement	WBL	WBR	NBT	NBR	SBL	SBT				
Lane Configurations	ሻ	7	ĵ.,		ħ	†			-0-0-0-	
Sign Control	Stop		Free			Free				
Grade	0%		0%			0%				
Volume (veh/h)	32	131	779	2	40	687				
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92				
Hourly flow rate (vph)	35	142	847	2	43	747				
Pedestrians										
Lane Width (ft)										
Walking Speed (ft/s)										
Percent Blockage		A.V								
Right turn flare (veh)										
	TWLTL									
Median storage veh)	0									
Upstream signal (ft)			915							
pX, platoon unblocked	0.79	0.79			0.79					
vC, conflicting volume	1682	848			849					
vC1, stage 1 conf vol	848									
vC2, stage 2 conf vol	834									
vCu, unblocked vol	1859	808			810					
tC, single (s)	6.4	6.2			4.1					
tC, 2 stage (s)	5.4									
tF(s)	3.5	3.3			2.2					
p0 queue free %	76	53			93					
cM capacity (veh/h)	146	302			647					
Direction, Lane #	WB 1	WB 2	NB 1	SB 1	SB 2					
Volume Total	35	142	849	43	747			STATE OF		PERM
Volume Left	35	0	0	43	0					
Volume Right	0	142	2	0	0					
cSH	146	302	1700	647	1700					
Volume to Capacity	0.24	0.47	0.50	0.07	0.44					
Queue Length 95th (ft)	22	60	0	5	0					
Control Delay (s)	37.1	27.1	0.0	11.0	0.0					
Lane LOS	Е	D		В						
Approach Delay (s)	29.1		0.0	0.6						
Approach LOS	D									
Intersection Summary										
Average Delay			3.1							
Intersection Capacity U	tilization		55.9%	- 10	CU Leve	el of Service	e	F	3	
Analysis Period (min)			15							
LOCAL CONTRACTOR OF THE PROPERTY OF THE PROPER										

Movement WBL WBR NBT NBR SBL SBT
Sign Control Stop Grade Free Own Own Free Own Own Free Own Own Wolume (veh/h) 0 131 650 2 0 719 Peak Hour Factor 0.92 0.92 0.92 0.92 0.92 0.92 Hourly flow rate (vph) 0 142 707 2 0 782 Pedestrians Lane Width (ft) Walking Speed (ft/s) Percent Blockage Percent Blockage Raised Percent Blockage Raised Median storage veh) 0
Sign Control Stop Grade Free Own Own Free Own Own Free Own Own Volume (veh/h) 0 131 650 2 0 719 0.92 0.92 0.92 0.92 0.92 0.92 0.92 Peak Hour Factor 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 Hourly flow rate (vph) 0 142 707 2 0 782 782 782 Pedestrians Lane Width (ft) Walking Speed (ft/s) Percent Blockage Right turn flare (veh) Raised Median storage veh) 0 0 Upstream signal (ft) pX, platoon unblocked vC, conflicting volume vC1, stage 1 conf vol vC2, stage 2 conf vol vC2, stage 2 conf vol vC2, stage 2 conf vol vC2, stage 2 conf vol vC2, stage 2 conf vol vC3, stage 2 conf vol vC4, unblocked vol 1612 634 635 635 635 VC2, stage (s) 6.4 6.2 4.1 635 635 VC3, stage (s) 5.4 6.2 4.1 635 635 VC4, stage (s) 5.4 6.2 5.1 4.1 635 VC5, stage (s) 5.4 6.2 5.1 5.4 6.2 5.1 VC6, single (s) 6.4 6.2 5.2 5.4 6.2 5.2 VC7, stage (s) 5.4 6.2 5.2 5.4 6.2 VC7, stage (s) 5.4 6.2 5.2 5.4 6.2 5.2
Volume (veh/h) 0 131 650 2 0 719 Peak Hour Factor 0.92 0.92 0.92 0.92 0.92 0.92 Hourly flow rate (vph) 0 142 707 2 0 782 Pedestrians Lane Width (ft) Walking Speed (ft/s) Percent Blockage Right turn flare (veh) Median storage veh) Median storage veh) 0 Upstream signal (ft) pX, platoon unblocked vC, conflicting volume vC1, stage 1 conf vol vO2 1489 708 709 vC1, stage 2 conf vol vC2, stage 2 conf vol vC2, stage 2 conf vol vC3 782 50 50 vC2, stage (s) 6.4 6.2 4.1 635 635 tC, 2 stage (s) 6.4 6.2 4.1 635 64 62 4.1 tF (s) 3.5 3.3 2.2 2
Peak Hour Factor 0.92 0.92 0.92 0.92 0.92 0.92 0.92 Hourly flow rate (vph) 0 142 707 2 0 782 Pedestrians 142 707 2 0 782 Walking Speed (ft/s) 8 8 8 Percent Blockage Raised 8 Median type Raised 8 Median storage veh) 0 0 Upstream signal (ft) 480 pX, platoon unblocked vol. 0.80 0.80 vC, conflicting volume 1489 708 709 vC1, stage 1 conf vol. 708 709 vC2, stage 2 conf vol. 782 709 vCu, unblocked vol. 1612 634 635 tC, 2 stage (s) 5.4 6.2 4.1 tC, 2 stage (s) 5.4 4.1 tF (s) 3.5 3.3 2.2 p0 queue free % 100 63 100 cM capacity (veh/h) 179 383 757 Direction, Lane # WB 1 NB 1 SB 1 SB 2 Volume Left 0 0 0 0
Hourly flow rate (vph) 0 142 707 2 0 782 Pedestrians Lane Width (ft) Walking Speed (ft/s) Percent Blockage Right turn flare (veh) Median type Raised Median storage veh) 0 Upstream signal (ft) 480 pX, platoon unblocked 0.80 0.80 0.80 vC, conflicting volume 1489 708 709 vC1, stage 1 conf vol 708 vC2, stage 2 conf vol 782 vCu, unblocked vol 1612 634 6.2 tC, single (s) 6.4 6.2 4.1 tC, 2 stage (s) 5.4 tF (s) 3.5 3.3 2.2 p0 queue free % 100 63 100 cM capacity (veh/h) 179 383 757 Direction, Lane # WB 1 NB 1 SB 1 SB 2 Volume Total 142 709 0 782 Volume Total 142 709 0 782 Volume Total 142 709 0 782 Volume Left 0 0 0 0 782
Pedestrians Lane Width (ft) Walking Speed (ft/s) Percent Blockage Right turn flare (veh) Median type Median storage veh) Upstream signal (ft) pX, platoon unblocked vC, conflicting volume vC1, stage 1 conf vol vC2, stage 2 conf vol tC, single (s) tC, single (s) tC, 2 stage (s) tF (s) 3.5 3.3 2.2 p0 queue free % 100 63 100 cM capacity (veh/h) 179 383 Volume Total VA Sissed VA Sissed VA Sissed VA Sissed VA Sissed VA Sissed VA Sissed VA Sissed VA Siss
Lane Width (ft) Walking Speed (ft/s) Percent Blockage Right turn flare (veh) Median type Raised Median storage veh) Upstream signal (ft) pX, platoon unblocked vC, conflicting volume 1489 708 vC2, stage 1 conf vol vC2, stage 2 conf vol vC4, unblocked vol tC, single (s) tC, single (s) tC, single (s) tC, 2 stage (s) tF (s) 3.5 3.3 2.2 p0 queue free % 100 63 100 cM capacity (veh/h) 179 383 VB 1 VOLUME Total VOLUME Total VALUME Total VALUME Total VALUME TOTAL V
Walking Speed (ft/s) Percent Blockage Right turn flare (veh) Median type Raised Median storage veh) 0 Upstream signal (ft) 480 pX, platoon unblocked 0.80 0.80 vC, conflicting volume 1489 708 vC1, stage 1 conf vol 708 vC2, stage 2 conf vol 782 vCu, unblocked vol 1612 634 635 tC, single (s) 6.4 6.2 4.1 tC, 2 stage (s) 5.4 4 tF (s) 3.5 3.3 2.2 p0 queue free % 100 63 100 cM capacity (veh/h) 179 383 757 Direction, Lane # WB 1 NB 1 SB 2 Volume Total 142 709 0 782 Volume Left 0 0 0 0
Percent Blockage Right turn flare (veh) Median type Raised Median storage veh) Upstream signal (ft) pX, platoon unblocked vC, conflicting volume 1489 708 vC1, stage 1 conf vol vC2, stage 2 conf vol vC3, stage 2 conf vol vC4, unblocked vol 1612 1634 1635 164, 62 175 175 175 175 175 175 175 175 175 175
Right turn flare (veh) Median type Raised Median storage veh) Upstream signal (ft) 480 pX, platoon unblocked 0.80 0.80 0.80 vC, conflicting volume 1489 708 709 vC1, stage 1 conf vol 708 vC2, stage 2 conf vol 782 vCu, unblocked vol 1612 634 635 tC, single (s) 6.4 6.2 4.1 tC, 2 stage (s) 5.4 tF (s) 3.5 3.3 2.2 p0 queue free % 100 63 100 cM capacity (veh/h) 179 383 757 Direction, Lane # WB 1 NB 1 SB 1 SB 2 Volume Total 142 709 0 782 Volume Left 0 0 0 0
Median type Raised Median storage veh) 0 Upstream signal (ft) 480 pX, platoon unblocked 0.80 0.80 vC, conflicting volume 1489 708 vC1, stage 1 conf vol 708 vC2, stage 2 conf vol 782 vCu, unblocked vol 1612 634 635 tC, single (s) 6.4 6.2 4.1 tC, 2 stage (s) 5.4 4.1 tF (s) 3.5 3.3 2.2 p0 queue free % 100 63 100 cM capacity (veh/h) 179 383 757 Direction, Lane # WB 1 NB 1 SB 1 SB 2 Volume Total 142 709 0 782 Volume Left 0 0 0 0
Median storage veh) 0 Upstream signal (ft) 480 pX, platoon unblocked 0.80 0.80 vC, conflicting volume 1489 708 709 vC1, stage 1 conf vol 708 709 vC2, stage 2 conf vol 782 709 vCu, unblocked vol 1612 634 635 tC, single (s) 6.4 6.2 4.1 tC, 2 stage (s) 5.4 4.1 tF (s) 3.5 3.3 2.2 p0 queue free % 100 63 100 cM capacity (veh/h) 179 383 757 Direction, Lane # WB 1 NB 1 SB 1 SB 2 Volume Total 142 709 0 782 Volume Left 0 0 0 0
Upstream signal (ft) 480 pX, platoon unblocked 0.80 0.80 vC, conflicting volume 1489 708 709 vC1, stage 1 conf vol 708 709 vC2, stage 2 conf vol 782 782 vCu, unblocked vol 1612 634 635 tC, single (s) 6.4 6.2 4.1 tC, 2 stage (s) 5.4 4.1 tF (s) 3.5 3.3 2.2 p0 queue free % 100 63 100 cM capacity (veh/h) 179 383 757 Direction, Lane # WB 1 NB 1 SB 1 SB 2 Volume Total 142 709 0 782 Volume Left 0 0 0 0
pX, platoon unblocked
VC, conflicting volume
vC1, stage 1 conf vol 708 vC2, stage 2 conf vol 782 vCu, unblocked vol 1612 634 635 tC, single (s) 6.4 6.2 4.1 tC, 2 stage (s) 5.4 tF (s) 3.5 3.3 2.2 p0 queue free % 100 63 100 cM capacity (veh/h) 179 383 757 Direction, Lane # WB 1 NB 1 SB 2 Volume Total 142 709 0 782 Volume Left 0 0 0 0
vC2, stage 2 conf vol 782 vCu, unblocked vol 1612 634 635 tC, single (s) 6.4 6.2 4.1 tC, 2 stage (s) 5.4 tF (s) 3.5 3.3 2.2 p0 queue free % 100 63 100 cM capacity (veh/h) 179 383 757 Direction, Lane # WB 1 NB 1 SB 1 SB 2 Volume Total 142 709 0 782 Volume Left 0 0 0 0
vCu, unblocked vol 1612 634 635 tC, single (s) 6.4 6.2 4.1 tC, 2 stage (s) 5.4 tF (s) 3.5 3.3 2.2 p0 queue free % 100 63 100 cM capacity (veh/h) 179 383 757 Direction, Lane # WB 1 NB 1 SB 1 SB 2 Volume Total 142 709 0 782 Volume Left 0 0 0 0
tC, single (s) 6.4 6.2 4.1 tC, 2 stage (s) 5.4 tF (s) 3.5 3.3 2.2 p0 queue free % 100 63 100 cM capacity (veh/h) 179 383 757 Direction, Lane # WB 1 NB 1 SB 2 Volume Total 142 709 0 782 Volume Left 0 0 0 0
tC, 2 stage (s) 5.4 tF (s) 3.5 3.3 2.2 p0 queue free % 100 63 100 cM capacity (veh/h) 179 383 757 Direction, Lane # WB 1 NB 1 SB 2 Volume Total 142 709 0 782 Volume Left 0 0 0 0
tF (s) 3.5 3.3 2.2 p0 queue free % 100 63 100 cM capacity (veh/h) 179 383 757 Direction, Lane # WB 1 NB 1 SB 2 Volume Total 142 709 0 782 Volume Left 0 0 0 0
p0 queue free % 100 63 100 cM capacity (veh/h) 179 383 757 Direction, Lane # WB 1 NB 1 SB 1 SB 2 Volume Total 142 709 0 782 Volume Left 0 0 0 0
cM capacity (veh/h) 179 383 757 Direction, Lane # WB 1 NB 1 SB 2 Volume Total 142 709 0 782 Volume Left 0 0 0 0
Direction, Lane # WB 1 NB 1 SB 1 SB 2 Volume Total 142 709 0 782 Volume Left 0 0 0 0
Volume Total 142 709 0 782 Volume Left 0 0 0
Volume Left 0 0 0 0
Volume Right 142 2 0 0
cSH 383 1700 1700 1700
Volume to Capacity 0.37 0.42 0.00 0.46
Queue Length 95th (ft) 42 0 0 0
Control Delay (s) 19.9 0.0 0.0 0.0
Lane LOS C
Approach Delay (s) 19.9 0.0 0.0
Approach LOS C
Intersection Summary
Average Delay 1.7
Intersection Capacity Utilization 49.1% ICU Level of Service A
Analysis Period (min) 15

APPENDIX D Traffic Signal Warrant Analysis

Figure 4C-101. Traffic Signal Warrants Worksheet (Sheet 1 of 4)

DIST CO RTE KPM CHK DATE Major St: RAI VOAA AVENUE Critical Approach Speed Critical Approach Speed Critical Approach Speed To DATE Minor St: RAI VOAA AVENUE Critical Approach Speed To DATE Critical Approach Speed To DATE AD DATE DATE										
			t Hour Vehicular Vo	lume						
Condition A - Mini	MINIMUM R	CIE Volume EQUIREMENTS IN IN BRACKETS	7 80%	SATISFIED YES NO NO NO NO NO NO NO NO NO NO NO NO NO						
	UR	UR	1							
APPROACH LANES	1	2 or More		/ / / / Hour						
Both Approaches Major Street Highest Approaches	500 350 (400) (280 150 105) (480) (336)								
Minor Street	(120) (84)									
Condition B - Inte		Continuous 1		SATISFIED YES NO SATISFIED YES NO						
	(80% SHOW	/N IN BRACKETS								
APPROACH LANES	U R	U R	///	/						
Both Approaches Major Street	750 525 (600) (420	000								
Highest Approaches Minor Street	75 53 (60) (42)	100 70								
Combination of Conditions A & B SATISFIED YES NO										
REQUIREMENT		WARR	ANT	√ FULFILLED						
TWO WARRANTS	1. MININ	IUM VEHICULAR	R VOLUME							
SATISFIED 80%	2. INTER	RRUPTION OF CO	ONTINUOUS TRAFFIC	Yes LI No LI						

Figure 4C-101. Traffic Signal Warrants Worksheet (Sheet 2 of 4)

W	ARRANT 2 - Four Hour Vehicular	Volu	me				SATISFIED*	YES 🗆	NO 🗆
	Record hourly vehicular volumes for four l	nours.			,	,			
	APPROACH LANES	One	2 or More				Hour		
	Both Approaches - Major Street								
	Highest Approaches - Minor Street								
	*All plotted points fall above the curves in	MUTC	D Figu	ıre 4C-	1 or 4C	-2.		Yes 🗆	No 🗆
W	ARRANT 3 - Peak Hour		PA	RT A	or <u>PAR</u>	TB	SATISFIED	YES 🗆	ио □
	<u>.RT A</u> II parts 1, 2, and 3 below must be sa	tisfied	d)				SATISFIED	YES 🗆	NO 🗆
	The total delay experienced for traffic of by a STOP sign equals or exceedds for and five vehicle-hours for a two-lane as	ur veh	icle-ho	urs for	approad a one-l	ch con ane a	trolled pproach	Yes 🗆	No 🔽
	The volume on the same minor street a one moving lane of traffic or 150 vph for	approa or two i	ich equ moving	ials or I lanes	exceed ; <u>AND</u>	s 100	vph for	Yes 🗆	No 🗹
	 The total entering volume serviced dur for intersections with four or more appr three approaches. 	ing the oache	hour e s or 65	equals 0 vph	or exce for inter	eds 8 sectio	00 vph ons with	Yes 🗹	No 🗆
PA	RT B			٠. وري	work.	X.e.	SATISFIED	YES 🗆	NO 🗹
	APPROACH LANES	One	2 or More	8105	C (18)		M Hour		
	Both Approaches - Major Street		X	1782	1460				
	Highest Approaches - Minor Street		X	61	30				

The plotted points for vehicles per hour on major streets (both approaches) and the corresponding per hour higher volume vehicle minor street approach (one direction only) for one hour (any consecutive 15 minute period) fall above the applicable curves in MUTCD Figure 4C-3 or 4C-4.

Figure 4C-3. Warrant 3, Peak Hour

MAJOR STREET—TOTAL OF BOTH APPROACHES— VEHICLES PER HOUR (VPH)

*Note: 150 vph applies as the lower threshold volume for a minor-street approach with two or more lanes and 100 vph applies as the lower threshold volume for a minor-street approach with one lane.

Figure 4C-4. Warrant 3, Peak Hour (70% Factor)
(COMMUNITY LESS THAN 10,000 POPULATION OR ABOVE 70 64 km/h OR ABOVE 40 mph ON MAJOR STREET)

MAJOR STREET—TOTAL OF BOTH APPROACHES— VEHICLES PER HOUR (VPH)

*Note: 100 vph applies as the lower threshold volume for a minor-street approach with two or more lanes and 75 vph applies as the lower threshold volume for a minor-street approach with one lane.